Yue Wang · Fumin Zhang Editors Trends in Control and Decision-Making for Human–Robot Collaboration Systems Trends in Control and Decision-Making – for Human Robot Collaboration Systems Yue Wang Fumin Zhang (cid:129) Editors Trends in Control and Decision-Making – for Human Robot Collaboration Systems 123 Editors Yue Wang Fumin Zhang Department ofMechanical Engineering Schoolof Electrical andComputer Clemson University Engineering Clemson, SC Georgia Institute of Technology USA Atlanta, GA USA ISBN978-3-319-40532-2 ISBN978-3-319-40533-9 (eBook) DOI 10.1007/978-3-319-40533-9 LibraryofCongressControlNumber:2016959746 MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,USA,http://www.mathworks.com ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To our advisors, students, and family Preface Thisbookaimstopresentnewdevelopmentsincontrolanddecision-makingtheory in the field of human–robot interaction (HRI). Despite advances in robotics, sensing, and autonomy, human participation is still an essential component in various operations, especially under uncertain and complex environments. In par- ticular,human–robotcollaboration(HRC)systemsintegratethestrengthsofhuman intermsofhigh-leveldecision-making,flexibility,dexterity,visionprocessing,etc., with robot’s capabilities of performing repetitive tasks in dangerous situations in ordertorealizethefullpotentialofautonomoussystems.Therefore,aconsiderable amount of effort has been made in this area, which however still lacks qualitative analysis, performance prediction, and guarantees. This offers little insight into the effectivecontrolanddecision-makingforthecollaborationoperations,especiallyin real time. Tofillthegap,thechaptersinthisbookdiscussindetailthedevelopmentofnew control and decision-making algorithms for HRC systems for guaranteed joint human–robot system performance. Chapter 1 provides an overview of the extant works in HRI and detailed introduction of main contributions of each chapter. Chapters 2–9 present methods for one human–robot pair collaboration and Chaps. 10–16 develop the control and coordination algorithms for humans to collaboratewithmultiplerobotsandswarms.Bothphysical(e.g.,force,vision)and psychological human factors (e.g., trust and regret) are embedded into control and decision-making approaches such as nonlinear control, shared control, switching control, optimal control, and sequential detection. The considered applications include transportation, healthcare, manufacturing, and defense. Robot experiments and simulations with human-in-the-loop are conducted to demonstrate the effec- tiveness of the proposed algorithms. Clemson, SC, USA Yue Wang Atlanta, GA, USA Fumin Zhang April 2016 vii Acknowledgements The editors would like to thank all the chapter authors and reviewers that work together on this book. A special acknowledgment goes to all the graduate students intheInterdisciplinaryandIntelligentResearch(I2R)LaboratoryintheMechanical Engineering Department at Clemson University, whom assisted the editors to reviewchaptersand provideduseful feedbacksto improve thequality ofthe book. The first editor would like to thank the support from the National Science FoundationunderGrantNo.CMMI-1454139.Theeditorswouldalsoliketothank Springer Verlag and its stafffor the professional support. ix Contents 1 Introduction .... .... .... ..... .... .... .... .... .... ..... .. 1 Yue Wang and Fumin Zhang 1.1 Overview.. .... .... ..... .... .... .... .... .... ..... .. 1 1.2 Collaboration Between One Human–Robot Pair . .... ..... .. 4 1.3 Collaboration Between Human and Multiple Robots/Swarms . .... ..... .... .... .... .... .... ..... .. 6 References .. .... .... .... ..... .... .... .... .... .... ..... .. 8 2 Robust Shared-Control for Rear-Wheel Drive Cars . .... ..... .. 15 Jingjing Jiang and Alessandro Astolfi 2.1 Introduction.... .... ..... .... .... .... .... .... ..... .. 15 2.2 Problem Formulation, Definitions, and Assumptions .. ..... .. 16 2.3 Design of the Shared-Control Law with Measurements of Absolute Positions. ..... .... .... .... .... .... ..... .. 19 2.3.1 Design of the Feedback Controller. .... .... ..... .. 19 2.3.2 Shared-Control Algorithm.... .... .... .... ..... .. 22 2.4 Disturbance Rejections..... .... .... .... .... .... ..... .. 25 2.5 Design of the Shared Control Without Measurements of Absolute Positions. ..... .... .... .... .... .... ..... .. 28 2.5.1 Design of the Feedback Controller. .... .... ..... .. 29 2.5.2 Shared-Control Algorithm.... .... .... .... ..... .. 31 2.6 Case Studies ... .... ..... .... .... .... .... .... ..... .. 33 2.6.1 Case I: Turning Without Absolute Positioning..... .. 33 2.6.2 Case II: Driving on a Road with Parked Cars. ..... .. 36 2.6.3 Case III: Emergency Breaking .... .... .... ..... .. 36 2.7 Conclusions.... .... ..... .... .... .... .... .... ..... .. 38 References .. .... .... .... ..... .... .... .... .... .... ..... .. 38 xi xii Contents 3 Baxter-On-Wheels (BOW): An Assistive Mobile Manipulator for Mobility Impaired Individuals.... .... .... .... .... ..... .. 41 Lu Lu and John T. Wen 3.1 Introduction.... .... ..... .... .... .... .... .... ..... .. 41 3.2 System Description .. ..... .... .... .... .... .... ..... .. 44 3.2.1 Experimental Platform: BOW. .... .... .... ..... .. 44 3.2.2 System Kinematics. .... .... .... .... .... ..... .. 48 3.3 Control Algorithm ... ..... .... .... .... .... .... ..... .. 49 3.3.1 Baseline Shared-Control Algorithm .... .... ..... .. 49 3.3.2 Free-Space Mode and Contact Mode ... .... ..... .. 51 3.4 Application to the BOW ... .... .... .... .... .... ..... .. 54 3.4.1 User Interface..... .... .... .... .... .... ..... .. 54 3.4.2 Object Pick-Up and Placement Task.... .... ..... .. 55 3.4.3 Board Cleaning Task ... .... .... .... .... ..... .. 58 3.5 Conclusion. .... .... ..... .... .... .... .... .... ..... .. 60 References .. .... .... .... ..... .... .... .... .... .... ..... .. 61 4 Switchings Between Trajectory Tracking and Force Minimization in Human–Robot Collaboration.. .... .... ..... .. 65 Yanan Li, Keng Peng Tee and Shuzhi Sam Ge 4.1 Introduction.... .... ..... .... .... .... .... .... ..... .. 65 4.2 Dynamic Models .... ..... .... .... .... .... .... ..... .. 67 4.2.1 Robot Model. ..... .... .... .... .... .... ..... .. 68 4.2.2 Human Arm Model .... .... .... .... .... ..... .. 68 4.2.3 Unified Model .... .... .... .... .... .... ..... .. 70 4.2.4 Trajectory Tracking .... .... .... .... .... ..... .. 71 4.3 Control Design.. .... ..... .... .... .... .... .... ..... .. 71 4.3.1 Control Objective.. .... .... .... .... .... ..... .. 71 4.3.2 Selection of Cost Functions .. .... .... .... ..... .. 72 4.3.3 Optimal Control ... .... .... .... .... .... ..... .. 73 4.4 Simulations .... .... ..... .... .... .... .... .... ..... .. 75 4.4.1 Simulation Settings. .... .... .... .... .... ..... .. 75 4.4.2 Change of Weights. .... .... .... .... .... ..... .. 76 4.4.3 Adaptation of Desired Trajectory .. .... .... ..... .. 78 4.5 Conclusions.... .... ..... .... .... .... .... .... ..... .. 79 Appendix: Proof of Lemma 4.1 ... .... .... .... .... .... ..... .. 79 References .. .... .... .... ..... .... .... .... .... .... ..... .. 80 5 Estimating Human Intention During a Human–Robot Cooperative Task Based on the Internal Force Model.... ..... .. 83 Ehsan Noohi and Miloš Žefran 5.1 Introduction.... .... ..... .... .... .... .... .... ..... .. 83 5.2 Internal Force Model. ..... .... .... .... .... .... ..... .. 86 5.2.1 Problem Formulation ... .... .... .... .... ..... .. 86 Contents xiii 5.2.2 Existing Models ... .... .... .... .... .... ..... .. 87 5.2.3 Proposed Model ... .... .... .... .... .... ..... .. 88 5.2.4 Discussion .. ..... .... .... .... .... .... ..... .. 91 5.3 Method ... .... .... ..... .... .... .... .... .... ..... .. 91 5.3.1 Apparatus... ..... .... .... .... .... .... ..... .. 92 5.3.2 Procedure ... ..... .... .... .... .... .... ..... .. 92 5.4 Results.... .... .... ..... .... .... .... .... .... ..... .. 94 5.5 Validation of the Model.... .... .... .... .... .... ..... .. 97 5.6 Statistical Analysis of the Internal Force Features .... ..... .. 99 5.6.1 Initial Grasp Force Magnitude .... .... .... ..... .. 100 5.6.2 Final Grasp Force Magnitude. .... .... .... ..... .. 101 5.6.3 Internal Force Energy... .... .... .... .... ..... .. 101 5.6.4 Difference Between Initial and Final Grasp Forces.. .. 102 5.6.5 Internal Force Variation . .... .... .... .... ..... .. 102 5.6.6 Negotiation Force.. .... .... .... .... .... ..... .. 103 5.6.7 Negotiation Force Versus Object Velocity ... ..... .. 104 5.7 Proposed Cooperation Policy.... .... .... .... .... ..... .. 105 5.8 Conclusion. .... .... ..... .... .... .... .... .... ..... .. 107 References .. .... .... .... ..... .... .... .... .... .... ..... .. 108 6 A Learning Algorithm to Select Consistent Reactions to Human Movements .... ..... .... .... .... .... .... ..... .. 111 Carol Young and Fumin Zhang 6.1 Introduction.... .... ..... .... .... .... .... .... ..... .. 111 6.2 Background .... .... ..... .... .... .... .... .... ..... .. 113 6.2.1 Expert-Based Learning.. .... .... .... .... ..... .. 113 6.2.2 Binary Learning Algorithms.. .... .... .... ..... .. 114 6.3 Analysis... .... .... ..... .... .... .... .... .... ..... .. 115 6.3.1 Performance . ..... .... .... .... .... .... ..... .. 116 6.3.2 Consistency . ..... .... .... .... .... .... ..... .. 116 6.3.3 Adaptiveness. ..... .... .... .... .... .... ..... .. 118 6.3.4 Tie Breaking. ..... .... .... .... .... .... ..... .. 119 6.4 Expanded Dual Expert Algorithm .... .... .... .... ..... .. 120 6.4.1 Performance Analysis... .... .... .... .... ..... .. 121 6.4.2 Consistency and Adaptiveness .... .... .... ..... .. 122 6.5 Simulation . .... .... ..... .... .... .... .... .... ..... .. 122 6.5.1 Dual Expert Algorithm.. .... .... .... .... ..... .. 122 6.5.2 Expanded Dual Expert Algorithm.. .... .... ..... .. 123 6.6 Experiment. .... .... ..... .... .... .... .... .... ..... .. 125 6.6.1 Setup .. .... ..... .... .... .... .... .... ..... .. 126 6.6.2 Results . .... ..... .... .... .... .... .... ..... .. 127 6.7 Conclusions.... .... ..... .... .... .... .... .... ..... .. 129 References .. .... .... .... ..... .... .... .... .... .... ..... .. 129