9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page ii 9781133954316_FES.qxp 11/6/12 11:02 AM Page 2 GRAPHS OF PARENT FUNCTIONS Linear Function Absolute Value Function Square Root Function f(cid:2)x(cid:3)(cid:4)mx (cid:6) b f(cid:2)x(cid:3)(cid:4)(cid:10)x(cid:10)(cid:4)(cid:11)x, x (cid:5) 0 f(cid:2)x(cid:3)(cid:4)(cid:9)x (cid:3)x, x < 0 y y y 2 4 3 f(x) = x (0, b) 1 f(x) = ⏐x⏐ 2 x x (− b , 0 ( (− b , 0 ( −2 −1 (0, 0) 2 1 m m −1 x f(x) = mx + b, f(x) = mx + b, −1 (0, 0) 2 3 4 m > 0 m < 0 −2 −1 Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:5)0, (cid:2)(cid:3) Range:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Range:(cid:5)0, (cid:2)(cid:3) Range:(cid:5)0, (cid:2)(cid:3) x-intercept:(cid:2)(cid:3)b(cid:8)m, 0(cid:3) Intercept:(cid:2)0, 0(cid:3) Intercept:(cid:2)0, 0(cid:3) y-intercept:(cid:2)0, b(cid:3) Decreasing on (cid:2)(cid:3)(cid:2), 0(cid:3) Increasing on (cid:2)0, (cid:2)(cid:3) Increasing when m > 0 Increasing on (cid:2)0, (cid:2)(cid:3) Decreasing when m < 0 Even function y-axis symmetry Greatest Integer Function Quadratic (Squaring) Function Cubic Function f(cid:2)x(cid:3)(cid:4)(cid:6)x(cid:7) f(cid:2)x(cid:3)(cid:4)ax2 f(cid:2)x(cid:3)(cid:4)x3 y y y f(x) = [ [ x]] 3 3 3 2 2 2 1 1 f(x) =ax2,a>0 (0, 0) x x x −3 −2 −1 1 2 3 −2 −1 1 2 3 4 −3 −2 1 2 3 −1 f(x) =ax2,a<0 −1 f(x) = x3 −2 −2 −3 −3 −3 Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Range:the set of integers Range (cid:2)a > 0(cid:3):(cid:5)0, (cid:2)(cid:3) Range:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) x-intercepts:in the interval (cid:5)0, 1(cid:3) Range (cid:2)a < 0(cid:3):(cid:2)(cid:3)(cid:2), 0(cid:4) Intercept:(cid:2)0, 0(cid:3) y-intercept:(cid:2)0, 0(cid:3) Intercept:(cid:2)0, 0(cid:3) Increasing on (cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Constant between each pair of Decreasing on (cid:2)(cid:3)(cid:2), 0(cid:3)for a > 0 Odd function consecutive integers Increasing on (cid:2)0, (cid:2)(cid:3)for a > 0 Origin symmetry Jumps vertically one unit at Increasing on (cid:2)(cid:3)(cid:2), 0(cid:3)for a < 0 each integer value Decreasing on (cid:2)0, (cid:2)(cid:3)for a < 0 Even function y-axis symmetry Relative minimum (cid:2)a > 0(cid:3), relative maximum (cid:2)a < 0(cid:3), or vertex:(cid:2)0, 0(cid:3) Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954316_FES.qxp 11/6/12 11:02 AM Page 3 Rational (Reciprocal) Function Exponential Function Logarithmic Function 1 f(cid:2)x(cid:3)(cid:4) f(cid:2)x(cid:3)(cid:4)ax, a > 1 f(cid:2)x(cid:3)(cid:4) log x, a > 1 x a y y y 3 1 f(x) = f(x) = log x x 1 a 2 1 f(x) = ax f(x) = a−x (0, 1) (1, 0) x x −1 1 2 3 1 2 x −1 Domain:(cid:2)(cid:3)(cid:2), 0(cid:3)(cid:2)(cid:2)0, (cid:2)) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:2)0, (cid:2)(cid:3) Range:(cid:2)(cid:3)(cid:2), 0(cid:3)(cid:2)(cid:2)0, (cid:2)) Range:(cid:2)0, (cid:2)(cid:3) Range:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) No intercepts Intercept:(cid:2)0, 1(cid:3) Intercept:(cid:2)1, 0(cid:3) Decreasing on (cid:2)(cid:3)(cid:2), 0(cid:3) and (cid:2) 0, (cid:2)(cid:3) Increasing on (cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Increasing on (cid:2)0, (cid:2)(cid:3) Odd function for f(cid:2)x(cid:3)(cid:4) ax Vertical asymptote:y-axis Origin symmetry Decreasing on (cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Continuous Vertical asymptote:y-axis for f(cid:2)x(cid:3)(cid:4) a(cid:3)x Reflection of graph of f(cid:2)x(cid:3)(cid:4)ax Horizontal asymptote:x-axis Horizontal asymptote:x-axis in the line y (cid:4) x Continuous Sine Function Cosine Function Tangent Function f(cid:2)x(cid:3)(cid:4) sin x f(cid:2)x(cid:3)(cid:4)cos x f(cid:2)x(cid:3)(cid:4) tan x y y y f(x) = tan x 3 3 3 f(x) = sin x f(x) = cos x 2 2 2 1 1 x x −π 2π π 2π −π −2π 2π π 2π −π π π 3π x 2 2 2 −2 −2 −3 −3 (cid:7) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Domain:all x (cid:8) (cid:6)n(cid:7) Range:(cid:5)(cid:3)1, 1(cid:4) Range:(cid:5)(cid:3)1, 1(cid:4) 2 Range:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Period:2(cid:7) Period:2(cid:7) x-intercepts:(cid:2)n(cid:7), 0(cid:3) (cid:12)(cid:7) (cid:13) Period:(cid:7) y-intercept:(cid:2)0, 0(cid:3) x-intercepts: 2 (cid:6) n(cid:7), 0 xy--iinntteerrcceepptt:s:(cid:2)0(cid:2)n, (cid:7)0(cid:3), 0(cid:3) Odd function y-intercept:(cid:2)0, 1(cid:3) Vertical asymptotes: Origin symmetry Even function (cid:7) y-axis symmetry x(cid:4) (cid:6) n(cid:7) 2 Odd function Origin symmetry Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954316_FES.qxp 11/6/12 11:02 AM Page 4 Cosecant Function Secant Function Cotangent Function f(cid:2)x(cid:3)(cid:4)csc x f(cid:2)x(cid:3)(cid:4)sec x f(cid:2)x(cid:3)(cid:4)cot x 1 1 1 f(x) = csc x = f(x) = sec x = f(x) = cot x = y sin x y cos x y tan x 3 3 3 2 2 2 1 1 x x x −π π π 2π −π −π π π 3π 2π −π −π π π 2π 2 2 2 2 2 2 −2 −3 (cid:7) Domain:all x(cid:8) n(cid:7) Domain:all x(cid:8) (cid:6)n(cid:7) Domain:all x(cid:8) n(cid:7) Range:(cid:2)(cid:3)(cid:2), (cid:3)1(cid:4)(cid:2)(cid:5)1, (cid:2)(cid:3) 2 Range:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) Period:2(cid:7) Range:(cid:2)(cid:3)(cid:2), (cid:3)1(cid:4)(cid:2)(cid:5)1, (cid:2)(cid:3) Period:(cid:7) Period:2(cid:7) No intercepts (cid:12)(cid:7) (cid:13) Vertical asymptotes:x(cid:4)n(cid:7) y-intercept:(cid:2)0, 1(cid:3) x-intercepts: (cid:6)n(cid:7), 0 2 Vertical asymptotes: Odd function (cid:7) Vertical asymptotes:x (cid:4) n(cid:7) Origin symmetry x(cid:4) (cid:6)n(cid:7) Odd function 2 Origin symmetry Even function y-axis symmetry Inverse Sine Function Inverse Cosine Function Inverse Tangent Function f(cid:2)x(cid:3)(cid:4)arcsin x f(cid:2)x(cid:3)(cid:4)arccos x f(cid:2)x(cid:3)(cid:4)arctan x y y y π π π 2 2 f(x) = arccos x x x −1 1 −2 −1 1 2 f(x) = arcsin x f(x) = arctan x π π − x − 2 −1 1 2 Domain:(cid:5)(cid:3)1, 1(cid:4) Domain:(cid:5)(cid:3)1, 1(cid:4) Domain:(cid:2)(cid:3)(cid:2), (cid:2)(cid:3) (cid:14) (cid:7) (cid:7)(cid:15) Range:(cid:5)0, (cid:7)(cid:4) (cid:12) (cid:7) (cid:7)(cid:13) Range: (cid:3) , Range: (cid:3) , 2 2 (cid:12) (cid:7)(cid:13) 2 2 Intercept:(cid:2)0, 0(cid:3) y-intercept: 0, 2 Intercept:(cid:2)0, 0(cid:3) Odd function Horizontal asymptotes: Origin symmetry (cid:7) y(cid:4)± 2 Odd function Origin symmetry Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page i Trigonometry Ninth Edition Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page ii Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page iii Trigonometry Ninth Edition Ron Larson The Pennsylvania State University The Behrend College With the assistance of David C. Falvo The Pennsylvania State University The Behrend College Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page ii This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for materials in your areas of interest. Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page iv Trigonometry © 2014, 2011, 2007 Brooks/Cole, Cengage Learning Ninth Edition ALL RIGHTS RESERVED. No part of this work covered by the copyright Ron Larson herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to Publisher: Liz Covello photocopying, recording, scanning, digitizing, taping, Web distribution, Acquisitions Editor: Gary Whalen information networks, or information storage and retrieval systems, Senior Development Editor: Stacy Green except as permitted under Section 107 or 108 of the 1976 United States Assistant Editor: Cynthia Ashton Copyright Act, without the prior written permission of the publisher. Editorial Assistant: Samantha Lugtu Media Editor: Lynh Pham For product information and technology assistance, contact us at Senior Content Project Manager: Jessica Rasile Cengage Learning Customer & Sales Support, 1-800-354-9706. Art Director: Linda May For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Rights Acquisition Specialist: Shalice Shah-Caldwell Further permissions questions can be emailed to Manufacturing Planner: Doug Bertke [email protected]. Senior Marketing Manager: Danae April Text/Cover Designer: Larson Texts, Inc. Library of Congress Control Number: 2012948315 Compositor: Larson Texts, Inc. Cover Image: diez artwork/Shutterstock.com Student Edition: ISBN-13: 978-1-133-95433-0 ISBN-10: 1-133-95433-2 Brooks/Cole 20 Channel Center Street Boston, MA 02210 USA Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit www.cengage.com. Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com. Instructors:Please visit login.cengage.comand log in to access instructor-specific resources. Printed in the United States of America 1 2 3 4 5 6 7 16 15 14 13 12 Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. 9781133954330_Trig_SE_FM.qxd 11/7/12 9:11 AM Page v Contents P Prerequisites 1 P.1 Review of Real Numbers and Their Properties 2 P.2 Solving Equations 14 P.3 The Cartesian Plane and Graphs of Equations 26 P.4 Linear Equations in Two Variables 40 P.5 Functions 53 P.6 Analyzing Graphs of Functions 67 P.7 A Library of Parent Functions 78 P.8 Transformations of Functions 85 P.9 Combinations of Functions: Composite Functions 94 P.10 Inverse Functions 102 Chapter Summary 111 Review Exercises 114 Chapter Test 117 Proofs in Mathematics 118 P.S.Problem Solving 119 1 Trigonometry 121 1.1 Radian and Degree Measure 122 1.2 Trigonometric Functions: The Unit Circle 132 1.3 Right Triangle Trigonometry 139 1.4 Trigonometric Functions of Any Angle 150 1.5 Graphs of Sine and Cosine Functions 159 1.6 Graphs of Other Trigonometric Functions 170 1.7 Inverse Trigonometric Functions 180 1.8 Applications and Models 190 Chapter Summary 200 Review Exercises 202 Chapter Test 205 Proofs in Mathematics 206 P.S.Problem Solving 207 2 Analytic Trigonometry 209 2.1 Using Fundamental Identities 210 2.2 Verifying Trigonometric Identities 217 2.3 Solving Trigonometric Equations 224 2.4 Sum and Difference Formulas 235 2.5 Multiple-Angle and Product-to-Sum Formulas 242 Chapter Summary 251 Review Exercises 253 Chapter Test 255 Proofs in Mathematics 256 P.S.Problem Solving 259 v Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.