Research Article 4963 TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy Kanae Shirahama-Noda1, Shintaro Kira1, Tamotsu Yoshimori2,3 and Takeshi Noda1,2,* 1CenterforFrontierOralScience,GraduateSchoolofDentistry,OsakaUniversity,OsakaUniversity,565-0871Osaka,Japan 2GraduateSchoolofFrontierBioscience,OsakaUniversity,565-0871Osaka,Japan 3DepartmentofGenetics,GraduateSchoolofMedicine,OsakaUniversity,565-0871Osaka,Japan *Authorforcorrespondence([email protected]) Accepted8August2013 JournalofCellScience126,4963–4973 (cid:2)2013.PublishedbyTheCompanyofBiologistsLtd doi:10.1242/jcs.131318 Summary Autophagy is a bulk protein-degradation process that is regulated by many factors. In this study, we quantitatively assessed the contribution of each essential yeast gene to autophagy. Of the contributing factors that we identified, we focused on the TRAPPIII complex, which was recently shown to act as a guanine-nucleotide exchange factor for the Rab small GTPase Ypt1. Autophagy is defective in the TRAPPIII mutant under nutrient-rich conditions (Cvt pathway), but starvation-induced autophagy is only partially affected. Here, we show that TRAPPIII functions at the Golgi complex to receive general retrograde vesicle traffic from early e c endosomes.CargoproteinsinthisTRAPPIII-dependentpathwayincludeAtg9,atransmembraneproteinthatisessentialforautophagy, n andSnc1,aSNAREunrelatedtoautophagy.Whencellswerestarved,furtherdisruptionofvesiclemovementfromlateendosomesto e ci the Golgi caused defects in Atg9 trafficking and autophagy. Thus, TRAPPIII-dependent sorting pathways provide Atg9 reservoirs for S pre-autophagosomal structure and phagophore assembly sites under nutrient-rich conditions, whereas the late endosome-to-Golgi ell pathway is added to these reservoirs when nutrients are limited. This clarification of the role of TRAPPIII elucidates how general C membrane traffic contributes to autophagy. f o al Keywords:Autophagy,TRAPP,Golgi-associatedretrogradeprotein,Sortingnexin,Retromer,Atg9,Snc1 n r u o J Introduction formation, and other small structures called peripheral reservoirs Autophagy is an evolutionarily conserved intracellular degradation (Reggiori et al., 2004a). Mutation of Tlg2 or COG complexes systemthatcontributestoawiderangeofphysiologicalphenomena inhibitsthisrecycling,suggestingthatthesefactorsareinvolvedin (Mizushima and Komatsu, 2011). However, the formation of the Atg9 dynamics (Ohashi and Munro, 2010; Yen et al., 2010). In autophagosome,asphericalmembranestructurethatsequestersthe mammalian cells, Atg9 is transiently associated with some degradation substrates, remains poorly understood (Yoshimori and endosomes (Kageyama et al., 2011; Orsi et al., 2012). A recent Noda,2008).Theautophagosomeissurroundedbytwomembrane study characterized Atg9-containing vesicles with respect to layers, suggesting that it forms by membrane dynamics that differ physical characteristics such as their size and the number of from the mechanisms generally responsible for vesicle budding. Atg9moleculescontainedineachvesicle(Yamamotoetal.,2012); Formation of the autophagosome is mediated by the Atg proteins, however, the identity and significance of this vesicular-transport whichincludetwoubiquitin-likeproteins(Nakatogawaetal.,2009). pathwayhavenotbeenclearlyelucidated. InadditiontotheAtgproteins,numerousotherproteinsareinvolved, In this study, we screened a mutant collection containing either directly or indirectly, in autophagy. However, it remains knockdownsofallessentialgenesinSaccharomycescerevisiae,by unclear how other membrane-trafficking pathways are related to measuringtheautophagiccompetencyofeachmutant.Amongthe autophagy(LongattiandTooze,2009).Severalyeastmutationsthat factors that we identified as contributing significantly to cause defects in intracellular vesicular trafficking also affect autophagy,wefocusedonTRAPPIII,whichhasbeenreportedto autophagy. For example, mutation of Tlg2, a t-SNARE localized be specifically involved in autophagy at the PAS, where inendosomesandtheGolgi,disruptsautophagy,butdoesnotabolish autophagosome formation takes place (Lynch-Day et al., 2010). it(Abeliovichetal.,1999).Similarly,earlyandlatesecmutants,as In contrast to the previous report, our results demonstrated that wellasmutantsintheconservedoligomericGolgi(COG)complex, TRAPPIIIplaysaroleingeneralvesiculartraffickingattheGolgi, exhibit defective autophagy (Geng et al., 2010; Hamasaki et al., rather than in an autophagy-specific process. These findings 2003;Ishiharaetal.,2001;Reggiorietal.,2004b;Yenetal.,2010). explainhowgeneralvesiculartrafficcontributestoautophagy. Atg9 is a multiple-transmembrane protein that is essential for autophagosomeformation(Nodaetal.,2000;Youngetal.,2006); Results it is recycled between pre-autophagosomal structure/phagophore IntheyeastSaccharomycescerevisiae,analkalinephosphataseassay assembly sites (PAS), which are involved in autophagosome is widely used to quantitatively assess autophagy (Noda and 4964 Journal of Cell Science 126 (21) Klionsky, 2008; Noda et al., 1995). To obtain a comprehensive Atg9 is recycled between PAS and as-yet-unidentified understandingofthemechanismsunderlyingregulationofautophagy, peripheral reservoirs, previously characterized as multiple weextendedthealkalinephosphataseassaysystembyadaptingthe punctate compartments distributed throughout the cytosol (He procedure to 96-well microtiter plates, enabling large-scale andKlionsky,2007;Nodaetal.,2000).AlthoughAtg9recycling quantitativeestimationofautophagiccompetencyandtheeffectsof has previously been reported to be independent of TRAPPIII everynon-essentialgenemutationinyeast(S.K.etal.,unpublished (Lynch-Dayetal.,2010),were-examinedthisissueusingamore results).Here,weappliedthissystemtotheessentialgeneknockdown elaborate experimental system that exploits ubiquitylation- collection,includingabout900mutants,inwhichthemRNAforeach mediated degradation of the IAA protein induced by addition gene is destabilized by insertion of a marker gene into the 39- of auxin (NAA) to the medium (Nishimura et al., 2009). In the untranslatedregion(DAmPmethod)(Schuldineretal.,2005).From presenceofauxin,Trs85taggedwithIAAisnotdetectedbecause thiscollection,weidentifiedagroupofgenes,includingTRS20and itisubiquitylatedanddegraded,whereasintheabsenceofauxin, BET5, whose knockdown resulted in markedly low autophagic TRS85-IAAisstablyexpressedfromitsownpromoterandisnot activity (Fig.1A,B). Trs20 and Bet5 are core subunits of TRAPP degraded (Fig. 2A). Defect in API processing observed in the complexes, which function at tethering step in several vesicular- absence of TRS85 due to degradation was recovered after transport pathways (Barrowman et al., 2010). The three TRAPP removal of auxin (Fig. 2B). We observed mCherry-Atg8 dot formation in these conditions, and found that it is severely complexes–TRAPPI,TRAPPIIandTRAPPIII–havebeenreported defectedinthepresenceofauxin,butrecoveredafterremovalof tofunctioninendoplasmicreticulum(ER)-to-Golgitransport,intra- auxin (Fig. 2C). Consistent with the results of a previous paper Golgitransportandautophagy,respectively(Lynch-Dayetal.,2010). (Lynch-Dayetal.,2010),punctaofAtg9-36GFPweredispersed Each TRAPP complex serves as a guanine-nucleotide exchange throughthecytoplasmevenintheabsenceofTrs85,apatternthat factorfortheRabGTPaseYpt1(Lynch-Dayetal.,2010),whichwas wasindistinguishablefromthatobservedinthepresenceofTrs85 alsohighlyrankedasacandidategeneinourscreen(Fig.1A).The (Fig. 2D, left top and bottom panels). When we knocked out only subunit that is specific to TRAPPIII, Trs85, was also highly ATG1,aproteinkinaserequiredformovementofAtg9fromthe rankedinourscreenofmutationsofnonessentialgenes(S.K.etal., PAS to peripheral pools, Atg9-36GFP accumulated at the PAS, e unpublishedresults).Therefore,basedontheresultsofourunbiased c which was observed as a bright punctate signal (Reggiori et al., n genome-wide screen, we focused on TRAPPIII in our subsequent e 2004a)(Fig. 2D,rightbottompanel).Bycontrast,intheabsence ci investigations. ofTrs85inatg1mutants,Atg9-36GFPwasdispersedthroughout S thecells(Fig. 2D,righttoppanel).Thus,Atg9traffickingtothe ell PAS, and resultant PAS formation, is dependent on TRAPPIII. C Recently, TRAPPIII was reported to be associated with the of vesiclewhereAtg9resides(Kakutaetal.,2012).Consistentwith al this, subsets of Trs85-36mCherry-positive puncta and Atg9- n 36GFP-positive puncta were also double-positive (12.2% and r u 5.23%, respectively, in over 300 cells) (supplementary material o J Fig.S1A).Furthermore,subsetsofGFP-Ypt1positivepunctaand apartofAtg9-36mCherrywerealsodoublepositive(10.8%and 2.73%, respectively, in over 400 cells) (supplementary material Fig. S1B). Therefore, at least some Atg9-positive puncta correlate with the vesicles in which TRAPPIII and/or Ypt1 resides. In contrast to the situation in nutrient-rich conditions, TRAPPIII (trs85) and atg1 double-mutant cells did not exhibit defective Atg9 transport to the PAS under starvation conditions (Fig. 3A,B). On the basis of this observation, we hypothesized that under starvation conditions, another pathway bypasses the TRAPPIII-dependent pathway for transportto the PAS. The Cvt pathway is a selective autophagic process in which API is transportedtothevacuoleandprocessedtoitsmatureform(Scott et al., 1996). TRAPPIII (trs85) null mutants did not exhibit defects in the Cvt pathway under starvation conditions, whereas they were severely defective under nutrient-rich conditions, consistent with the existence of a starvation-specific bypass pathway (Meiling-Wesse et al., 2005; Nazarko et al., 2005). Inanefforttoidentifythe bypasspathway,wefirstexamined Fig.1. Genome-wideexaminationofautophagyinacollectionof Retromer, a protein complex that functions in retrograde knockdownmutantsofessentialgenes.(A)Autophagicactivitiesofa transport from the late endosomes to the Golgi (Seaman, 2005). collectionofyeastmutantsinwhichexpressionofessentialgeneswas To date, Retromer has not been considered to be crucial for knockeddown.Cellswereassayedforautophagicactivityafter4hoursof autophagy(Kametakaetal.,1998).Atg9traffickingisaffectedin nitrogenstarvation.Relativeautophagicactivitiesofeachmutantcompared withthewild-typestrainareplotted.Notethattheefficiencyofexpression several double mutants in endosomal trafficking pathways, knockdowndifferedbetweenthestrains.(B)Detailedresultsforthe although the precise role of these pathways is still ambiguous representativeTRAPPmutantsindicatedbyarrowsinA. (Ohashi and Munro, 2010). Although mutation in an essential TRAPPIII and autophagy 4965 e c n e ci S ell C f o Fig.2. Atg9movementdependsonTRAPPIII.(A)ConditionalexpressionofTrs85wasdetectedbyimmunoblottingforHA.InKNY74cells,which al expresstheauxinreceptorgeneOsTIR1,theC-terminusofgenomicTRS85wastaggedwithIAAand36HA,makingtheproteinatargetofubiquitylationinthe n r presenceofauxin(NAA).WhenNAAwasremovedfromthemedium,Trs85-IAA-36HAwasexpressedatnormallevels.(B)Lysatesofwild-type,trs85D,Trs85- u o IAA-36HAcellsbeforeandafterNAAwash-outwerepreparedbythealkalinelysismethodandsubjectedtoSDS-PAGEfollowedbyimmunoblottingfor J API.Lysateequivalentto0.2OD unitswasloadedtoeachlane.Lane1,wild-type;lane2,trs85D;lane3,Trs85-IAA-36HA(-NAA2h);lane4,Trs85-IAA- 600 36HA(200mMNAA).Upperandlowerbandsrepresentpro-andmature-formofAPI,respectively.(C)KNY74cellsharboringpRS314-26mCherry-Atg8 wereincubatedinthepresenceof200mMNAAtodestabilizetheTrs85-IAA-36HAforanovernightinSDcontaining0.5%casaminoacids(SCD)medium.The cellswereobservedattheindicatedtimepointsaftertheNAAwash-outusingLeicaDIM6000Bmicroscope.26mCherry-Atg8-positivepunctawerecounted (n.1000cells)andthegraphshowsthenumberofcellsforeachcondition(mean6s.d.).(D)TRS85-IAA-36HA(KNY74)andTRS85-IAA-36HAatg1D (KNY76)cellsexpressingAtg9-36GFPfromthenativepromoterwereculturedinYPDinthepresenceof200mMNAA.Imageswereobtained0and2hours afterNAAwasremoved,usingaLeicaDIM6000Bconventionalfluorescencemicroscope. subunit of Retromer, Vps17, did not affect the distribution of trs85 atg1 triple mutant, we further observed that Atg9 failed to Atg9-36GFP under nutrient-rich or starvation conditions (not reach the PAS: Atg9-36GFP was scarcely associated with API shown),acombinationofvps17andaTRAPPIIImutation(trs85) puncta, which represent the PAS, in sharp contrast to the increased the number of Atg9 puncta, even under starvation significant overlap between Atg9-36GFP and API puncta in the conditions (Fig. 3A,B). This observation suggests that a atg1 single mutant (Fig. 4). This increase was not due to Retromer-dependent process bypasses the TRAPPIII-dependent elevation of the amount of Atg9-36GFP protein because it was pathway when cells are starved. notchangedbythesemutations(supplementarymaterialFig.S2). On the basis of the possibility that the TRAPPIII-derived Consistentwiththeseresults,weobservedamarkedreduction defect is bypassed by a Retromer-dependent pathway, we in API processing after 1 hour of starvation in the vps17 trs85 hypothesized that TRAPPIII has some unknown connection to double mutant, relative to each single mutant (Fig. 5A–C). endosome-to-Golgi trafficking. Therefore, we asked whether Likewise, the vps51 trs85 double mutant exhibited a severe other retrograde endosome-to-Golgi transport processes play defectafter3 hoursofstarvation(Fig. 5A–C),althoughmutation bypass roles similar to that of the Retromer-dependent pathway. of the GARP subunit Vps51 was previously shown to only Golgi-associated retrograde protein (GARP) is a complex that slightly disrupt API processing (Reggiori et al., 2003). By functions as a tethering factor in endosome-to-Golgi transport, contrast, combination of the GARP mutation (vps51) with a andVps51isitsessentialsubunit(BonifacinoandHierro,2010). Retromermutation(vps17)didnotresultinamarkeddefecteven Similar to the case of Retromer, the vps51 trs85 double mutant under starvation conditions (Fig. 5B,C). These observations are exhibited a severe defect in Atg9 trafficking under starvation consistent with a model in which Retromer and GARP function conditions in the atg1 background (Fig. 3A,B). In this vps51 inthesamebypasspathwayfromthelateendosometotheGolgi. 4966 Journal of Cell Science 126 (21) e c n e ci S ell C of Fig.3. Retromer-andGARP-dependentbypasspathwaysforAtg9traffickingunderstarvation.(A)Wild-type(KNY93),atg1D(KNY94),atg1D al trs85D(KNY80),atg1Dtrs85Dvps17D(KNY105)andatg1Dtrs85Dvps51D(KNY280)cellsexpressingAtg9-36GFPwereculturedat26˚CinYPDand n subjectedtonitrogenstarvationfor2hours.ImageswereobtainedusinganOlympusIX71microscopeequippedwithaspinning-diskconfocalsystem. ur (B)Atg9-36GFP-positivepunctaineachstraindescribedinAwerecountedusingG-countsoftware;means6s.d.areshown(n.100).Representativeresults o fromtwoindependentexperimentsareshown. J To further understandthe relationship between TRAPPIII and secretory pathway (Lewis et al., 2000). Compared with wild- the other endosomal pathways, we next examined the sorting type cells, the TRAPPIII (trs85) mutant exhibited altered nexin complex, which functions in a retrograde pathway that is distribution of GFP-Snc1 (Fig. 6A,B). Furthermore, when the distinct from the Retromer-mediated process (Hettema et al., TRAPPIII (trs85) mutationwas combinedwitha GARP (vps51) 2003). Mutation of the sorting nexin subunit Atg24 (also called mutation, marked changes in the localization of GFP-Snc1 were Snx4) disrupts API processing under nutrient-rich conditions observed (Fig. 6A,B): no GFP signals were detected at the (Nice et al., 2002). When the sorting nexin mutation atg24 was plasma membrane, and most signals were dispersed throughout introducedintotheTRAPPIII(trs85)mutant,thephenotypewas thecytoplasm,implyingthattheGFP-Snc1proteinwaspackaged similartothat ofeachsingle mutant,unlikethe combinations of in small transport vesicles (Fig. 6A,B). Ric1 is a guanine- trs85with mutations inGARP and Retromer subunits (Fig. 5A– nucleotide exchange factor for Ypt6 that functions in a GARP- C).Bycontrast,combinationofatg24withamutationinaGARP dependent pathway (Siniossoglou et al., 2000). Consistent with (vps51) or Retromer subunit (vps17) exacerbated the API this, the phenotype of the ric1 trs85 double mutant was quite processing defects relative to each single mutant (Fig. 5B,C). similartothatofthevps51trs85mutant(supplementarymaterial This result indicates that TRAPPIII functions in the same Fig. S3A). We also noticed that GARP (vps51) and TRAPPIII pathway as sorting nexin, and leads to the novel idea that (trs85) double mutant, and ric1 and trs85 double mutant, TRAPPIII is involved in endosome-to-Golgi retrograde exhibited severe growth defects, growing only at lower trafficking. temperatures and at a slower overall rate (Fig. 6C and not On the basis of this finding, we asked whether TRAPPIII shown). Furthermore, combination of the TRAPPIII (trs85) and functionmightnotbespecifictoautophagy,butratherassociated Retromer (vps17) mutations resulted in a phenotype that was with general vesicular traffic. To answer this question, we milderoverallthanthatofvps51trs85,butstilladditive,whereas assessedthelocalizationofageneralcargo,GFP-taggedSnc1,a the TRAPPIII (trs85) and sorting nexin (atg24) double mutant v-SNARE protein involved in the fusion of secretory vesicles to did not exhibit an additive growth defect (Fig. 6C). Next, we the plasma membrane. Snc1 recycles between the plasma investigated another cargo of the endosome-to-Golgi pathway, membrane, endosomes, and the Golgi complex by a Vps10, which is a receptor for the vacuolar protease combination of endocytosis, retrograde transport and the carboxypeptidase Y. Vps10 mostly localized to the Golgi and TRAPPIII and autophagy 4967 e c n e ci S ell C Fig.4. Atg9movementtothePASisseverelyaffectedintrs85vps51cells.atg1D(KNY310)andatg1Dtrs85Dvps51D(KNY279)cellsharboringgenomic of Atg9-3xGFPandAPI-mStrawberrywereculturedat26˚CinYPDandshiftedtonitrogenstarvationfor2hours.Imageswereobtainedattheindicatedtime pointsusinganOlympusIX71microscopeequippedwithaspinning-diskconfocalsystem.ThegraphshowsthequantificationofAtg9-3xGFPandAPI- al n mStrawberrycolocalization.Foreachstrain,90–250API-mStrawberry-positivepunctawereexamined.Scalebars:5mm. r u o J endosome,andexhibitedatypicalpatchypattern(supplementary only 3.7% of GFP-Ypt1-positive dots were positive for material Fig. S3B) (Shi et al., 2011). However, the pattern of 26mCherry-Atg8. Furthermore, a recent report showed that Vps10 was more dispersed in the trs85 vps51 double mutant, Atg11 also acts together with Ypt1 and TRAPPIII in autophagy appearingasnumeroussmallparticles,andwasalsodispersedto (Lipatovaet.al,2012).However,inacountofmorethan500cells, some extent in each single mutant (supplementary material Fig. only 0.95% of GFP-Atg11-positive puncta were also positive for S3B). Taken together, these results indicate that TRAPPIII is Sec7-mStrawberry (supplementary material Fig. S4C). Together, involved in general retrograde transport from the early these results suggest that association of TRAPPIII and Ypt1 to endosomes to the Golgi. PASislimitedtoasmallpopulation. Because other TRAPP family members, TRAPPI and TRAPPII, act in tethering step at the destinations of their Discussion respectivepathways(Barrowmanetal.,2010),wepredictedthat In this study, we revealed an important novel feature of TRAPPIII would also function at its destination, the Golgi. To membrane trafficking, namely, a role for TRAPPIII in investigate this idea, we determined whether Trs85-GFP endosome-to-Golgi retrograde transport. The identity of the expressed at endogenous levels would colocalize with the tetheringfactoratthisstephasbeena‘missingpiece’inthestudy Golgi marker Sec7-mStrawberry in wild-type cells. In cells of membrane traffic. We also reinterpreted the observation that under starvation conditions, 80.9% of Trs85-GFP signals were TRAPPIII-dependentAtg9movementiscrucialforautophagy,in also positive for Sec7-mStrawberry (Fig. 7A), whereas only termsofthenutrientresponse.Onthebasisofthesefindings,we 0.58% of Trs85-GFP signals overlapped with API-mStrawberry, propose a model (below) describing how general membrane whichrepresentsthePASinwild-typecells(Fig. 7B);morethan traffic is involved in the regulation of autophagy. 200 cellswere counted for eachquantification of colocalization. Combinations of mutations in TRAPPIII and GARP subunits Together,theseresultssupportaroleforTRAPPIIIintetheringto producedadditivedefects,whereascombinationsofmutationsin the Golgi retrograde vesicles that originate from endosomes. TRAPPIII and sorting nexin subunits did not result in more Accordingly,weinvestigatedthelocalizationofYpt1inrelation severe phenotypes. These findings indicate that TRAPPIII totheGolgiandAtg8inwild-typecells(supplementarymaterial receives vesicles from early endosomes at the Golgi (Fig. 8). Fig.S4A,B).Inacountofmorethan60cells,77.7%ofGFP-Ypt1- Our results showing that TRAPPIII functions in retrograde positive dots were also positive for Sec7-mStrawberry, whereas transport from endosomes to the Golgi are consistent with the 4968 Journal of Cell Science 126 (21) e c n e ci Fig.5. APIprocessingisdisruptedby S combiningmutationsthataffect ell TRAPPIIIandlateendosome-to-Golgi C transport.(A)Summaryofgenesand f proteinsinvestigatedintheseexperiments. o (B)Eachstrain(SEY6210;NTY41;KNY92, al KNY125,KNY189,KNY191,KNY151, n r KNY216,KNY217,KNY218,KNY222or u o KNY223)wasgrownat26˚CinYPD, J transferredtomediumlackingnitrogen,and collectedattheindicatedtimepoints.Cell lysateswereanalyzedbyimmunoblotting withanti-APIantibody.Whitearrowhead, pro-API;blackarrowhead,mature-API. (C)Bandintensitieswerecalculatedfor matureAPIrelativetototalAPI(matureAPI +pro-API)inB.Representativeresultsfrom twoindependentexperimentsareshown. previously reported roles of TRAPPI and TRAPPII in ER-to- structures (8–12%) colocalize with Golgi and endosomal Golgiandintra-Golgitrafficking,respectively.Thus,allTRAPP markers (Mari et al., 2010). The other labeled structures were familymemberscannowbeconsideredtofunctionattheGolgi. probably a mixture of vesicles providing anterograde and Furthermore,ourresultssuggestthatYpt1functionsattheGolgi retrograde transport between the Golgi and endosomes. During together with all members of the TRAPP family. autophagosome formation, some Atg9 will depart from these Thesefindingsprovideimportantinsightsintothedynamicsof pathwaysandarriveatthePAS.InTRAPPIIImutantcells,Atg9 Atg9(Fig. 8).Undernutrient-richconditions,earlyendosome-to- wastrappedinthevesicleanddidnotreachthePAS.Aslongas Golgi transport is crucial for the Cvt pathway. Because COG- autophagy proceeds normally, Atg9 is recycled back to the dependent Golgi function and exit from the Golgi are important peripheral pool via the PAS and the autophagosome and/or for autophagy (van der Vaart et al., 2010; Yen et al., 2010), vacuoles, but in mutant cells (e.g. atg1), it accumulates shuttlingbetweentheGolgiandearlyendosomesalsoappearsto abnormally in the PAS. be crucial. The essential cargo molecule for autophagy is Atg9, Another finding of this study is that the TRAPPIII-dependent although additional transmembrane cargo proteins, such as pathway is bypassed under starvation conditions (Fig. 8). Atg27, could also participate in this process. Atg9-GFP-positive Previously, the existence of this alternative pathway might puncta in peripheral reservoirs exhibit marked movement have obscured the role of TRAPPIII in this process. Here, we (Sekito et al., 2009), and only a small minority of these proposeamodelinwhichTRAPPIIIandGARPfunctionastwo TRAPPIII and autophagy 4969 Fig.6. Snc1traffickingandgrowthare disruptedbymutationsaffecting TRAPPIIIandlateendosome-to-Golgi transport.(A)Strains(KNY201,KNY204, KNY205andKNY225)expressingGFP- Snc1wereculturedat26˚CinYPD,and GFP-derivedsignalswereobservedusingan OlympusIX71microscopeequippedwitha spinning-diskconfocalsystem.(B)Based onthedistributionofGFP-Snc1inA,the cellswerecategorizedintofourgroups,and therelativesizeofeachpopulationwas determined(n.200cells).(1)Diffuse:GFP signalswerediffuselylocatedthroughout thecell.(2)Internal:GFPsignalswere observedasinternalpuncta.(3)Polar:in additiontointernalpuncta,GFPsignals wereobservedontheplasmamembraneofa bud.(4)Nonpolar:inadditiontoabud,GFP signalswereobservedontheplasma membraneofthemothercell. Representativeresultsfromtwo independentexperimentsareshown. (C)Seriallydilutedcellsfromeachstrain (SEY6210;NTY41;KNY92,KNY125, KNY189,KNY191,KNY151,KNY217and e c KNY218)werespottedontoYPDplatesand n incubatedfor3daysattheindicated e ci temperatures. S ell independentcomplexes attheGolgi.Althoughthevps51mutant must represent an alternative, rather than primary, pathway in C exhibited defective API processing under nutrient-rich autophagy. However, Snc1 recycling mainly uses the GARP- f o conditions, this defect was not as pronounced as that of the dependent pathway, and in this case the TRAPPIII-dependent al trs85 mutant, and autophagic activity was not affected under pathway appears to serve as the backup. In general, starvation n r starvation conditions. Therefore, the GARP-dependent pathway alters vesicular trafficking, and the early endosome-to-late u o J Fig.7. Trs85localizationattheGolgicomplex.(A)Wild- typecells(KNY306)harboringchromosomallyintegrated TRS85-GFPandSEC7-mStrawberrywereculturedinYPD andshiftedtomediumlackingnitrogenfor3hours.Images wereobtainedattheindicatedtimepointsusinganOlympus IX71microscopeequippedwithaspinning-diskconfocal system.(B)Wild-typecells(KNY305)harboring chromosomallyintegratedTrs85-GFPandAPI- mStrawberrywereculturedinYPDandshiftedtomedium lackingnitrogenfor3hours.Imageswereobtainedatthe indicatedtimepointsusinganOlympusIX71microscope equippedwithaspinning-diskconfocalsystem.Scalebars: 5mm. 4970 Journal of Cell Science 126 (21) proposed in those studies. Future analysis of TRAPP-dependent Atg9 trafficking inmammalian cells will determine whether our model is universally applicable. In preparing for sudden demand for autophagy, pooling the transmembrane protein Atg9 as a cargo of vesicular transport may be more favorable than statically storing the protein in a specific organelle, such as the Golgi. How Atg9 is transferred from these reservoirs to the PAS is still unclear. Our model and those proposed in other studies predict that Atg9 is delivered to thePASviatheGolgithroughacanonicalmechanismsuchasthe secretory pathway (Geng et al., 2010; Nair et al., 2011). This important issue should be addressed in future studies. MaterialsandMethods Growthconditionsandmedia Cellswereincubatedat30˚CunlessotherwiseindicatedinYPD(1%Bactoyeast extract,2%Bactopeptoneand2%dextrose) orSD(0.17%yeastnitrogenbase withoutaminoacidsorammoniumsulfate,0.5%ammoniumsulfate,2%dextrose, andappropriateaminoacids)untilanOD valueof0.8–1.2wasreached.For 600 starvationexperiments,cellswerewashedindeionizedwater,transferredtoSD-N (0.17% yeast nitrogen base without amino acids or ammonium sulfate, 2% dextrose),andincubatedattheindicatedtemperature.Forauxin-baseddegradation of Trs85, cells were grown overnight in YPD containing 200mM 1- naphthaleneaceticacid(NAA;SigmaN0640)andwashedtwicewithfreshYPD toremovetheNAA.ThecellswerethenresuspendedinYPDatanOD valueof 600 0.5,andincubatedat30˚Cfortheindicatedtimes. e Fig.8. RoleofTRAPPIIIinmembranetraffickingandautophagy.Model c n ofmembranetraffickingandAtg9dynamics.TRAPPIIIfunctionsattheGolgi Geneticprocedures e YeaststrainsusedinthisstudyarelistedinTable1.PCRwasusedtocreateand ci inthesamepathwayassortingnexin,butinadifferentpathwaytoGARPand confirmallgenedisruptions,taggedconstructsandothermodifications(Goldstein S Retromer.Undernutrient-richconditions,TRAPPIIIplaysacentralrolein etal.,1999;Jankeetal.,2004;Longtineetal.,1998;Nakatogawaetal.,2012).The ell Acotngs9timtuoteveamsehnutt.tlTinhgisppaaththwwaayy.UannddeGrosltgair-vtoa-tieonndocsoonmdietiaonntse,rtohgeraGdAeRtraPn-sport PSyHsOte8ml)oc(uSschinultdhienekrnoectkaolu.,tc2o0l0le5c)tiwonasanredptlhaeceDdAwmiPthhpahpolo8iDd6c0olluescitnigona(OsypnetnheBtiioc C dependentpathwayactsasabypassroute.Thesepathwaysprovideareservoir geneticarraymethod(TongandBoone,2007).Briefly,theTNY509parentalstrain of ofAtg9,andsomeAtg9isrelocalizedatthePAS,whereitcontributesto harboringpho8D60(NodaandKlionsky,2008;TongandBoone,2007)wascrossed witheachmutantstrainonYPDinarectangularplate(OmniTray,Nunc)witha96- al autophagy.Solidlinesrepresentpathwaysexperimentallyexaminedinthis pinnedreplicator(VP408,V&PScientific).Haploidcellscontainingthepho8D60 n study,anddashedlinesreflectotherpublishedresults. alleleandeachmutantallelewereselectedusingauxotrophicanddrug-resistance r u markersandsequentialreplicaplating(TongandBoone,2007).ThemStrawberry Jo endosomepathwayisenhancedbystarvation,possiblyduetothe sequencewasPCR-amplifiedfrompmStrawberry(Shuetal.,2006)andusedto replacetheyeGFPsequenceofpYM25togeneratepKN14;theresultingplasmid need for increased degradation in the vacuole (Hamasaki et al., was used for C-terminal tagging with mStrawberry. A partially digested PvuII 2005; Jones et al., 2012). As a result, some Atg9 in early fragment of pGFP-Snc1 (306) (Lewis et al., 2000) was subcloned into pRS305 endosomes will be relocated to late endosomes, and the late digestedwithPvuIItogeneratepKN24.Theresultingplasmidwaslinearizedwith EcoRVandintegratedatthechromosomalLEU2locus.ABamHI-SacIfragment endosome-to-Golgi pathway becomes another reservoir of Atg9. encoding36GFPfromthepAtg9-36GFP(306)plasmid(Gengetal.,2010)was Our model also explains why Tlg2, a t-SNARE localized on the subcloned into pRS303 digested with the same enzymes to generate pKN15 Golgiandearlyendosomes,isrequiredonlyfortheCvtpathway (pRS303-36GFP). SequenceencodingtheC-terminal region ofATG9wasPCR amplifiedusingprimers59-CGGGATCCCCTCTTCCGACGTCAGAC-39and59- (Abeliovich et al., 1999). When mutations affecting vesicles at CCGCTCGAGGCACCATTTCTGGTCACATAC-39.Theamplifiedfragmentwas theirorigin(Retromer,sortingnexin)anddestination(TRAPPIII, digestedwithBamHIandXhoI,andthensubclonedintopKN15digestedwiththe GARP) were combined, the phenotypes were milder (see sameenzymestogeneratepKN17(pRS303-Atg9-36GFP).pKN17waslinearized Fig. 5B,C; vps51 trs85 and atg24 vps51 double mutants) than with BglII and integrated at the ATG9 locus. pNHK53 and pMK43 (National BioResource Project, Japan) harbored OsTIR1 and AtIAA17, respectively that of the trs85 vps51 double mutant. This implies that the (Nishimuraetal.,2009).pNHK53wascutwithStuIandintegratedattheURA3 apparatuses at the origin and destination do not need to strictly locusofawild-typestrain.AtIAA17inpMK43wasPCR-amplified,cutwithHindIII match. Also of note, even in the context of the strongest andXhoI,andsubclonedintopYM24digestedwithHindIIIandSalItoadd36HAto theCterminusofIAA17.Theresultantplasmid,pKN19,wasusedasthetemplate phenotype(i.e.thatofthetrs85vps51mutant),somelimitedAPI forC-AIDtaggingofTRS85.pRS314-26mCherry-Atg8wasagiftfromtheOhsumi processing still occurred. This might reflect the existence of lab.pKN38toexpressGFP-Ypt1undertheADH1promoterwasconstructedas another bypass pathway, such as the Fab1-dependent retrograde follows.TheYPT1genewasamplifiedfromthewild-typegenomicDNAbyPCR withtheprimerpairof59-GGGGATCCAATATGAATAGCGAGTACG-39GG pathway (Efe et al., 2007). Alternatively, even without the GA59GG GAT CCA ATA TGA ATA GCG AGT ACG-3G, and digested with reservoirsources,Atg9expressedduringstarvationcouldsupport BamHIandXhoI.TheresultingfragmentwasintroducedintopBP73-Adigested a small amount of autophagic activity. withthesameenzymestogeneratepKN37,whichhasaGFP-YPT1fusiongene undertheADH1promoter.TheplasmidwasthendigestedwithSacIandXhoIand Our model mightappear toconflict with previousreports that thefragmentcontainingGFP-YPT1 withtheADH-promoterwassubclonedinto TRAPPIII functions at the PAS in yeast and in forming pRS304 digested with the same enzymes. The resulting plasmid pKN38 was autophagosome in mammalian cells (Lynch-Day et al., 2010; linearizedattheuniqueEcoRIsitewithintheYPT1geneandintegratedattheYPT1 Kakuta et al., 2012; Lipatova et al., 2012; Huang et al., 2011; locusofawild-typestrainharboringchromosomallytaggedSec7-mStrawberry. Wangetal.,2013).Ourmodeldoesnotnecessarilyexcludethese Large-scaleALPassay possibilities,butourresultssuggestthatthedirectcontributionof YPDplateswereinoculatedwithcellsfromeachpoolusinga96-pinreplicatorand TRAPPIII to autophagosome formation is not as large as incubated for 16–24hours at 30˚C. Subsequently, the cells were suspended in TRAPPIII and autophagy 4971 Table 1. Strains used in this study Strain Genotype Reference Y3656 MATacan1D::MFA1pr-HIS3-MFa1pr-LEU2ura3Dleu2Dhis3Dmet15Dlys2D (TongandBoone,2007) TNY509 Y3656;pho8::pho8D60:natNT2 Thisstudy SKY001 TNY509pep4D::kanMX6 Thisstudy SEY6210 MATaura3-52leu2-3,112his3D200trp1-D901lys2-801suc2-D9 (Robinsonetal.,1988) SEY6210.1 MATaura3-52leu2-3,112his3D200trp1-D901lys2-801suc2-D9 (Robinsonetal.,1988) NTY41 SEY6210;atg1D::kanMX6 Taguchietal.,submitted KNY67 SEY6210;OsTIR1-9xmyc:URA3atg9::ATG9-3xGFP:HIS3 Thisstudy KNY74 KNY67;trs85::TRS85-AtIAA17-36HA:hphNT1 Thisstudy KNY76 KNY67;atg1D::kanMX6trs85::TRS85-AtIAA17-36HA:hphNT1 Thisstudy KNY93 SEY6210;atg9::ATG9-36GFP:HIS3 Thisstudy KNY94 SEY6210;atg1D::kanMX6atg9::ATG9-36GFP:HIS3 Thisstudy KNY95 SEY6210;trs85D::URA3MXatg9::ATG9-36GFP:HIS3 Thisstudy KNY80 SEY6210;atg1D::kanMX6MX6trs85D::CaURA3atg9::ATG9-36GFP:HIS3 Thisstudy KNY103 SEY6210;vps17D::TRP1atg9::ATG9-36GFP:HIS3 Thisstudy KNY104 SEY6210;trs85D::CaURA3vps17D::TRP1atg9::ATG9-36GFP:HIS3 Thisstudy KNY105 SEY6210;atg1D::kanMX6trs85D::CaURA3vps17D::TRP1atg9::ATG9-36GFP:HIS3 Thisstudy KNY279 SEY6210;atg1D::kanMX6trs85D::CaURA3vps51D::natNT2atg9::ATG9-36GFP:HIS3 Thisstudy ape1::APE1-mStrawberry:hphNT1 KNY92 SEY6210;trs85D::URA3MX Thisstudy KNY125 SEY6210;vps17D::TRP1 Thisstudy KNY189 SEY6210;atg24D::zeoNT3 Thisstudy KNY191 SEY6210;vps51D::natNT2 Thisstudy KNY151 SEY6210;trs85D::URA3MXvps17D::TRP1 Thisstudy KNY217 SEY6210;atg24D::zeoNT3trs85D::URA3MX Thisstudy KNY218 SEY6210;trs85D::URA3MXvps51D::natNT2 Thisstudy e KNY216 SEY6210;atg24D::zeoNT3vps51D::natNT2 Thisstudy c KNY222 SEY6210;vps17D::TRP1vps51D::natNT2 Thisstudy n e KNY223 SEY6210;atg24D::zeoNT3vps17D::TRP1 Thisstudy ci KNY201 SEY6210;leu2::GFP-SNC1:LEU2 Thisstudy S KNY204 SEY6210;vps51D::natNT2leu2::GFP-SNC1:LEU2 Thisstudy ell KKNNYY220255 SSEEYY66221100;;ttrrss8855DD::::CCaaUURRAA33lvepus25:1:DG:F:nPa-tSNNTC21l:eLuE2U::2GFP-SNC1:LEU2 TThhiissssttuuddyy C KNY305 SEY6210;trs85::TRS85-GFP:HIS3MX6sec7::SEC7-mStrawberry:hphNT1 Thisstudy of KNY306 SEY6210;trs85::TRS85-GFP:HIS3MX6ape1::APE1-mStrawberry:hphNT1 Thisstudy KNY310 SEY6210;atg1D::kanMX6atg9::ATG9-3xGFP:HIS3ape1::APE1-mStrawberry:hphNT1 Thisstudy al KNY345 SEY6210;atg9::ATG9-3xGFP:HIS3sec7::SEC7-mStrawberry:hphNT1 Thisstudy n r KNY351 SEY6210;ric1::kanMX6snc1::GFP-SNC1:LEU2 Thisstudy u KNY352 SEY6210;ric1::kanMX6trs85::CaURA3snc1::GFP-SNC1:LEU2 Thisstudy o J KNY353 SEY6210;vps10::VPS10-GFP:His3MX6 Thisstudy KNY354 SEY6210;trs85::CaURA3vps10::VPS10-GFP:His3MX6 Thisstudy KNY355 SEY6210;vps51::natNT2vps10::VPS10-GFP:His3MX6 Thisstudy KNY356 SEY6210;trs85::CaURA3vps51::natNTSvps10::VPS10-GFP:His3MX6 Thisstudy KNY357 SEY6210;atg9::ATG9-3xmCherry:hphNT1ypt1::PADH-GFP-YPT1:TRP1 Thisstudy KNY358 SEY6210;atg9::ATG9-3xGFP:HisMX6trs85::TRS85-3xmCherry:hphNT1 Thisstudy KNY359 SEY6210;sec7::SEC7-mStrawberry:hphNT1ypt1::PADH-GFP-YPT1:TRP1 Thisstudy KNY360 SEY6210;ypt1::PADH-GFP-YPT1:TRP1pRS314-2xmCherry-Atg8 Thisstudy KNY361 SEY6210;atg11::PADH-GFP-Atg11:natNT2sec7::SEC7-mStrawberry:hphNT1 Thisstudy 200mlofSD-Nmediumin96-wellplatesandincubatedfor4hoursat30˚C.The objective lens, Leica Microsystems) was used to observe the cells in plates were centrifuged, and the supernatant was discarded. To each well was supplementarymaterialFig.S2. added50mlofice-coldlysisbuffer(10mMTris-HClatpH9.0,10mMMgSO 4 and 10mM ZnSO,) and ,10ml of 0.6 mm zirconia/silica beads (Biomedical 4 Proteinextractionandimmunoblotting Science).Theplatesweresealedwithparafilmandmixedvigorouslyonarotary Yeastcellswereharvested,suspendedin100mlof0.2MNaOHand1%(v/v)2- shakerat2500rpmfor10minutesat4˚C.Afterabriefcentrifugation,150mlof mercaptoethanol, and incubated on ice for 10minutes. One milliliter of chilled ice-coldlysisbufferwasadded,andtheplateswerecentrifugedfor15minutesat acetone was added to the suspension, and the samples were incubated for 490 g at 4˚C. Protein levels were determined from 50 ml aliquots of the 10minutes on ice. After centrifugation at 16,000 g for 10minutes, cell pellets supernatants using the bicinchoninic acid method, and enzymatic activity was werewashedoncewithchilledacetoneanddissolvedinLaemmlisamplebuffer measuredin50mlaliquotsasdescribedinapreviousreport(NodaandKlionsky, usingawater-bathsonicatorandboiledfor5minutes.Aliquots(0.2OD units) 2008)withslightmodifications. 600 wereresolvedusingSDS-PAGE,andproteinsweredetectedwiththeappropriate antibodies[anti-aminopeptidaseI(Nodaetal.,2000),anti-HA(12CA5),anti-Atg9 Microscopy (a gift from the Ohsumi lab)]. Band intensities were measured using ImageJ Cells were observed Leica AF6500 fluorescent imaging system mounted on a software. Lysates to detect Atg9 were prepared by glass bead lysis. Cells were DIM6000Bmicroscope(HCXPLAPO636/1.40–0.60oil-immersionobjective suspendedinlysisbuffer(20mMPIPES,pH6.8,200mMsorbitol,5mMEDTA) lens, mercury lamp) under the control of LAS-AF software (Leica containing Complete protease inhibitor cocktail (Roche) and 4mM PMSF, and Microsystems) or on a Yokogawa CSU-X spinning-disk confocal system disruptedbysixroundsofvortexingfor30secondswith30secondintervalson (Yokogawa Electric Corp., Japan) mounted on an Olympus IX71 microscope ice.TritonX-100wasaddedtothelysateatthefinalconcentrationof0.5%.The (1006NA 1.4 PlanApo objective lens) equipped with an Andor iXon CCD lysates were incubated on ice for 5minutes and centrifuged at 5000 g for camera (Andor Technology, UK) under the control of the Andor IQ software. 10minutes at 4˚C. The supernatants were incubated at 65˚C for 10minutes in ImageswereprocessedusingAdobePhotoshop.Atg9punctawerecountedusing Laemmli sample buffer before performing SDS-PAGE followed by the G-Count software (G-Angstrom, Japan). Leica TCS SP8 confocal system immunoblotting with anti-Atg9 (a gift from the Ohsumi lab) and anti-PGK (A- mountedon aDMI 6000CS microscope (HCXPL APO 1006/1.4 Oil STED 6457,MolecularProbes). 4972 Journal of Cell Science 126 (21) Acknowledgements Lewis,M.J.,Nichols,B.J.,Prescianotto-Baschong,C.,Riezman,H.andPelham, TheauthorswouldliketothankDrDanielJ.Klionsky(Universityof H. R. (2000). Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes.Mol.Biol.Cell11,23-38. Michigan),DrScottD.Emr(CornellUniversity),DrCharlesBoone Lipatova, Z., Belogortseva, N., Zhang, X. Q., Kim, J., Taussig, D. and Segev, (University of Toronto), Dr Yoshinori Ohsumi, Dr Hayashi N.(2012).RegulationofselectiveautophagyonsetbyaYpt/RabGTPasemodule. Yamamoto (Tokyo Institute of Technology), and Dr Roger Tsien Proc.Natl.Acad.Sci.USA109,6981-6986. (University of California, San Diego) for various strains and Longatti, A. and Tooze, S. A. (2009). Vesicular trafficking and autophagosome formation.CellDeathDiffer.16,956-965. plasmids; the National BioResource Project Yeast (Japan) for Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., plasmids;and MrYuuma Itofortechnical assistance. Brachat, A., Philippsen, P. and Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomycescerevisiae.Yeast14,953-961. Authorcontributions Lynch-Day, M. A., Bhandari, D., Menon, S., Huang, J., Cai, H., Bartholomew, K.S.N. did most of the experiments. S.K. established the novel C.R.,Brumell,J.H.,Ferro-Novick,S.andKlionsky,D.J.(2010).Trs85directsa autophagy screening method and performed the genome-wide Ypt1GEF,TRAPPIII,tothephagophoretopromoteautophagy.Proc.Natl.Acad. screening. T.Y. contributed valuable discussion. T.N. designed the Sci.USA107,7811-7816. Mari, M., Griffith, J., Rieter, E., Krishnappa, L., Klionsky, D. J. and Reggiori, studyandwrote themanuscript. F. (2010). An Atg9-containing compartment that functions in the early steps of autophagosomebiogenesis.J.CellBiol.190,1005-1022. Funding Meiling-Wesse, K., Epple, U. D., Krick, R., Barth, H., Appelles, A., Voss, C., ThisworkwassupportedinpartbytheSpecialCoordinationFunds Eskelinen,E.L.andThumm,M.(2005).Trs85(Gsg1),acomponentoftheTRAPP complexes,isrequiredfortheorganizationofthepreautophagosomalstructureduring for Promoting Science and Technology from the Ministry of selectiveautophagyviatheCvtpathway.J.Biol.Chem.280,33669-33678. Education, Culture, Sports, Science and Technology (MEXT) of Mizushima,N.andKomatsu,M.(2011).Autophagy:renovationofcellsandtissues. Japan;and byagrant from theCell Science Research Foundation. Cell147,728-741. Nair,U.,Jotwani,A.,Geng,J.,Gammoh,N.,Richerson,D.,Yen,W.L.,Griffith,J., Nag, S., Wang, K., Moss, T. et al. (2011). SNARE proteins are required for Supplementarymaterialavailableonlineat macroautophagy.Cell146,290-302. http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.131318/-/DC1 Nakatogawa, H., Suzuki, K., Kamada, Y. and Ohsumi, Y. (2009). Dynamics and diversityinautophagymechanisms:lessonsfromyeast.Nat.Rev.Mol.CellBiol.10, 458-467. References Nakatogawa, H., Ishii, J., Asai, E. and Ohsumi, Y. (2012). Atg4 recycles e Abeliovich,H.,Darsow,T.andEmr,S.D.(1999).Cytoplasmtovacuoletraffickingof inappropriatelylipidatedAtg8topromoteautophagosomebiogenesis.Autophagy8, c aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and 177-186. n e Vps45p.EMBOJ.18,6005-6016. Nazarko,T.Y.,Huang,J.,Nicaud,J.M.,Klionsky,D.J.andSibirny,A.A.(2005). ci Barrowman, J., Bhandari,D., Reinisch, K. and Ferro-Novick, S. (2010). TRAPP Trs85isrequiredformacroautophagy,pexophagyandcytoplasmtovacuoletargeting S complexesinmembranetraffic:convergencethroughacommonRab.Nat.Rev.Mol. inYarrowialipolyticaandSaccharomycescerevisiae.Autophagy1,37-45. CellBiol.11,759-763. Nice,D.C.,Sato,T.K.,Stromhaug,P.E.,Emr,S.D.andKlionsky,D.J.(2002). ell Bonifacino, J. S. and Hierro, A. (2010). Transport according to GARP: receiving Cooperativebindingofthecytoplasmtovacuoletargetingpathwayproteins,Cvt13 C retrogradecargoatthetrans-Golginetwork.TrendsCellBiol.21,159-167. andCvt20,tophosphatidylinositol3-phosphateatthepre-autophagosomalstructureis Efe,J.A.,Botelho,R.J.andEmr,S.D.(2007).Atg18regulatesorganellemorphologyand requiredforselectiveautophagy.J.Biol.Chem.277,30198-30207. of Fab1kinaseactivityindependentofitsmembranerecruitmentbyphosphatidylinositol Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. and Kanemaki, al Ge3n,g5,-bJi.s,pNhoasiprh,aUte.,.YMaoslu.Bmiuolr.aC-Yelolr1i8m,i4ts2u3,2-K42.4a4n.dKlionsky,D.J.(2010).Post-Golgi Mno.np(l2a0n0t9c)e.llAs.nNaaut.xiMn-ebtahsoedds6d,eg9r1o7n-9s2y2s.tem for the rapid depletion of proteins in n r SecproteinsarerequiredforautophagyinSaccharomycescerevisiae.Mol.Biol.Cell Noda, T. and Klionsky, D. J. (2008). The quantitative Pho8Delta60 assay of u 21,2257-2269. nonspecificautophagy.MethodsEnzymol.451,33-42. o Goldstein, A. L., Pan, X. and McCusker, J. H. (1999). Heterologous URA3MX Noda, T., Matsuura, A., Wada, Y. and Ohsumi, Y. (1995). Novel system for J cassettesforgenereplacementinSaccharomycescerevisiae.Yeast15,507-511. monitoringautophagyintheyeastSaccharomycescerevisiae.Biochem.Biophys.Res. Hamasaki, M., Noda, T. and Ohsumi, Y. (2003). The early secretory pathway Commun.210,126-132. contributestoautophagyinyeast.CellStruct.Funct.28,49-54. Noda,T.,Kim,J.,Huang,W.P.,Baba,M.,Tokunaga,C.,Ohsumi,Y.andKlionsky, Hamasaki,M.,Noda,T.,Baba,M.andOhsumi,Y.(2005).Starvationtriggersthe D.J.(2000).Apg9p/Cvt7pisanintegralmembraneproteinrequiredfortransport deliveryoftheendoplasmicreticulumtothevacuoleviaautophagyinyeast.Traffic6, vesicleformationintheCvtandautophagypathways.J.CellBiol.148,465-480. 56-65. Ohashi,Y.andMunro,S.(2010).Membranedeliverytotheyeastautophagosomefrom He,C.andKlionsky,D.J.(2007).Atg9traffickinginautophagy-relatedpathways. theGolgi-endosomalsystem.Mol.Biol.Cell21,3998-4008. Autophagy3,271-274. Orsi,A.,Razi,M.,Dooley,H.C.,Robinson,D.,Weston,A.E.,Collinson,L.M.and Hettema,E.H.,Lewis,M.J.,Black,M.W.andPelham,H.R.(2003).Retromerand Tooze,S.A.(2012).DynamicandtransientinteractionsofAtg9withautophagosomes, the sorting nexins Snx4/41/42 mediate distinct retrieval pathways from yeast butnotmembraneintegration,arerequiredforautophagy.Mol.Biol.Cell23,1860- endosomes.EMBOJ.22,548-557. 1873. Huang,J.,Birmingham,C.L.,Shahnazari,S.,Shiu,J.,Zheng,Y.T.,Smith,A.C., Reggiori, F., Wang, C. W., Stromhaug, P. E., Shintani, T. and Klionsky, D. J. Campellone, K. G., Heo, W. D., Gruenheid, S., Meyer, T. et al. (2011). (2003). Vps51 is part of the yeast Vps fifty-three tethering complex essential for Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic retrogradetrafficfromtheearlyendosomeandCvtvesiclecompletion.J.Biol.Chem. reticulumandrequiresRab1GTPase.Autophagy7,17-26. 278,5009-5020. Ishihara, N., Hamasaki, M., Yokota, S., Suzuki, K., Kamada, Y., Kihara, A., Reggiori,F.,Tucker,K.A.,Stromhaug,P.E.andKlionsky,D.J.(2004a).TheAtg1- Yoshimori,T.,Noda,T.andOhsumi,Y.(2001).Autophagosomerequiresspecific Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre- earlySecproteinsforitsformationandNSF/SNAREforvacuolarfusion.Mol.Biol. autophagosomalstructure.Dev.Cell6,79-90. Cell12,3690-3702. Reggiori,F.,Wang,C.W.,Nair,U.,Shintani,T.,Abeliovich,H.andKlionsky,D.J. Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., (2004b).Earlystagesofthesecretorypathway,butnotendosomes,arerequiredfor Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E. et al. (2004). A CvtvesicleandautophagosomeassemblyinSaccharomycescerevisiae.Mol.Biol. versatile toolbox for PCR-based tagging ofyeast genes: new fluorescent proteins, Cell15,2189-2204. moremarkersandpromotersubstitutioncassettes.Yeast21,947-962. Schuldiner,M.,Collins,S.R.,Thompson,N.J.,Denic,V.,Bhamidipati,A.,Punna, Jones, C. B., Ott, E. M., Keener, J. M., Curtiss, M., Sandrin, V. and Babst, T.,Ihmels,J.,Andrews,B.,Boone,C.,Greenblatt,J.F.etal.(2005).Exploration M. (2012). Regulation of membrane protein degradation by starvation-response of the function and organization of the yeast early secretory pathway through an pathways.Traffic13,468-482. epistaticminiarrayprofile.Cell123,507-519. Kageyama,S.,Omori,H.,Saitoh,T.,Sone,T.,Guan,J.L.,Akira,S.,Imamoto,F., Scott, S. V., Hefner-Gravink, A., Morano, K. A., Noda, T., Ohsumi, Y. and Noda,T.andYoshimori,T.(2011).TheLC3recruitmentmechanismisseparate Klionsky,D.J.(1996).Cytoplasm-to-vacuoletargetingandautophagyemploythe from Atg9L1-dependent membrane formation in the autophagic response against samemachinerytodeliverproteinstotheyeastvacuole.Proc.Natl.Acad.Sci.USA Salmonella.Mol.Biol.Cell22,2290-2300. 93,12304-12308. Kakuta, S., Yamamoto, H., Negishi, L., Kondo-Kakuta, C., Hayashi, N. and Seaman,M.N.(2005).Recycleyourreceptorswithretromer.TrendsCellBiol.15,68-75. Ohsumi,Y.(2012).Atg9vesiclesrecruitvesicle-tetheringproteinsTrs85andYpt1to Sekito,T.,Kawamata,T.,Ichikawa,R.,Suzuki,K.andOhsumi,Y.(2009).Atg17 theautophagosomeformationsite.J.Biol.Chem.287,44261-44269. recruitsAtg9toorganizethepre-autophagosomalstructure.GenesCells14,525-538. Kametaka,S.,Okano,T.,Ohsumi,M.andOhsumi,Y.(1998).Apg14pandApg6/ Shi,Y.,Stefan,C.J.,Rue,S.M.,Teis,D.andEmr,S.D.(2011).TwonovelWD40 Vps30pformaproteincomplexessentialforautophagyintheyeast,Saccharomyces domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated cerevisiae.J.Biol.Chem.273,22284-22291. endosomalrecyclingpathway.Mol.Biol.Cell22,4093-4107.
Description: