Trigonometry Ted Sundstrom and Steven Schlicker Grand Valley State University January 2,2019 Trigonometry TedSundstromandStevenSchlicker DepartmentofMathematics GrandValleyStateUniversity Allendale,MI49401 [email protected] License This workis licensed under the Creative Commons Attribution-NonCommercial- ShareAlike3.0UnportedLicense. Thegraphic thatappears throughoutthetextshowsthattheworkis licensedwiththe Creative Commons, that the workmay be usedfor free byany partyso longas attribution is given to the author(s), that the work and itsderivativesare used in the spiritof “share and share alike,” and that no party other than the author(s) may sell this workoranyofitsderivativesforprofit. Fulldetailsmaybefoundbyvisiting http://creativecommons.org/licenses/by-nc-sa/3.0/ or sendinga letter toCreative Commons, 444 Castro Street, Suite 900, Mountain View,California,94041,USA. CoverPhotograph: ThisphotographwastakenatZionNationalParkonOctober 5, 2016. The phases of the moon followa cyclic pattern that can be modeled by trigonometricfunctions. SeeExercise8onpage128. Contents NotetoStudents v Preface viii 1 TheTrigonometricFunctions 1 1.1 TheUnitCircle . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 TheCosineandSineFunctions . . . . . . . . . . . . . . . . . . . 12 1.3 Arcs,Angles,andCalculators . . . . . . . . . . . . . . . . . . . 24 1.4 VelocityandAngularVelocity . . . . . . . . . . . . . . . . . . . 35 1.5 CommonArcsandReferenceArcs . . . . . . . . . . . . . . . . . 45 1.6 OtherTrigonometricFunctions . . . . . . . . . . . . . . . . . . . 63 2 GraphsoftheTrigonometricFunctions 71 2.1 GraphsoftheCosineandSineFunctions. . . . . . . . . . . . . . 72 2.2 GraphsofSinusoidalFunctions . . . . . . . . . . . . . . . . . . . 90 2.3 ApplicationsandModelingwithSinusoidalFunctions . . . . . . . 110 2.4 GraphsoftheOtherTrigonometricFunctions . . . . . . . . . . . 130 2.5 InverseTrignometricFunctions . . . . . . . . . . . . . . . . . . . 142 2.6 SolvingTrigonmetricEquations . . . . . . . . . . . . . . . . . . 156 3 TrianglesandVectors 166 3.1 TrigonometricFunctionsofAngles . . . . . . . . . . . . . . . . . 166 iii iv Contents 3.2 RightTriangles . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 3.3 TrianglesthatAreNotRightTriangles . . . . . . . . . . . . . . . 191 3.4 ApplicationsofTriangleTrigonometry . . . . . . . . . . . . . . . 207 3.5 VectorsfromaGeometricPointofView . . . . . . . . . . . . . . 218 3.6 VectorsfromanAlgebraicPointofView . . . . . . . . . . . . . . 232 4 TrigonometricIdentitiesandEquations 245 4.1 TrigonometricIdentities . . . . . . . . . . . . . . . . . . . . . . 245 4.2 TrigonometricEquations . . . . . . . . . . . . . . . . . . . . . . 253 4.3 SumandDifferenceIdentities . . . . . . . . . . . . . . . . . . . 263 4.4 DoubleandHalfAngleIdentities . . . . . . . . . . . . . . . . . . 275 4.5 SumandProductIdentities . . . . . . . . . . . . . . . . . . . . . 286 5 ComplexNumbersandPolarCoordinates 294 5.1 TheComplexNumberSystem . . . . . . . . . . . . . . . . . . . 295 5.2 TheTrigonometricFormofaComplexNumber . . . . . . . . . . 305 5.3 DeMoivre’sTheoremandPowersofComplexNumbers . . . . . . 314 5.4 ThePolarCoordinateSystem . . . . . . . . . . . . . . . . . . . . 321 A AnswersfortheProgressChecks 336 B AnswersandHintsforSelectedExercises 397 C SomeGeometricFactsaboutTrianglesandParallelograms 419 Index 423 Note to Students This book may be different than other mathematics textbooks you have used in thepast. Inthisbook,thereader isexpectedtodomore thanreadthebookandis expectedtostudythematerialinthebookbyworkingoutexamplesratherthanjust readingaboutthem. Sothisbookisnotjustaboutmathematicalcontentbutisalso abouttheprocessoflearninganddoingmathematics. Alongtheway,youwillalso learn some important mathematical topics that willhelp you in your future study ofmathematics. Thisbookisdesignednottobejustcasuallyread butratherto beengaged. It may seem likea cliche´ (because it isin almostevery mathematics booknow) but thereistruthinthestatementthatmathematicsisnotaspectatorsport.Tolearnand understandmathematics,youmustengageintheprocessofdoingmathematics. So youmustactivelyreadandstudythebook,whichmeanstohaveapencilandpaper with you and be willingto follow along and fill in missing details. This type of engagement is noteasy and isoften frustrating, butif youdo so, youwilllearn a greatdealaboutmathematicsandmoreimportantly,aboutdoingmathematics. Recognizingthatactivelystudyinga mathematicsbookisoftennoteasy, sev- eralfeaturesofthetextbookhavebeendesignedtohelpyoubecomemoreengaged asyoustudythematerial. Someofthefeaturesare: Beginning Activities. The introductorymaterial inalmost every sectionof (cid:15) thisbookcontainsa so-calledbeginningactivity. Some beginningactivities will review prior mathematical work that is necessary for the new section. This prior work may contain material from previous mathematical courses or it may contain material covered earlier in this text. Other beginningac- tivities will introduce new concepts and definitions that will be used later in that section. It is very important that you work on these beginning ac- tivities before starting the rest of the section. Please note that answers to these beginningactivities are not included in the text, but the answers will bedevelopedinthemateriallaterinthatsection. v vi NotetoStudents FocusQuestions. Atthestartofeachsection,welistsomefocusquestions (cid:15) thatprovideinformationaboutwhatisimportantandwhatideasarethemain focus of the section. A goodgoal for studyingsection isto be able answer eachofthefocusquestions. Progress Checks. Several Progress Checks are included in each section. (cid:15) These are either short exercises or short activitiesdesigned to help youde- termineifyouareunderstandingthematerialasyouarestudyingthematerial inthesection. Assuch,itisimportanttoworkthroughtheseprogresschecks totestyourunderstanding,andifnecessary, studythematerialagainbefore proceedingfurther. Soitisimportanttoattempttheseprogresschecksbefore checkingtheanswers,whichareareprovidedinAppendixA. Section Summaries. To assist you with studying the material in the text, (cid:15) there is a summary at the end of each of the sections. The summaries usu- allylisttheimportantdefinitionsintroducedinthesectionandtheimportant results proven in the section. In addition, although not given in a list, the section summaries should contain answers to the focus questions given at thebeginningofthesection. AnswersforSelectedExercises. Answersorhintsforseveralexercisesare (cid:15) includedinanAppendixB. Thoseexerciseswithan answerorahintinthe appendixareprecededbyastar.?/. InteractiveGeogebraApplets. Thetextcontainslinkstoseveralinteractive (cid:15) Geogebraappletsorworksheets. Theseareactivelinksinthepdfversionof thetextbook,soclickingonthelinkwilltakeyoudirectlytotheapplet. Short URL’sfortheselinkshavebeencreatedsothattheyareeasiertoenterifyou areusingaprintedcopyofthetextbook. Followingisa linktotheGVSU MTH 123playlistof Geogebraappletson theGeogebrawebsite. (MTH123isthetrigonometrycourseatGrandValley StateUniversity.) http://gvsu.edu/s/Ov Theseappletsareusuallypartofabeginningactivityoraprogresscheckand are intendedtobeusedaspartofthetextbook. See page15foranexample ofa linktoanappletontheGeogebrawebsite. Thisone ispart ofProgress Check1.6andisintendedtoreinforcetheunitcircledefinitionsofthecosine andsinefunctions. NotetoStudents vii VideoScreencasts. Althoughnotpartofthetextbook,thereareseveralon- (cid:15) linevideos(onYouTube)thatcanbeusedinconjunctionwiththistextbook. Therearetwosourcesforvideoscreencasts. 1. TheMTH 123PlaylistonGrandValley’sDepartmentofMathematics YouTubechannel: http://gvsu.edu/s/MJ Note: MTH 123 is the course number for the trigonometry course at GrandValleyStateUniversity. 2. MTH123videoscreencastsonRocketMath1. Thesevideoscreencasts were created by Lynne Mannard, an affiliate faculty member in the DepartmentofMathematicsatGrandValleyStateUniversity. http://gvsu.edu/s/0cc Preface Thistextwaswrittenforthethree-credittrigonometrycourseatGrandValleyState University(MTH 123 – Trigonometry). This text begins with a circular function approachtotrigonometryandtransitionstothestudyoftriangletrigonometry,vec- tors,trigonometricidentities,andcomplexnumbers. The authors are very interested in constructivecriticism of the textbookfrom the users of the book, especially students who are using or have used the book. Pleasesendanycommentsyouhaveto [email protected] ImportantFeatures oftheTextbook Thisbookis meant to be used and studiedbystudentsand the importantfeatures of the textbookwere designedwith thatin mind. Please see the Note to Students onpage(v)foradescriptionofthesefeatures. ContentandOrganization Thefirsttwochaptersofthetextbookemphasizethedevelopmentofthecosineand sinefunctionsandhowtheycanbeusedtomodelperiodicphenomena. Theother four trigonometricfunctionsare studiedinSection 1.6and Section2.4. Triangles and vectors are studied in Chapter 3, trigonometric identities and equations are studiedinChapter4,andfinally,usingtrigonometrytobetterunderstandcomplex numbers is inChapter 5. Followingisa more detaileddescriptionof the sections withineachchapter. Chapter1–TheTrigonometricFunctions Section1.1introducestheunitcircleandthewrappingfunctionfortheunitcircle. This developsthe important relationshipbetween the real numbers and pointson viii