ebook img

Treatise on Classical Elasticity: Theory and Related Problems PDF

805 Pages·2013·11.327 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Treatise on Classical Elasticity: Theory and Related Problems

Mathematical and Analytical Techniques with Applications to Engineering Petre P. Teodorescu Treatise on Classical Elasticity Theory and Related Problems Mathematical and Analytical Techniques with Applications to Engineering Series Editor Alan Jeffrey Newcastle upon Tyne, UK Deceased 6 June 2010 For furthervolumes: http://www.springer.com/series/7311 Theimportanceofmathematicsinthestudyofproblemsarisingfromtherealworld,andthe increasingsuccesswithwhichithasbeenusedtomodelsituationsrangingfromthepurely deterministictothestochastic,inallareasoftoday’sPhysicalSciencesandEngineering,is well established. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areasbotholdandnew,frequentlyaidedbytheuseofcomputerswithoutwhichthesolution of realistic problems in modern Physical Sciences and Engineering would otherwise have beenimpossible.Thepurposeoftheseriesistomakeavailableauthoritative,uptodate,and self-contained accounts of some of the most important and useful of these analytical approachesandtechniques.Eachvolumeintheserieswillprovideadetailedintroductionto a specific subject area of current importance, and then will go beyond this by reviewing recentcontributions, thereby serving as avaluablereference source. Petre P. Teodorescu Treatise on Classical Elasticity Theory and Related Problems 123 Petre P.Teodorescu Faculty ofMathematics Universityof Bucharest Bucharest Romania ISSN 1559-7458 ISSN 1559-7466 (electronic) ISBN 978-94-007-2615-4 ISBN 978-94-007-2616-1 (eBook) DOI 10.1007/978-94-007-2616-1 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2012952139 (cid:2)SpringerScience?BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Preface Themechanicsofdeformablesolidsbringsitscontributionbothtotheknowledge of the phenomena of the surrounding physical reality, from a theoretical point of view,andtothedeterminationofthestateofstrainandstressinvariouselements of construction, from practical considerations. The deformable solids have a particularly complex character; a mathematical modelling of them is not simple andoftenleadstoinextricabledifficultiesofcomputation.Oneofthemostsimple mathematicalmodelsand,atthesametime,themostusedone,isthemodelofthe elastic body—especially the linear elastic model; despite its simplicity, even this model of real body may lead to great difficulties of calculation. Ingeneral,theengineeringconstructionshavebeenbased,duringthecenturies, onempiricalmethods;beginningwiththeseventeenthcentury,onehasobtaineda lot of results, which form what now is called ‘‘Strength of Materials’’, where simplifying supplementary hypotheses have been introduced. As a matter offact, thisdenominationisnotaproperone,becauseitcorrespondsonlytoamechanical phenomenon modelled by the so-called ‘‘strength theory’’; we maintained this denomination, being still currently used. The theory of elasticity, chapter of the mechanics of deformable solids with a theoretical character, succeeds to express better the physical phenomenon, giving results closer to the reality, in certain limits;itbecameascienceonlyatthemiddleofninthcentury,beingincontinuous development even today. Thepracticalimportanceofabookonthetheoryofelasticity,whichis—atthe same time—an introduction to the mechanics of deformable solids, consists in putting in evidence points of view and scientific methods of computation in a domain in which simplified methods or with a non-accurate limit of validity are still used. The actual technical progress and the necessity to use a minimum of materials in various constructions ask for a better determination of the state of strain and stress which takes place in a civil or mechanical construction; the engineering design may be thus improved. Thefirsteightchaptersdealwiththeconstructionofthemathematicalmodelof a deformable solid, giving special attention to the linear elastic bodies; the for- mulation of the fundamental problems is followed by their solution in v vi Preface displacements end stresses. The importance of the concentrated loads is put into evidence, as well in the case of Cosserat-type bodies. Another group of four chapters contains static and dynamic spatial problems, treated systematically by the same method of potential functions. The following two chapters deal with some special problems: particular cases, treated in the same systematical manner and the case of anisotropic and non- homogeneous bodies. The last two chapters contain introductions to thermoelasticity and linear vis- coelasticity. Special accent is put on the solving methodology as well as on the mathematical tool used: vectors, tensors and notions of the field theory. Contin- uous and discontinuous phenomena and various mechanical quantities are pre- sented in unitary form by means of the theory of distributions. Some appendices give the book an autonomy with respect to other works, a special mathematical knowledge being not necessary. Concerning the first six chapters, I must mention the kind co-operation of ProfessorVasileIlle,TechnicalUniversityofCluj-Napoca,whounfortunatelyhas passed away. I am grateful to Mariana Gheorghi(cid:2)ta˘ for her valuable help in the presentation of this book. The excellent cooperation of the team of Springer, Dordrecht, is gratefully acknowledged. Thebookcoversawidenumberofproblems(classicalornewones)asonecan seefromitscontents.Itusedtheknownliterature,aswellastheoriginalresultsof the author and his more than 50 years’ experience as Professor of Mechanics and ElasticityattheUniversityofBucharest.Itisaddressedtoalargecircleofreaders: mathematicians (especially those involved in applied mathematics), physicists (particularly those interested in mechanics and its connections), engineers of various specialities (civil, mechanical engineers, etc., who are scientific researchers or designers), students in various domains etc. Bucharest, Romania, January 2013 P. P. Teodorescu Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Aim of Mechanics of Deformable Solids. . . . . . . . . . . . . . . . 1 1.1.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Models in the Mechanics of Deformable Solids. . . . . 4 1.2 Fundamental Computation Hypotheses. Short Historical Account. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Fundamental Computation Hypotheses . . . . . . . . . . . 9 1.2.2 Short Historical Account. Development Trends . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Geometry and Kinematics of Deformation. . . . . . . . . . . . . . . . . . 33 2.1 Finite Deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 33 2.1.2 Material and Space Co-ordinates. Strains. . . . . . . . . . 35 2.2 Infinitesimal Deformations. . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2.1 Displacement Gradient . . . . . . . . . . . . . . . . . . . . . . 44 2.2.2 Continuity Equations. Computation of Displacements and Rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.3 Elementary States of Deformation . . . . . . . . . . . . . . 60 2.2.4 Displacements and Strains in Curvilinear Co-ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.2.5 Kinematics of Deformation . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Mechanics of Stresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1 Stress Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . 73 3.1.2 Variation of Stresses Around a Point . . . . . . . . . . . . 78 3.2 Stress Tensor. Equations of Equilibrium and Motion . . . . . . . 84 3.2.1 Stress Tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 vii viii Contents 3.2.2 Equations of Equilibrium and Motion. . . . . . . . . . . . 95 3.2.3 Elementary States of Stress . . . . . . . . . . . . . . . . . . . 98 3.2.4 Finite Deformations . . . . . . . . . . . . . . . . . . . . . . . . 101 3.2.5 Stresses in Curvilinear Co-ordinates . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4 Mathematical Models in Mechanics of Deformable Solids . . . . . . 115 4.1 Elastic Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.1 Construction of the Elastic Model . . . . . . . . . . . . . . 116 4.1.2 Elastic Potential. Green’s Theory. . . . . . . . . . . . . . . 122 4.1.3 Hooke’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2 Inelastic Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2.1 Bodies with Plastic Properties . . . . . . . . . . . . . . . . . 155 4.2.2 Bodies with Viscous Properties . . . . . . . . . . . . . . . . 169 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 General Equations of the Theory of Elasticity. Formulation of Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5.1 General Equations of the Theory of Elasticity . . . . . . . . . . . . 191 5.1.1 Statical Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 192 5.1.2 Dynamical Problems. . . . . . . . . . . . . . . . . . . . . . . . 196 5.2 Statical Problem. Potential Functions . . . . . . . . . . . . . . . . . . 199 5.2.1 Formulations in Displacements. . . . . . . . . . . . . . . . . 199 5.2.2 Formulations in Stresses . . . . . . . . . . . . . . . . . . . . . 205 5.3 Dynamical Problem. Potential Functions. . . . . . . . . . . . . . . . 219 5.3.1 Formulations in Displacements. . . . . . . . . . . . . . . . . 219 5.3.2 Formulations in Stresses . . . . . . . . . . . . . . . . . . . . . 227 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 6 Principles and General Theorems of the Theory of Elasticity. Computation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6.1 Principles and General Theorems of the Theory of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6.1.1 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 6.1.2 General Principles . . . . . . . . . . . . . . . . . . . . . . . . . 248 6.1.3 Other Considerations. . . . . . . . . . . . . . . . . . . . . . . . 256 6.1.4 Simply Connected Domains. Multiply Connected Domains. . . . . . . . . . . . . . . . . . 262 6.2 Computation Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 6.2.1 Particular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 266 6.2.2 General Methods of Computation. . . . . . . . . . . . . . . 279 6.2.3 Variational Methods . . . . . . . . . . . . . . . . . . . . . . . . 281 6.2.4 Method of Fundamental Solutions . . . . . . . . . . . . . . 288 6.2.5 Other Computation Methods . . . . . . . . . . . . . . . . . . 301 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Contents ix 7 Introduction to the Theory of Cosserat Type Bodies . . . . . . . . . . 307 7.1 General Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 7.1.1 Introduction to Cosserat Type Bodies. . . . . . . . . . . . 307 7.1.2 State of Deformation. . . . . . . . . . . . . . . . . . . . . . . . 312 7.1.3 State of Stress and Couple-Stress. . . . . . . . . . . . . . . 322 7.1.4 Constitutive Laws. . . . . . . . . . . . . . . . . . . . . . . . . . 329 7.2 Formulations of the Static and Dynamic Problems. General Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 7.2.1 Formulation of the Static Problem . . . . . . . . . . . . . . 332 7.2.2 Formulation of the Dynamic Problem. . . . . . . . . . . . 336 7.2.3 General Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 345 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 8 Theory of Concentrated Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 357 8.1 Case of Linearly Elastic Bodies. . . . . . . . . . . . . . . . . . . . . . 357 8.1.1 Construction of Concentrated Loads. . . . . . . . . . . . . 357 8.1.2 Tensor Properties of Concentrated Loads. . . . . . . . . . 372 8.1.3 Solutions for Concentrated Loads. . . . . . . . . . . . . . . 376 8.2 Case of Linearly Elastic Cosserat Type Bodies . . . . . . . . . . . 383 8.2.1 Solutions for Concentrated Loads. . . . . . . . . . . . . . . 384 8.2.2 Centres of Dilatation. Centre of Rotation. . . . . . . . . . 386 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 9 Elastic Space. Elastic Half-Space. . . . . . . . . . . . . . . . . . . . . . . . . 393 9.1 Elastic Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 9.1.1 Volume Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 9.1.2 Concentrated Loads . . . . . . . . . . . . . . . . . . . . . . . . 397 9.2 Elastic Half-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 9.2.1 Action of a Periodic Load. . . . . . . . . . . . . . . . . . . . 400 9.2.2 Action of a Local Load. . . . . . . . . . . . . . . . . . . . . . 404 9.2.3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408 9.2.4 Methods of the Theory of Distributions. . . . . . . . . . . 412 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 10 Elastic Eighth-Space. Elastic Quarter-Space . . . . . . . . . . . . . . . . 427 10.1 Elastic Eighth-Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 10.1.1 Action of a Periodic Normal Load . . . . . . . . . . . . . . 428 10.1.2 Action of a Local Normal Load. . . . . . . . . . . . . . . . 430 10.1.3 Action of a Local Tangential Load. . . . . . . . . . . . . . 446 10.1.4 Particular Cases. Application. . . . . . . . . . . . . . . . . . 455 10.2 Elastic Quarter-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 10.2.1 Action of a Local Normal Load. . . . . . . . . . . . . . . . 462 10.2.2 Action of a Local Tangential Load. . . . . . . . . . . . . . 467 10.2.3 Particular Cases. Applications . . . . . . . . . . . . . . . . . 473 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.