Charles P. McKeague Mark D. Turner We've got the tools to help you do more than Ju t pass th class ...with bese resour-ce , V ucan understand the oncep and truly ucceedl by-step Information on how eadt problem was solVed Author Pat McKeague is your guide for over 8 hours of step-by-step video instruction . The DVC contains helpful video lessons for each section of the book that include worked problems listed next to the viewing screen, allowing you to work them in advance. To purchase any of the for-sale resources mentioned above, visit us online at ,r er ag I th or contact your college bookstore. ... ISBN-1 3: 978-0-495-10835-1 BROOKS/COLE ISBN-10: 0-495-10835-9 9rr ~ , CENGAGE Learn ing For you r cou rse and lea rnin g solutions, visit academic.cengage.com Purch ase any of our products at you r local co llege sto re or at our pre ferred online store www.ichapters.com Operations on Complex Numbers in Standard Form (8.1] Products and Quotients in Trigonometric Form [8.3] IfZI = al + bli and Z2 = a2 .,. b2i are two complex numbers in standard form, If<I = rl(cos III + i sin III) and Z2 = r2(cos 112 + i sin liz) then then the following definitions and operations apply. ZIZZ rlrz[cos (III + flzl + i sin (II, + (2)] = rlrZ cis (01 + 112) Addition ZAl d+d rZeza l pCaratls ;+ a adzdl i+m a(gbiln a+r yb 2p)air ts. <2 !"!. [cos (III fl2) i sin (01 - IIz)J . cis (III - 112) r2 '2 Subtraction Zl - Zz (al a2l + (bl - bz)i Oe Moivre's Theorem [8.3] Subtract real parts; subtract imaginary parts. Ifz = r(cos II + i sin 0) is a complex number in trigonometric form and nis an Multiplication integer, then ZlZ2 (ala2 - bl b2) + (a lb2 + alb))i z" = r'(eos nil i sin nil) = t" cis (nil) In actual practice, simply multiply as you would multiply two binomials. ConJugates Roots of a Complex Number [8.4] The conjugate of a + bi is a bi. Their product is the real number aZ + bZ• Thc nth roots of the complex number Division z r(eos II + i sin e) rcis II Multiply the numerator and denominator of the quotient by the conjugate are given by )j of the denominator. ( 0 0 Wk = rlln rc os nfI +3;6-0 k) + i sin ( InI + -36n0- k Graphing Complex Numbers [8.2] = rliH cis I o + -360- 0 k ') The graph ofthe complex number z x + yi is the arrow (vector) that extends n n from the origin to fbe point (x, y). where k = 0, 1,2..... II - 1. y x + yi Polar Coordinates [8.5] I II The ordered pair (r. 0) names the point that is r units from fbe origin along the I terminal side of angle II in standard position. The coordinates r and II are said IY I to be fbe polar coordinates of the point they name. I y I' • x x 8) 4" ·'i-""'i.',lv ~x Absolute Value of a Complex Number [8.2] The absolute value (or modulus) of the complex number x + yi is the dis tance from the origin to fbe point (x, y). If this distance is denoted by r, fben r Izi = x + yi i Polar Coordinates and Rectangular Coordinates [8.5] Argument of a Complex Number [8.21 To derive the relationship between polar coordinates and rectangular coordi nates, we consider a point P with rectangular coordinates (x, y) and polar fTrhome a trhgeu pmoesintti voef x t-haex ciso tmo pthleex g nraupmh boefrz .z I =f thxe +ar gyui mise fnbte o sfmzaisl ldeesnt optoesdi tbivye f l.a tnhgelne coordinates (r, e). y sin II = 2::. cos II x and tan fI = X r = V x" + v" and tan 0 = "xv. . (x, y) r r x (r, 8) x r cos fI and y = r sin II Trigonometric Form of a Complex Number [8.2] The complex number z = x + yi is written in trigonometric form when it is I' x) I • x written as z = r(cos fI + i sin fI ) = rcis fI where r is the absolute value of z and fI is the argument of z. Exact Values on the Unit Circle [3.3] Inverse Trigonometric Functions [4.7] y Inverse Functio_n_______________M_e_a_n_in-'g~~~~__~___ _ y 8in-1 x or y = arcsin x X = sin y and - 121 ' oS YoS 121' In words: y is the angle between -11'/2 and 1T/2, inclusive, whose sine is x Y cos 1 x or y = arccos x x = cos y and 0 oS Y oS 1T In words: y is the angie between 0 and 1T, inclusive, whose cosine is x, __ (1,0) y = tan-1 x or y == arctan x X tan y and "72T < y < 72T ~-- ------------~------------~~--~x In words: y is the angle between -1T/2 and1T/2 whose tangent is x, Inverse Sine Inverse Cosine Inverse Tangent y = sin-1 x y = cos-1 x y tan-Ix arcsin x arccos x = arctan x y y y (x, y) (cos 0, sin I/) Radian Measure [3.2] -t----7I'"----+.... x -t----+----+.... x -I B (in radians) = S 5 Domain: Domain: Domain: r -I x -I xoSl all real numbers Range: Range: Range: Converting Between Radians and Degrees [3.2] r + Uniform Circular Motion [3.4,3.5] 1~0 A point on a circle of radius r moves a distance s on the circumference of tb Multiply by circle, in an amount of time t, Degrees Radians Angular Velocity Arc Length o ~ w= 5 = rO LMUltiPIYbY 1!0 Area of a Sector s Linear Velocity ~r2ll s A 2 v v= Reference Angles [3.1] t v rw The reference angle {J for any angle fI in standard position is the positive acute fI is measured in radians angle between the terminal side of 0 and the x-axis, y The Area of a Triangle [7.4] C 1 S 2ab sin C s I wheres= 2(a+b c) s= a 2 sin B sin C 2 sin A DEFINITIONS, GRAPHS, AND IMPORTA T FACTS Definition I for Trigonometric Functions [1 .3] Graphs of the Trigonometric Functions [4.1] . in Ii = ',r- C ' 8 = ,r. y (Assume k js any integer) y x r l"(bil= tl = r x 3 -" x 2 2 rol = y -;;t:=::;::::=!-L----x x ·f?--+-41r--+-.....~ x Definition II for Trigonometric Functions [2.11 -2 -2 2 , B -3 -3 .. ( =- - ~.~=a 21"",,,,,,,,·,,," -t = b.. --4 = Domain: All real numbe . D main: All real num rs Range: - ] ~y-l Range: -I ~yS I A = I and Jdja em 10 B Amplitude: I mplitud : b .~= -' .~ b C Period: 2.. P riod: id opfJO'-ite B :Uro : = k... Zer .: :!lid adJ.. nI iD A Definition III for Trigonometric Functions [3.3] =.': :0-:: .... ; = - ,. = un r '="- 1= 1.01. .r .' .. x ~ , f .j =; Special Triangles [1.1J Domain: .A.ll real numbers Domain: All real n tim be rs x= ", - ";; x= ... - Range: All real numbc-r;, Ran"e: All real numbers Amplilud : . 'ot defined Amplitude: . 'ot de..fiD~d Period: ;r Pe.-od: 1r ZeT : x = :r; Zero : x= , - krr Asympl te .\ = - - or; A"~mptOlc : x= ... "- --9(f \. y .'.=~\ Trigonometric Functions of Special Angles [2.1] .. 3 i\. .. ti 0 6 .15' =Tr. 60' = T 900 = 2' 3Jr 2 2 " x x '\ 0 '\, :.: \ 3 \, 4 _1° ~(\If 2" 2 2 -2 2 Itf('\"I -2 2 2 t I I I , \ 2 II VO' -3 It II -3 II II 8 2 2 2 Domain: All real numbers Domain: All real numbers ian 6 0 V3 undefined .t -...:.-L 72T ' I k 7i Graphing Sine and Cosine Curves [4.2, 4.3] Ran ge : y:S - I or y 2:: 1 Range: \' :s - I or y 2:: I Amplitude: Not defined Amplitude: NOl defined Th graph, f,' = A in (Bx + C) and y = A cos (Bx + C). where B > O. will Period: 2'iT Period: 2r. have the following characteristics: Zeros: None Zeros: None .. Amplitude = A Peri od = B2" Phase shl. fl = -8C Asymptotes: X ::= kit Asy mptoles: x = 2 +br IDENTI.TIES AND FORMULAS Basic Identities [5.1] Product to Sum Formulas [5.5] I Common Equivalent sin A cos B = 2 [sin (A + B) + sin (A - Bll Basic Identities Forms I Reciprocal csc () =-I S.i n () =-1 cos A sin B = 2 [sin (A + B) - sin (A - B)l sin () csc () sec () = - 1- () cos () =-1 cos A cos B = 2I [cos (A + B) + cos (A - B)l cos sec () 1 1 I cot() =- tan () =- sin A sin B = 2[cOS (A - B) - cos (A + B)l tan () cot(} sin () Ratio tane =- e Pythagorean Theorem [1.1) cos 2 J e cos cote =- sin () Pythagorean cos2 e+ sin2 e = 1 si nl e = 1 - cos2 e o c sine = ::<:::Yl - cos2 e A cos2 () = 1 - sin2e The law of Sines [7.1] cos (} = ::<::: YI -sinle c J + tan2 () = sec" e 1 + corl e= csc1 () b a Sum and Difference Formulas [5.2J Half-Angle Formulas [5.4] A c B sin (A + B) = sin A cos B + cos A sin B si.n -A == ± (G-fcoisZ A sin A sin B sin C sin (A - B) = sin A cos B - cos A sin B 2 \ 2 a o c cos (A + B) = cosA cos B - sin A sinB A I + cos A or. equivalently. cos (A - B) = cos A cos B + sin A sin B cos '2 -+- - -2 a 0 C tan (A + B) = tan A -'- tan B A - cosA sin A sin A sin B sin C I - tan A tan B tan '2 sin A .L cos A The law of Cosines [7.3] tan (A _ B) = tan A - tan B I ..,-tan A tan B C Even/Odd Functions [4.1] cos (-8) = cos 8 Even o a Double-Angle Formulas [5.3J sin (-8) = - sin 8} Odd sin 2A = 2 sin A cos A tan (-8) = -tan 8 cos 2A = cos' A - sin' A First form A c B 2 cos' A - I Second form a' = 0' + c' - 20c cos A = I - 2 sinl A Third form Sum to Product Formulas [5.5] b' = a' + c' - 2((c cos B cr +j3 cr-j3 tan 2A = 2 tan A sin cr + sin {3 = 2 sin ~ cos - 2 c' = a2 + 0' - 2ao cos C I - tan' A or. equivalently. sin cr - sin j3 = 2 cos ~cr - j3 sin ~cr-j3 b2+c2-a1 cos A 20c Cofunction Theorem [2.1] sin x = cos (900 - xl cos cr + cos j3 = 2 cos ~cr +{3 cos -cr2-{3 cos B = a2 -c2((1c -b1 cos x = sin (900 - x) cr+j3 cr - j3 (12 + b2 c2 tan x = cot (900 - x) cos cr - cos j3 = -2 sin - -2- sin ~ cos C = 2ao 1 CHAPTER THE SIX TRIGONOMETRIC FUNCTIONS 1 2 CHAPTER RIGHT TRIANGLE TRIGONOMETRY 52 3 CHAPTER RADIAN MEASURE 109 4 CHAPTER GRAPHING AND INVERSE FUNCTIONS 169 5 CHAPTER IDENTITIES AND FORMULAS 255 6 CHAPTER EQUATIONS 299 7 CHAPTER TRIANGLES 337 8 CHAPTER COMPLEX NUMBERS AND POLAR COORDINATES 389 A APPENDIX REVIEW OF FUNCTIONS 443 B APPENDIX EXPONENTIAL AND LOGARITHMIC FUNCTIONS 464 ANSWERS TO EXERCISES AND CHAPTER TESTS A-1 INDEX 1-1 tan 1.1 ANGLES, DEGREES, AND SPECIAL TRIANGLES 2 sir 1.2 THE RECTANGULAR COORDINATE SYSTEM 14 1.3 DEFINITION I: TRIGONOMETRIC FUNCTIONS 26 em 1.4 INTRODUCTION TO IDENTITIES 33 tal 1.5 MORE ON IDENTITIES 40 SUMMARY 45 TEST 48 PROJECTS 50 co si ta 2.1 DEFINITION II: RIGHT TRIANGLE TRIGONOMETRY 53 2.2 CALCULATORS AND TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE 61 s 2.3 SOLVING RIGHT TRIANGLES 70 2.4 APPLICATIONS 81 2.5 VECTORS: A GEOMETRIC APPROACH 93 SUMMARY 104 TEST 106 PROJECTS 108 1 3.1 REFERENCE ANGLE 110 3.2 RADIANS AND DEGREES 117 3.3 DEFINITION III: CIRCULAR FUNCTIONS 129 3.4 ARC LENGTH AND AREA OF A SECTOR 140 3.5 VELOCITIES 150 SUMMARY 162 TEST 164 PROJECTS 166 Contents i:,:~."'~#. u'I"~i~".'' i'f":"i ,I~,'~';:i~;0.:I,'.~.·.~:J·~. .:.I,'~,.tJ,'l:.y_;0.·i·.I;·.·.·,~ I_.'iI_ill.il._.,&J._ .. .. .. ... 4.1 BASIC GRAPHS 170 4.2 AMPLITUDE, REFLECTION, AND PERIOD 184 4.3 VERTICAL TRANSLATION AND PHASE SHIFT 197 4.4 THE OTHER TRIGONOMETRIC FUNCTIONS 208 4.5 FINDING AN EQUATION FROM ITS GRAPH 218 4.6 GRAPHING COMBINATIONS OF FUNCTIONS 231 4.7 INVERSE TRIGONOMETRIC FUNCTIONS 237 SUMMARY 249 TEST 252 PROJECTS 253 ~~~.~~_J IDENTITIES AND FORMULAS 255 ;(;\/0;:'4"," ;p; • i ~ ~ = :;",Jlf, '3f ",<"••,,,4 5.1 PROVING IDENTITIES 256 5.2 SUM AND DIFFERENCE FORMULAS 265 5.3 DOUBLE-ANGLE FORMULAS 275 5.4 HALF-ANGLE FORMULAS 282 5.5 ADDITIONAL IDENTITIES 288 SUMMARY 294 TEST 296 PROJECTS 297 EQUATIONS 299 6.1 SOLVING TRIGONOMETRIC EQUATIONS 300 6.2 MORE ON TRIGONOMETRIC EQUATIONS 308 6.3 TRIGONOMETRIC EQUATIONS INVOLVING MULTIPLE ANGLES 313 6.4 PARAMETRIC EQUATIONS AND FURTHER GRAPHING 322 SUMMARY 332 TEST 333 PROJECTS 334 Contents 7.1 THE LAW OF SINES 338 7.2 THE AMBIGUOUS CASE 348 7.3 THE LAW OF COSINES 356 7.4 THE AREA OF A TRIANGLE 364 7.5 VECTORS: AN ALGEBRAIC APPROACH 369 7.6 VECTORS: THE DOT PRODUCT 378 SUMMARY 383 TEST 385 PROJECTS 387 D C( s 8.1 COMPLEX NUMBERS 390 8.2 TRIGONOMETRIC FORM FOR COMPLEX NUMBERS 398 t, 8.3 PRODUCTS AND QUOTIENTS IN TRIGONOMETRIC FORM 404 8.4 ROOTS OF A COMPLEX NUMBER 410 8.5 POLAR COORDINATES 417 8.6 EQUATIONS IN POLAR COORDINATES AND THEIR GRAPHS 427 SUMMARY 437 TEST 440 PROJECTS 441 A REVIEW OF FUNCTIONS 443 APPENDIX A.1 INTRODUCTION TO FUNCTIONS 443 A.2 THE INVERSE OF A FUNCTION 454 B EXPONENTIAL AND LOGARITHMIC APPENDIX FUNCTIONS 464 B.1 EXPONENTIAL FUNCTIONS 464 B.2 LOGARITHMS ARE EXPONENTS 474 B.3 PROPERTIES OF LOGARITHMS 482 B.4 COMMON LOGARITHMS AND NATURAL LOGARITHMS 487 B.5 EXPONENTIAL EQUATIONS AND CHANGE OF BASE 494 ANSWERS TO EXERCISES AND CHAPTER TESTS A-1 INDEX 1-1
Description: