water Article Treatment Wetland Aeration without Electricity? Lessons Learned from the First Experiment Using a Wind-Driven Air Pump JohannesBoog1,*,JaimeNivala1,ThomasAubron1,ScottWallace2,ChristopherSullivan3, ManfredvanAfferden1andRolandA.Müller1 1 HelmholtzCenterforEnvironmentalResearch(UFZ),EnvironmentalandBiotechnologyCenter(UBZ), Permoserstrasse15,04318Leipzig,Germany;[email protected](J.N.);[email protected](T.A.); [email protected](M.v.A.);[email protected](R.A.M.) 2 NaturallyWallaceConsultingLLC,7801VauxhillDrive,P.O.Box99587,Raleigh,NC27624,USA; [email protected] 3 RegionalDevelopmentVictoria,121ExhibitionStreet,Melbourne3000,Australia; [email protected] * Correspondence:[email protected];Tel.:+49-341-235-1012 AcademicEditors:HansBrix,CarlosA.AriasandPedroN.Carvalho Received:30August2016;Accepted:24October2016;Published:2November2016 Abstract:Aeratedtreatmentwetlandshavebecomeanincreasinglyrecognizedtechnologyfortreating wastewatersfromdomesticandvariousindustrialorigins. Todate,treatmentwetlandaerationis provided by air pumps which require access to the energy grid. The requirement for electricity increasestheecologicalfootprintofanaeratedwetlandandlimitstheapplicationofthistechnology toareaswithcentralizedelectricalinfrastructure. Windpoweroffersanotherpossibilityasadriver forwetlandaeration,butitsuseforthispurposehasnotyetbeeninvestigated. Thispaperreportsthe firstexperimentaltrialusingasimplewind-drivenairpumptoreplacetheconventionalelectricair blowersofanaeratedhorizontalsubsurfaceflowwetland. Thewind-drivenairpumpwasconnected to a two-year old horizontal flow aerated wetland which had been in continuous (24 h) aeration sincestartup. Thewind-drivenaerationsystemfunctioned,howeveritwasnotspecificallyadapted towetlandaeration. Asaresult,treatmentperformancedecreasedcomparedtopriorcontinuous aeration. Inconsistentwindspeedatthesitemayhaveresultedininsufficientpressurewithinthe aerationmanifold,resultingininsufficientairsupplytothewetland. Thispaperdiscussesthelessons learnedduringtheexperiment. Keywords: aeratedwetland;treatmentwetland;domesticwastewater;horizontalflow;energydemand 1. Introduction Aerated treatment wetlands have become an increasingly recognized technology for treating wastewatersfromdomesticandvariousindustrialoriginsunderdifferentclimateconditions[1–5]. Themainadvantageofthistechnologyisitshighoxygensupplytothemicrobialcommunitypresent, whichenablesincreasedratesofaerobicmicrobialdegradationofpollutants. Aswastewaterdischarge standardsbecomeincreasinglystringent,aeratedtreatmentwetlandsoffereffectiveremovalofkey pollutantssuchasorganiccarbon,ammoniumnitrogen,andpathogens[6–9]andalsohaveareduced land requirement compared to conventional treatment wetland designs [10]. Aerated treatment wetlands have higher operation costs compared to passive treatment wetland designs. However, comparedtoaconventionalactivatedsludgewastewatertreatmenttechnology,aeratedwetlandshave loweroperationcosts[11]. Water2016,8,502;doi:10.3390/w8110502 www.mdpi.com/journal/water Water2016,8,502 2of12 Electricalenergyistheconventionalsourceofpowerforairblowersinaeratedtreatmentwetlands. Thesourceoftheelectricalenergy,whichisoftenfossilfuels,affectstheecologicalfootprintofthe treatmentsystem. Severalattemptshavebeenmadetodecreasetheenergydemandforairsupplyby usingintermittent[12–14]andspatial[15]aerationpatterns. Aeratedwetlandsrequiretheexistenceof centralizedelectricalinfrastructureinordertooperate. However,accesstotheenergygridmaynotbe availableinremoteareassuchascampgrounds,ruralcommunities,orinlessdevelopedcountries. Whenconsideredinconjunctionwiththeconceptofdecentralizedwastewatertreatment,effective wastewatertreatmenttechnologiesthatcanbeoperatedwithoutaconnectiontotheenergygridare advantageous. Locallyavailablerenewableenergyshouldbeexploitedwhereverpossible. Windpoweroffersapromisingpossibilityforwetlandaerationbutitsuseinthiscontexthas notyetbeeninvestigated. Electricityproductionfromwindpowergenerallyoccursonlyonalarge scale. Thus, an aerated wetland driven by electrical energy from wind power would still require somesortofinfrastructuretobeconnectedtothegrid. Onthecontrary,small-scalemechanicalwind power stations are readily available on the market and are often, for example, used to aerate fish farmponds. Qinetal.[16]reportstheuseofsuchadevicetodriveareverseosmosissystemtreating aquaculturewastewater. Thisdemonstratesthattheconceptofdecentralizedenergyproductionto operatedecentralizedwastewatertreatmentsystemsisplausible,andthuscouldalsobeappliedto aeratedtreatmentwetlands. Fromaneconomicperspective,theconceptofwind-poweredaerationsimplyseesthetransferof thecostassociatedwiththepurchaseoftheelectricpumpandthecostofelectricityandmaintenance overthelifeofthesystemreplacedwiththecapitalcostofthewind-poweredairpump. Depending on the life span of an aerated treatment wetland, wind-powered aeration could be economically favorableoverthelongterm. Intheory,small-scalewindpowerstationscouldbeconstructedwith localmaterialsandshouldbespecificallyadaptedtowetlandaeration,furtherimprovingtheecological andeconomicalsustainabilityofthetreatmentsystem. Windspeedfluctuationsarelikelytoresult inintermittentaeration,whichhasbeenshowntoimprovetotalnitrogenremoval[12–14],andthus perhapsnotbeadetrimenttotreatment. Aerated treatment wetlands are generally operated with saturation and configured as either horizontalorverticalflow. Theinternalhydraulicsofthesetwodesignsaredifferent. Aeratedvertical down-flow systems have been reported to be extremely well mixed along the vertical direction, as a result of the counter-movement of water and air, and exhibit hydraulics similar to that of one continuously stirred tank reactor [12]. Horizontal flow wetlands, on the other hand, exhibit hydraulicssimilartothatofthreetofivetanks-in-series,whichisduetothedifferentdimensionsof thewetlandandthefactthatthedirectionofflowandthemovementofairbubblesareperpendicular to one another [17]. In the end, the variation in the distribution of retention times in horizontal systemsissmaller,whichreducesthepossibilityofinflowtobetransferredtotheoutlettooquickly. Therefore,thehydraulicbehaviorofahorizontal-flowaeratedwetlandwilleffectivelyreducetherisk ofshort-circuiting. Thismaybeimportanttoconsiderforatreatmentwetlandwithawind-driven aerationsystemwithrespecttovariablewindspeeds. Forthisreason,theinvestigationwasperformed onahorizontal-flowaeratedwetland. In order to retain the benefits of wetland aeration while eliminating the need for ongoing electricitycosts,thecurrentstudyinvestigatedawind-poweredmechanicalairpumpthatreplaces the electrical-driven aeration device of an aerated horizontal subsurface flow wetland. The main objectives of this study were to assess the suitability of a wind-driven air pump for a horizontal aeratedwetlandtreatingprimarilysettleddomesticsewage,andtocomparetreatmentperformanceof awind-drivenaeratedwetlandtothatofawetlandaeratedcontinuouslywithanelectric-poweredair pumpregardingtheremovaloforganiccarbon,nitrogenandpathogens. Thispaperwilldiscussthe lessonslearnedduringtheexperimentandthechallangesofwind-drivenwetlandaeration. Water2016,8,502 3of12 Water 2016, 8, 502 3 of 11 22.. MMaatteerriiaallss aanndd MMeetthhooddss 22..11.. EExxppeerriimmeennttaall DDeessiiggnn TThhee eexxppeerriimmeennttaall wwoorrkk wwaass ccoonndduucctteedd aatt tthhee EEccootteecchhnnoollooggyy RReesseeaarrcchh FFaacciilliittyy ooff tthhee HHeellmmhhoollttzz CCeenntteerr ffoorr EEnnvviirroonnmmeennttaall RReesseeaarrcchh ((UUFFZZ)) iinn LLaannggeennrreeiicchheennbbaacchh,, GGeerrmmaannyy.. TThhee ssiittee ddeessccrriippttiioonn iiss pprroovviiddeedd iinn ddeettaaiill iinn NNivivaallaa eetta al.l.[ 1[188].]. IInn pprriinncciippllee,, tthhee eexxppeerriimmeenntt ccoonnssiisstteedd ooff tthhrreeee mmoonniittoorriinngg pphhaasseess ooff tthhee ssaammee aaeerraatteedd trtreeaattmmeenntt wweettlalanndd:: ((11)) ccoonnttiinnuuoouuss 2244 hh aaeerraattiioonn pprroovviiddeedd bbyy ttwwoo eelleeccttrriicciittyy-‐ppoowweerreedda aiirrp puummppss;;( (22)) wwiinndd-‐ppoowweerreedda aeerraattiioonna attt thhee oorriiggiinnaall hhyyddrraauulliicc llooaaddiinngg rraattee,, aanndd ((33)) wwiinndd-‐ppoowweerreedd aaeerraattiioonn aatt aa rreedduucceeddh hyyddrraauulliicc llooaaddiinngg rraattee.. TThhee bbaassiicc sseettuupp ooff tthhee eexxppeerriimmeennttaall ppiilloott ssyysstteemm iiss sshhoowwnn iinn FFigiguurree 11. .ThTeh aeearaetreadte wdewtlaentldan sdysstyemste mmeamsuearesudr 1e.d2 m1.2 inm wiindtwh ibdyth 4.b7y m4 .i7n mleningtlhe nwgitthh aw siathtuarastaetdu draetpetdh dofe p1 tmh.o Tfh1e mbe.dT mheedbiead wmase gdriaavwela (s8–g1r6a vmeml ( 8a–s1 m6aminm maesdmia,a 1in6–m32e dmima, 1i6n– 3th2em imnleitn athned inoluettleatn dzoonuetsle).t zTohnee ss)y.sTtehme swysatse mnowt apslannottepdl awntiethd waniyth vaengyevtaetgioenta. tiAoenr.aAtieorna twioans wparosvpidroevdi dbeyd abny aaenraatieorna tsioynstesmys taecmcoarcdcionrgd tion gWtoalWlacael la[1c9e].[ 1D9u].riDnugr pinhgaspeh oansee,o enleec,terliecc atreircaatieorna twioans wreaaslirzeeadli zuesdinugs itnwgot wdoiadpiharpahgrmag mpupmupms p(sM(iMstirsatlr a2l020000, 0A, Aquqau aMMeeddici,c ,BBisissseennddoorrf,f ,LLoowweerr SSaaxxoonnyy,, GGeerrmmaannyy)).. PPrreettrreeaattmmeenntt ooff rraaww ddoommeessttiicc wwaasstteewwaatteerr wwaass aacchhiieevveedd iinn aa sseettttlliinngg ttaannkk wwiitthh aa nnoommiinnaall hhyyddrraauulilcicr reetetenntitoionnt itmimee( n(HnHRTR)To) fo3f. 53.d5a dyasy.sT.h Tehsee tstelettdlesde wseawgeagwea wstahse tnhpenu mpupmedpeevde reyve3r0ym 3i0n mtointh teo etxhpee erximpeernitmalesnytastle smys,taetma,d aati lay dhayidlyr ahuylidcrlaoualdici nlgoardatinego fra1t3e0 oLf· m13−02 ·Ld∙−m1−.2∙Tdh−1e. tTrheaet mtreeanttmweenttl awndetlwanasd ewstaasb elissthaebdlisinheSde pinte Smepbeterm20b0e9r a2n00d9s atanrdte sdtaorpteedra otipoenrawtiiothn ewleitchtr eicleacltareicraalt iaoenraintioJunn ien 2Ju01n0e. 2010. FFiigguurree1 .1P. iPloitlosty sstyesmteamt thaet Etchoet eEchcontoelcohgnyorleosgeya rcrhesfeaacrilcihty fiancLilaitnyg einnr eLicahnegnebnarcehic,hGeenrbmaacnhy, ,Ginecrlumdainnyg, ainpchluodtoinogf tah epwhointod pofo wtheer swyisntedm paonwdeer xspyesrtiemme natnadlt reexaptmereimntewnteatll atnreda(tlmefetn),t awndetalasncdh e(mleaftti)c, oafntdh ea esxcpheermimateinc toafl tsheetu epx.perimental setup. The wind‐driven air pump was a conventional six‐blade wind rotor (d = 1.5 m, Thewind-drivenairpumpwasaconventionalsix-bladewindrotor(d=1.5m,collarheight=3m) collar height = 3 m) with a piston pump that was mechanically connected through a bevel drive. withapistonpumpthatwasmechanicallyconnectedthroughabeveldrive. Polyethylene(PE)pipes Polyethylene (PE) pipes (d = 32 mm) were used to couple the piston pump to the aeration system. (d=32mm)wereusedtocouplethepistonpumptotheaerationsystem. Monitoring of the experimental wetland was conducted from August 2010 to August 2014. In Monitoring of the experimental wetland was conducted from August 2010 to August 2014. July 2012, the aeration device of the test system was changed from the electrical blower to the In July 2012, the aeration device of the test system was changed from the electrical blower to the wwiinndd-‐ddrriivveenn aairirp puummpp..T Thheeh hyyddrarauulilcicl olaodadininggr artaeteo fo1f 3103L0 ·Lm∙m−2−·2d∙d−−11 rreemmaaiinneedd tthhee ssaammee.. IInn AAuugguusstt 22001133,, tthhee hhyyddrraauulliicc llooaaddiinnggr raatteew waassr reedduucceeddt too6 655L L·∙mm−−22∙·dd−−1. 1. 2.2. Experimental Procedure 2.2. ExperimentalProcedure 22..22..11.. WWiinndd SSppeeeedd aanndd AAiirrF FlloowwM Meeaassuurreemmeenntt MMeeaassuurreemmeenntto fowf winidndsp sepedeewd awsraesc orerdcoerddaesd1 0asm 1in0 amvienr aagveesrdaugreisn gduthreinegn ttihree menotniriteo rminognpiteorriiondg bpyeraiowde abtyh ear swtaetaitohner(3 s.5tamtioanb o(3v.e5 thme gabroouvne dt)haet gthroeuenxdp)e raimt tehnet aelxspiteer.imEveanltuaal tisnitge.t hEevraelulaattiionngs htihpe breetlwateioennsthhiep abiretflwoeweng ethnee raaitre fdlobwy tgheenweriantded-d briyv ethnea wiripnudm‐dpriavtean caeirrt apiunmlepv ealt oaf cwerintadins pleeveedl wofa swninodt sstpraeiegdh twfoarsw naordt .stSruacighhatfsomrwalalrwdi.n Sdupcohw ae srmstaaltli owninisde apsoiwlyearf fsetcatteidonb yisq euaisciklya nafdf/ecotreidn tbeyn sqeucihckan agneds/ionr winintednsspe ecehdanangdesd iinre wctiinond. sSpoemede taimndes dtihreecwtiionnd. rSootmorejtuidmdeesr ethdea wroiunndd rloiktoera jufldagdeinretdh earwoiunndd. Tlihkee dai rfelacgt in the wind. The direct mechanical coupling to the piston pump transferred this fluctuation to the generated air flow, which contributes to the existing variability in air flow rate that results from the Water2016,8,502 4of12 mechanicalcouplingtothepistonpumptransferredthisfluctuationtothegeneratedairflow,which contributestotheexistingvariabilityinairflowratethatresultsfromtheup-and-downmotionofthe piston. Athermalmassflowmeter(TSI4043,TSIGmbH,Aachen,Northrhine-Westfalia,Germany) combinedwithahigh-resolutiondataloggerwithasamplingfrequencyof32Hz(HandyLogV/C -rugged-,Driesen+KernGmbH,BadBramstedt,Schleswig-Holstein,Germany)wasusedtoassessair flowrates. Forthemeasurements,theairpumpwasconnectedtoapipewithanopenend,inorder tomakeameasurementwithoutthebackpressureofthewetlandaerationsystem. Severaltechnical andlogisticaldifficultiesdidnotallowthequantificationoftheairflowwhilethewind-drivenpump wasconnectedtothewetlandaerationsystem. Ameasurementcampaignconsistedofseveraldays ofmonitoringairflowandwindspeedsimultaneously,whichsometimesincludedacoupleofdays waitingforwind. 2.2.2. SamplingandWaterQualityAnalysis Forlogisticalreasons,aquasi-weeklysamplingroutinewasestablished. Grabsamplesweretaken fromtheinfluentandeffluentoftheexperimentaltreatmentwetlandandanalyzedforredoxpotential (ORP,Multi350i,SenTix® ORP,WTW,Weilheim,Bavaria,Germany),dissolvedoxygen(DO,Multi 350i,CellOx325,WTW,Weilheim,Bavaria,Germany),five-daycarbonaceousbiochemicaloxygen demand(CBOD ,DIN38409H52,OxiTOP®,WTW,Weilheim,Bavaria,Germany),totalorganiccarbon 5 (TOC,DINEN1484,TOC-VCSN,ShimadzuDeutschlandGmbH,Duisburg,Northrhine-Westfalia, Germany), total nitrogen (TN, DINEN 12660, TNM-1, Shimadzu Deutschland GmbH, Duisburg, Northrhine-Westfalia,Germany),ammonianitrogen(NH -N,DIN38406E5,EPOSANALYZER5060, 4 EppendorfAG,Hamburg,Germany),nitratenitrogen(NO -N,DIN38405D9,EPOSANALYZER5060, 3 EppendorfAG,Hamburg,Germany),andE.coli(Colilert-18Quanti-Tray™,IDEXXLaboratoriesInc., Westbrook, ME, USA). Inflow and outflow were measured with a magnet inductive flow meter (Promag10, Endress+Hauser Messtechnik GmbH+Co. KG, Weilam Rhein, Baden-Württemberg, Germany)andatippingcounter,respectively. 2.3. DataProcessing Influentandeffluentconcentrationdatawasscreenedforoutliers. Outliersweredefinedasdata relatedtoinfrastructuremalfunctionsand/orsamplingerrors,andwereidentifiedusingtimeseries plotsofthecorrespondingwaterqualityparameters. DetectionlimitsforCBOD ,NH -NandNO -N 5 4 3 were0.3,0.03,and0.02mg·L−1respectively. Fordataprocessing,resultsreportedasbelowdetection limitwerereplacedwiththevalueofthecorrespondingdetectionlimit. Thisapproach,ifanything, slightlyunderestimatestreatmentperformanceofthesystem. Missingvalueswhichwerearesultof thequasi-weeklysamplingscheduleand/orduetoinfrastructuremalfunctionswerenotconsideredas problematicasonlysimpledescriptivestatisticsandtimeseriesplotswereappliedforthedataanalysis. Information about data below detection limit and number of outliers can be reviewed in TableS1. Theregression analysis of the air flow measurement data was done in the statistic environment R version3.1.2[20]usingthepackagesegmented[21]. 3. Results 3.1. WindSpeedDistributionatExperimentalSite On a yearly basis, the average wind speed varied from 0 to 7 m·s−1 with an overall mean of around3m·s−1andmaximumvaluesintherangeof8–15m·s−1. Thewindspeedtimeseriesexhibits slightlyloweraveragevaluesduringsummercomparedtowinterseasons(Figure2a). Figure2bshows thewindspeeddistributionduringSeptember2013. Thismonthlypatternshowsaconstantwind speedfluctuationwithameanof4m·s−1andfluctuationsbetween0and10m·s−1. Adivergencefrom thispatterncanbeidentifiedinthefirstandlastweekofthepresentedmonth. Figure2bshowsthat thespeedanddurationofthewinddiffersgreatlyfromonedaytoanother. Thisisalsoobservedinthe Water2016,8,502 5of12 hourlywinddatashowninFigure2d. Overall,mostwindoccursduringthedaytime. Ingeneral,the Water 2016, 8, 502 5 of 11 distributionofwindspeedatthesitecanbetermedashighlyvariable,containingmaximumvaluesof 2c0onmt·asi−n1in;gh omwaexviemr,utmhe vloanluge-tse romf 2a0v emra∙sg−e1; whoinwdesvpeere, dthies qlounitge‐tleorwm. Tahveersatrgoen wgeisntdfl supcetuedat iiosn qsuiintew lionwd. sTpheee dstwroenrgeeosbt sfelurvcteudaotinonasd iani lwyianndd shpoeeudrl ywberaes ios.bserved on a daily and hourly basis. Figure 2. Wind speed time series at the research facility in Langenreichenbach, Germany at different Figure2.WindspeedtimeseriesattheresearchfacilityinLangenreichenbach,Germanyatdifferent time scales: (a) Period of record; (b) monthly (September 2013); (c) weekly (1–7 September 2013); and time scales: (a) Period of record; (b) monthly (September 2013); (c) weekly (1–7 September 2013); (d) daily (5 September 2013). and(d)daily(5September2013). 3.2. Air Flow Measurement 3.2. AirFlowMeasurement The air flow generated by the wind‐driven piston pump and the wind speed are positively The air flow generated by the wind-driven piston pump and the wind speed are positively correlated. This correlation shows a breakpoint at a wind speed of around 5 m∙s−1. The rate of correlated. Thiscorrelationshowsabreakpointatawindspeedofaround5m·s−1. Therateofincrease increase of air flow over wind speed declines with wind speeds greater than 5 m∙s−1, which might be ofairflowoverwindspeeddeclineswithwindspeedsgreaterthan5m·s−1,whichmightbecaused caused by a stall effect on the rotor blades. A stall effect is a common phenomenon in fluid dynamics by a stall effect on the rotor blades. A stall effect is a common phenomenon in fluid dynamics of of wind rotor blades [22]; it describes the demolition of an air flow on a wing above a certain windrotorblades[22];itdescribesthedemolitionofanairflowonawingaboveacertainthreshold threshold wind speed. A segmented regression with two linear parts was fit to the data; the windspeed. Asegmentedregressionwithtwolinearpartswasfittothedata; thebreakpointwas breakpoint was identified at a wind speed of approximately 5.4 m∙s−1 as indicated in Figure 3. The identifiedatawindspeedofapproximately5.4m·s−1asindicatedinFigure3. Theregressionlinein regression line in Figure 3 also shows that a minimum wind speed is required in order to produce Figure3alsoshowsthataminimumwindspeedisrequiredinordertoproduceanysignificantair any significant air flow. The maximum measured air flow was approximately 2200 NL∙h−1 at a wind flow. Themaximummeasuredairflowwasapproximately2200NL·h−1atawindspeedof9.5m·s−1. speed of 9.5 m∙s−1. Remembering that the wind speed at the site fluctuated from 0 to 7 m∙s−1 on Remembering that the wind speed at the site fluctuated from 0 to 7 m·s−1 on average, a range of average, a range of airflows from 1000 to 1800 NL∙h−1 can be expected if the back pressure of the airflows from 1000 to 1800 NL·h−1 can be expected if the back pressure of the aeration system is aeration system is neglected. Unfortunately, the aeration system does exert a back pressure, which is neglected. Unfortunately,theaerationsystemdoesexertabackpressure,whichisaresultoffrictional a result of frictional losses and the hydrostatic pressure of the water level. This implies a reduction in losses and the hydrostatic pressure of the water level. This implies a reduction in actual air flow actual air flow delivered to the wetland. It also means an effective increase of the threshold wind deliveredtothewetland. Italsomeansaneffectiveincreaseofthethresholdwindspeedrequiredto speed required to initiate a significant air flow into the wetland. Boog [17] estimated that after considering these losses, the air volume reaching a small‐scale aerated wetland is approximately 50% of the maximum value (listed, for example, on the manufacturer specification sheet). Considering the pump specifications used in Boog [17], the reported flow loss would correspond to a Water2016,8,502 6of12 initiateasignificantairflowintothewetland. Boog[17]estimatedthatafterconsideringtheselosses, theairvolumereachingasmall-scaleaeratedwetlandisapproximately50%ofthemaximumvalue (listed,forexample,onthemanufacturerspecificationsheet). Consideringthepumpspecifications Water 2016, 8, 502 6 of 11 usedinBoog[17],thereportedflowlosswouldcorrespondtoabackpressureoftheaerationsystem (binaccklu dpirnegsstuhree hoyfd trhoes taaetircaptiroens ssuyrseteomft h(ienwcluatdeirncgo ltuhme nh)yodfroapstpartoicx ipmreastseulyre1 8o0f mthbea rw. Tatheers ecollousmsens)a roef oanplpyrofuxrimthaetreelyxa 1c8e0r bmatbeadr.f Torheaswe ilnodss-edsr iavreen oanilryp fuumrthpe.r exacerbated for a wind‐driven air pump. Figure 3. Relationship of wind speed and air flow generated by the wind‐driven pump during the Figure3. Relationshipofwindspeedandairflowgeneratedbythewind-drivenpumpduringthe open end measurement (the pressure loss within the aeration system itself was neglected). The black open end measurement (the pressure loss within the aeration system itself was neglected). The line indicates the two‐step segmented linear regression with the breakpoint at a wind speed of blacklineindicatesthetwo-stepsegmentedlinearregressionwiththebreakpointatawindspeedof aapppprrooxxiimmaatteellyy 55..44 mm·∙ss−−11 (R(R2 2= =0.08.88)8. ). Air flow by the electric aeration system during phase one was not measured directly but can be Air flowby theelectric aerationsystem duringphase one wasnot measured directlybut can inferred from Boog [17], who measured the air flow rate of two electric air pumps of the same type as be inferred from Boog [17], who measured the air flow rate of two electric air pumps of the same in this study, in a planted replicate wetland at the same site as in this study to approximately typeasinthisstudy,inaplantedreplicatewetlandatthesamesiteasinthisstudytoapproximately 1000 NL∙h−1 each. This translates to an estimate of 2000 NL∙h−1 of air flow generated by electric 1000NL·h−1 each. This translates to an estimate of 2000 NL·h−1 of air flow generated by electric aeration during phase one. aerationduringphaseone. 3.3. Treatment Performance of the Experimental System 3.3. TreatmentPerformanceoftheExperimentalSystem The influent wastewater exhibits typical characteristics of primary settled domestic wastewater, Theinfluentwastewaterexhibitstypicalcharacteristicsofprimarysettleddomesticwastewater, including a low redox potential as well as low dissolved oxygen and nitrate nitrogen content, and includingalowredoxpotentialaswellaslowdissolvedoxygenandnitratenitrogencontent,and high concentrations of organic carbon, ammonia nitrogen, and the pathogen indicator organism high concentrations of organic carbon, ammonia nitrogen, and the pathogen indicator organism E. coli (Table 1). Referring to the time series plots in Figure 4, it can be seen that the water quality of E.coli(Table1).ReferringtothetimeseriesplotsinFigure4,itcanbeseenthatthewaterqualityof tthhee iinnflfulueennttfl fuluctcutuataetseso voevretri mtiem.eC.B COBDOD,T5,O TCO,EC., cEol.i ,caonli,d aDnOd cDoOnc ecnotnrcaetinotnrastoioscnisll aotsecailrloauten daraoustnadb lea 5 stable central tendency over the period of record. A slight increase in total nitrogen and ammonia centraltendencyovertheperiodofrecord. Aslightincreaseintotalnitrogenandammonianitrogenis nitrogen is visible between 2010 and 2013. In 2013, an additional chamber was installed into the visiblebetween2010and2013. In2013,anadditionalchamberwasinstalledintotheseptictankin septic tank in order to provide a longer retention time during primary treatment. ordertoprovidealongerretentiontimeduringprimarytreatment. During the period from August 2010 to August 2012, the wetland system was equipped with DuringtheperiodfromAugust2010toAugust2012,thewetlandsystemwasequippedwith eelleeccttrriicc aaeerraattiioonn ppuummppss tthhaatt rraann 2244h h·d∙d−−11.. DDuurriinngg tthhiiss ttiimmee,, tthhee wweettllaanndd ccoonnssiisstteennttllyy pprroodduucceedd aa high‐quality effluent (low carbon, complete nitrification). This is reflected in mean outflow levels of high-quality effluent (low carbon, complete nitrification). This is reflected in mean outflow levels o3f.13 .1mmg∙gL·−L1 −o1f oCf BCOBOD5D, 1,21.28. 8mmgg∙L·L−1 −T1OTCO,C 4,34.32. 2mmgg∙L·L−1− 1TNTN, ,anandd 00.1.1 mmgg∙·LL−−1 1NNHH4‐N-N, ,aass wweellll aass 5 4 88..00 mmgg·∙LL−−11 DDOO, ,3388..77 mmgg∙·LL−−1 1NNOO3‐N-N, a,nadn da arerdedoox xppootetenntitaial loof f221111.7.7 mmVV.. AAddddiittiioonnaallllyy,, tthhee wweettllaanndd 3 eliminated approximately four orders of magnitude of E. coli, down to an average effluent eliminatedapproximatelyfourordersofmagnitudeofE.coli,downtoanaverageeffluentconcentration ocofn2c.8enlotrgatio(Mn PoNf 21.80 0lomg1L0(M−1P).NT 1o0ta0l mniLtr−1o)g. eTnotcaol nncietrnotgraetni ocnonrceemnotrvaatliown arsemapopvraolx wimasa taeplypr5o3x%im—attheliys 10 53%—this means that denitrification may have taken place despite the fact of continuous aeration in means that denitrification may have taken place despite the fact of continuous aeration in space space and time. Boog [12] and Foladori [8] report similar findings. It is quite likely that simultaneous and time. Boog [12] and Foladori [8] report similar findings. It is quite likely that simultaneous nitrification–denitrification induced by non‐uniform oxygen distribution, non‐aerated micro zones, nitrification–denitrificationinducedbynon-uniformoxygendistribution,non-aeratedmicrozones, and/or biofilm layering took place. The probability of a potential volatilization of ammonia as a and/or biofilm layering took place. The probability of a potential volatilization of ammonia as a contribution to TN removal is quite low owing to constant effluent pH levels of approximately 7. contributiontoTNremovalisquitelowowingtoconstanteffluentpHlevelsofapproximately7. These These results are in agreement with other studies such as Boog [17], Headley et al. [3], Labella et al. [1], and Nivala et al. [23], which report a similar treatment performance for carbon, nitrogen, and pathogen removal in aerated treatment wetlands. Water2016,8,502 7of12 resultsareinagreementwithotherstudiessuchasBoog[17],Headleyetal.[3],Labellaetal.[1],and Nivalaetal.[23],whichreportasimilartreatmentperformanceforcarbon,nitrogen,andpathogen removalinaeratedtreatmentwetlands. Table1.Waterqualityresultsoverthecourseofthestudy. Parameter Influent Effluent Period 2010–2014 2010–2012 2012–2013 2013–2014 Aeration - 24helectric wind-driven wind-driven Hydraulicloadingrate(L·m−2·d−1) 130 130 65 Organicloadingrate(gCBOD5m−2·d−1) 36.5 36.5 18.2 Median −179.9 211.7 −97.3 −267.0 Mean −193.1 206.1 −15.5 −265.9 RedoxPotential(mV) StdDev 80.8 61.7 204.5 21.0 N 164 48 39 39 Median 0.5 8.0 3.1 3.1 DissolvedOxygen(mg·L−1) Mean 0.6 8.0 3.2 2.8 StdDev 0.5 2.2 1.7 1.2 N 157 46 38 36 Median 270.0 3.1 52.2 49.7 CBOD5(mg·L−1) MStdeaDnev 28980..05 44..97 3522..26 2510..51 N 163 31 38 39 Median 152.8 12.8 30.2 21.8 TOC(mg·L−1) Mean 161.1 20.1 33.1 25.5 StdDev 67.2 18.1 12.4 13.4 N 163 45 39 38 Median 81.7 43.2 73.3 76.3 TN(mg·L−1) Mean 80.9 43.0 74.7 74.9 StdDev 17.7 10.9 13.7 10.9 N 165 46 40 38 Median 62.2 0.1 56.2 65.3 NH4-N(mg·L−1) MStdeaDnev 6117..44 02..85 6107..32 6181..16 N 158 41 39 38 Median 0.2 38.7 0.4 0.1 NO3-N(mg·L−1) MStdeaDnev 00..33 3182..42 38..31 15..34 N 97 48 21 19 Median 6.8 2.6 5.6 5.6 E.colilog10(MPN×100mL−1) MStdeaDnev 60..73 20..88 50..58 50..46 N 163 47 41 37 In August 2012, the electrical air pump was replaced by the wind-driven air pump. Figure 4 showsthechangeineffluentwaterqualityafterinstallationofthewind-poweredpump. Nitrification ceased,andCBOD ,TOC,andE.colieffluentconcentrationsincreased. Effluentdissolvedoxygen 5 concentrationsdroppedtoapproximately3mg·L−1;theremainingDOcouldbearesultoftheeffluent samplecollection. Effluentsamplesweretakenfrominsidethecontrolbuilding,ratherthandirectly fromthewetland. Apossiblereaerationwhilepassingfromthewetlandeffluentpipetothesampling locationmayhaveinfluencedthedissolvedoxygenconcentrationintheeffluent. ThechangeintreatmentperformancewasratherrapidforTN,NH -N,NO -N,andE.coli.Onthe 4 3 contrary,thedecreasedperformanceforCBOD andTOC,aswellasthedropinredoxpotentialand 5 dissolvedoxygenconcentrations, occurredmoreslowly. Itisinterestingthatthetransitionperiod of CBOD , ORP, DO, and redox potential is characterized by high fluctuations. A possible reason 5 for this may be that the wind-driven air pump generated an unsteady supply of air during the first two months of operation. This could have served at least for a temporal partial removal of organiccarbon(nitrificationwasprobablyinhibitedduetofastergrowthofheterotrophicorganisms inoxygen-limitedenvironments). Astimepassed,theefficiencyofthewind-drivenairpumpmay havechanged,resultinginafurtherdeclineintreatmentperformance. Theaerationlinesmayhave experiencedaccumulationofsludgewhichinturncouldhaveincreasedthecounterpressure,further hinderingaeration. Water2016,8,502 8of12 Water 2016, 8, 502 8 of 11 FFigiguurere 44.. TTiimmee sseerriieesso offi niflnufleunetn(tr e(dreddo tdteodttelidn el,incier,c ucilracrumlaarr kmerasr)kaenrds) eafflnude enftf(lgureenetn (sgorleidenli nsoe,lisdq ulianree,d smquaarrkeedr sm)caornkceerns)t rcaotinocnesn.tTrahteiovnesr. tiTchale svoelirdticlianle sionldidic alitnese tihnedsicwaittecsh tfhroe mswelietcchtr ifcraolmto ewleinctdri-cdarli vteon waienrdat‐idornivaennd aethraetivoenr taincadl tdhoet vteedrtilcinael droefteterds tlionteh reefreerdsu toct tiohne roefdtuhcetihoynd orfa tuhleic hlyodardaiunlgicr laotaedfirnogm ra1t3e0 frtoom65 1L3·0m to− 26·5d L−∙1m. −2∙d−1. The treatment performance did not recover during the rest of the time the wind‐driven air Thetreatmentperformancedidnotrecoverduringtherestofthetimethewind-drivenairpump pump was in operation. In August 2013, after a year of less than optimal results, the hydraulic wasinoperation. InAugust2013,afterayearoflessthanoptimalresults,thehydraulicloadingrate loading rate was reduced by 50%. Unfortunately, treatment performance did not improve. The water wasreducedby50%. Unfortunately,treatmentperformancedidnotimprove. Thewaterqualitydata quality data indicates that the decrease in treatment performance was caused by a lack of oxygen, pointing to problems with implementation and/or operation of the wind‐powered air pump. Water2016,8,502 9of12 indicates that the decrease in treatment performance was caused by a lack of oxygen, pointing to problemswithimplementationand/oroperationofthewind-poweredairpump. 4. Discussion By switching from electrical to wind-driven aeration, treatment performance of the aerated wetlanddecreasedquickly. Treatmentperformancebecameoxygen-limited. Itispossiblethatthe wind-drivenairpumptemporarilyprovidedaerationtothewetlandforashortperiodoftime,butit isclearthatoverthelongertermtheefficiencyoftheaerationsystemwaspoor. Theaerationsystem ofwetlandsoperatingwithanelectricalairpumpcanbevisuallycheckedbydiggingaholeintothe gravel,exposingthewaterlevel,andwaitingtoobserveairbubblesrisingtothesurface. Duringthe twoyearsofwind-poweredaeration,veryfew(ifany)airbubblescouldbeobservedcomingfromthe wind-poweredairpump,evenonawindyday. The counter-pressure in the aerated wetland is already quite high and reduced the air flow byapproximately50%undercontinuouselectricaeration,whichcorrespondstoabackpressureof approximately180mbar. Theorificesoftheaerationlinesdonotpreventwaterentrancefromoutside if the counter pressure is not compensated. In the end, the wind-powered air pump, which was unsteady as a result of fluctuating wind speeds, may have not provided enough pressure to clear thiswateroutoftheaerationlines. Additionally,thedecreasedtreatmentperformancemighthave resultedinanaccumulationofsludgeintheaerationlineswhichcouldhaveincreasedthenecessaryair pressuretocleanthelinesandinturnfurtherinhibitedaeration,resultinginanunfavorablefeedback loop. This may especially be a problem during long periods without wind. Under the absence of anycounter-pressure,asduringtheairflowmeasurement,thewindpowersystemwascapableof producingasignificantairflow. Unfortunately,itprovednottobepowerfulenoughwithrespectto thefactofthecounter-pressurefromtheaerationsystem. Italsohastobetakenintoaccountthat thelocationoftheexperimentalsiteLangenreichenbachinGermanyisnotalocationknowntobe especiallywindy. Whenaimingtouseawindpowerstationforwetlandaeration,thedistributionofwindspeedat thesiteofinterestmustbeexaminedtodeterminewhetherornotthesiteissuitableforsuchadevice. Specialattentionshouldfocusontheminimumwindspeedduringatimeframewhichwouldallow sufficientaerationforremovaloforganiccarbonandammonianitrogen. Siteshavingperiodswithout anysignificantwindonadailybasisarenotparticularlysuitableforwind-drivenaeration. Thewind-poweredairpumptechnologyitselfisofgreatimportance. Thepumpcapacitycurve ofacertainwind-drivenairpumpwithrespecttocounter-pressureandwindspeedshouldbeknown orexaminedinadvancetoapotentialapplication. Ifanairpumpcannotovercometheapproximately 180mbarofcombinedpressurelossesintheaerationlinesincludingthehydrostaticpressureofthe watercolumn,airwillnotbedeliveredtothewetland. Thefurtherincreaseofthispressurelossdue towaterentranceduringphaseswithoutairflowasaresultofwindspeedbelowaminimumlevel mightbepreventedbyusinganon-returnvalveintheaerationlines. Apistonpumpisprobablya decentchoicefromtheperspectiveofairflowgeneration. Inthisstudy,thewindpowerstationwhich drovethepistonpumphadaconventionalsix-bladerotorwithahorizontalcollar. Whenconducting an experiment under similar wind speed conditions, it might by more suitable to use a Savonius rotor,which(duetoitsverticalcollarconstruction)maybemoreeffectiveatlowwindspeedsand will function regardless of any changes in wind direction. Further adaptations of wind-powered equipmenttowetlandaerationshouldresultinperformanceimprovementscomparedtothecurrent study. Itmightalsobefavorabletouseawindpowersystemwithahighercollarheight,suchas15m, tocatchthewindwell-aboveobstaclessuchasbuildingsandtrees. Thepotentialaccumulationofsludgeintheaerationlinesshouldalsobeconsidered. Inthisstudy, thehydraulicloadingrateofthewetlandwasnotchangedwhenmovingfromthe24-helectricalair pumptotheintermittentlyoperatingwind-poweredairpump. Takingthisintoaccount,itwouldbe advisabletostartwithalowerloadingratetoreducetheinflowoxygendemand. Atthesametime, Water2016,8,502 10of12 thismightbefavorabletoincreasethehydraulicretentiontimetospanitbeyondthemeandurationof non-windyconditions. Finally,suchtechnologymaybebettersuitedasapolishing(tertiary)treatment stepasopposedtosecondarytreatment. Usingsmall-scalewindpowerstationstogenerateandstoreelectricalenergyforthesupplyof electricairblowersmightbeanotherinterestingconceptforwetlandaeration. Thisconcept,including abatterysystemforenergystorage,couldbeabletoovercometheproblemoflongerperiodswithout aminimumwindspeednecessarytooperatethewindpowerstation. Here,thechallengeistofinda windpowerstationwhich,atthesametime,isabletoprovideacertainamountofelectricalenergyto supplytheelectricairpumpsandtostoreexcessenergyinthebattery. Thebatterywillhavetohavea storagecapacitywhichallowsthesupplyofacertainamountofelectricalenergyduringamaximum timeperiodwithouttheminimumwindspeed. Thebatteryshouldalsobeabletorechargeduringa minimumtimeperiodwiththeminimumwindspeed. Thetechnicalrealizationofthisconceptmay havetobeextendedtoavoltagetransformer,ascommerciallyavailableequipmentofawindpower station,battery,andairpumphavedifferentrequirementsofelectricalparameterssuchasin-and outputvoltageandcurrent. Sofar,theuseofawindpowerstationtogenerateelectricalenergyfor drivingconventionalairpumpsisaninteresting,butmorecomplex,aerationconceptcomparedtoa mechanicalwind-drivenairpump. 5. Conclusions Thisstudyreportsthefirstapplicationofawind-drivenairpumpfortheaerationofatreatment wetlandtreatingdomesticwastewater. Afterswitchingfromelectricaltowind-drivenaeration,the treatment performance of the pilot system deteriorated quickly to a level of a passive horizontal subsurfaceflowwetland. Reducingthehydraulicloadingrateby50%didnotimprovetreatment performance. Waterqualityresultsindicatethatthewind-drivenairpumpdidnothavethecapacity toprovidetherequiredamountofoxygenequivalenttocontinuousaerationundertheexperimental conditions. Yetunderdifferentconditionsandwithadaptationsofthewind-poweredequipmentto wetlandaerationsystems,theprinciplemaysucceed. Ingeneral,apotentialwind-drivenairpump wouldhavetocompensateapressurelossofapproximately180mbarataminimumwindspeedand shouldbeequippedwithanon-returnvalve. Anotherpotentialconceptcouldmakeuseofsmall-scalewind-powerdevicestogenerateelectrical energytosupplyconventionalelectricalairpumps. Thisoptionallowsenergystorageusingbatteries andmayovercometheproblemofnoaerationduringlongperiodswithoutwind. Furtherresearchinthiscontextshouldfocuson(1)priorcharacterizationoftheonsitewindspeed distribution;(2)priorassessmentofthepotentialforwind-drivenairpumpstoprovideanairflow at a given wind speed and counter-pressure or the potential for a wind-power station to generate electricityatacertainlevelofwindspeedandabatterywiththecapacitytostoreenergyforacertain timeperiod;and(3)consideringtrialswithalowerhydraulicloadingrateorfortreatingwastewater withalowerinfluentoxygendemand. SupplementaryMaterials:Thesupplementarymaterialsareavailableonlineatwww.mdpi.com/2073-4441/8/ 11/502/s1. Acknowledgments: Johannes Boog acknowledges the Helmholtz Center for Environmental Research (HelmholtzZentrumfürUmweltforschung—UFZ)andtheHelmholtzInterdisciplinaryGraduateSchoolfor EnvironmentalResearch(HIGRADE)foradditionalfundingandsupport.Theauthorsgratefullyexpresstheir gratitudetoKatyBernhardandGritWeichertfortheirsupportandassistanceinsamplecollectionandanalysis; andtoSybilleMothes,CarolaBönischandKarstenMarienforanalyticalsupport.Thisworkwassupportedinpart byfundingfromtheGermanMinistryofEducation&Research(BMBF)withinthecontextoftheSMART-MOVE Project(Ref.02WM1355). AuthorContributions: ChristopherSullivan,ScottWallace,ThomasAubronandJaimeNivalaconceivedthe idea. JohannesBoog,ChristopherSullivan,ThomasAubronandJaimeNivaladesignedtheexperimentsand conductedtheexperiments.JohannesBoogandJaimeNivalaanalyzedandsynthesizedthedata.JohannesBoog, JaimeNivala,ManfredvanAfferdenandRolandA.Müllerwrotethepaper.
Description: