ebook img

Transverse Energy Measurements from the Beam Energy Scan in PHENIX PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transverse Energy Measurements from the Beam Energy Scan in PHENIX

Nuclear Physics A NuclearPhysicsA00(2016)1–4 www.elsevier.com/locate/procedia Transverse Energy Measurements from the Beam Energy Scan in PHENIX 6 1 J.T. Mitchell (for the PHENIX Collaboration)1 0 2 BrookhavenNationalLaboratory,Building510C,P.O.Box5000,Upton,NY11973-5000 n a J 5 ] Abstract x e TransverseenergydistributionsatmidrapidityhavebeenmeasuredbythePHENIXexperimentattheBNLRelativistic - HeavyIonCollider(RHIC)forAu+Au,U+U,Cu+Au,Cu+Cu,3He+Au,d+Au,andp+pcollisionsoverawideenergy l c rangefrom √s =7.7GeVto √s =200GeVasafunctionofcentrality.ForcentralAu+Aucollisions,itisobserved u thatthemidrapNidNityBjorkenenergNyNdensitydemonstratesapowerlawbehaviorfrom √s =7.7GeVto √s =2.76 n NN NN TeV.Atagivencollisionenergy, thedatapresentedasafunctionof N areindependent ofthesizeofthecollision [ part system. ForAu+Au,Cu+Au,andCu+Cucollisions,thecentrality-dependentdataarebetterdescribedbyscalingwith 1 thenumberofconstituentquarkparticipantsthanscalingwiththenumberofnucleonparticipants. v Keywords: 4 0 9 1. Introduction 0 0 ThePHENIXexperimentattheBNLRelativistic HeavyIonCollider(RHIC)hascompiledacompre- . 1 hensive dataset from the years 2000 to 2015 that includes collisions of Au+Au, U+U, Cu+Au, Cu+Cu, 0 3He+Au,d+Au,and p+pcollisionsatavarietyofcollisionenergies.Thisdatasetcanbeexploitedtostudy 6 the dynamics of the colliding system with measurements of transverse energy production at midrapidity, 1 : dET/dη, as a function of collision energy and centrality. This study is complementary and extends pre- v viousstudies of dynamicsbased on chargedparticle multiplicity productionby the PHOBOS experiment i X [1]. AlthoughPHENIXhasalsomeasuredchargedparticlemultiplicity[2,3],onlytransverseenergymea- r surementswill bepresentedin thisarticle. Moredetailsonthe PHENIXtransverseenergymeasurements a presentedherecanbefoundelsewhere[2,4,3]. 2. EnergyDependenceofTransverseEnergyProduction Figure1(left)showstransverseenergyproduction,(dE /dη)/(0.5N ),forcentralAu+AuandPb+Pb T part collisionsatmidrapidityasafunctionof √sNN. Above √sNN = 7.7GeV, thevalueof(dET/dη)/(0.5Npart) 1ForthefullPHENIXCollaborationauthorlistandacknowledgements,seeAppendix“Collaboration”ofthisvolume. 2 /NuclearPhysicsA00(2016)1–4 is observed to be well described by a power law, (dET/dη)/(0.5Npart) ∝ √sNNb, where the exponent is b=0.428 0.021.TheseresultscanalsobeexpressedintermsoftheBjorkenenergydensity[5] ± 1 dE ε = T (1) BJ A τ dη ⊥ where A isthetransverseoverlapareaofthenucleideterminedfromtheGlaubermodelandτisthefor- mationti⊥me,typicallyestimatedtobe1fm/c. Figure1(right)showstheBjorkenenergydensitymultiplied bytheformationtimeforcentralAu+AuandPb+Pbcollisionsabove √s =7.7GeV.Thesedataarewell NN describedbyεBJτ∝ √sNNb,whereb=0.422±0.035. 10 PHENIX 0-5% Au+Au V] 10 CMS 0-5% Pb+Pb 5 N) [Gepart1 PCHMESN 0IX-5 0%-5 P%b +APub+Au 2eV/(fm c)] 0. G η/(/dET10-1 SNTAA4R9 00--75%% APbu++APbu τε [ BJ d E802 0-5% Au+Au FOPI 0-1% Au+Au 10-2 1 1 10 102 103 10 102 103 s [GeV] s [GeV] NN NN Fig.1. (Left)(dET/dη)/(0.5Npart)asafunctionof √sNN forcentralAu+AuandPb+Pbcollisions. InadditiontothePHENIXdata, dataareshownfromFOPI[6],E802[7],NA49[8],STAR[9],andCMS[10].ThelineisapowerlawfittothePHENIXdata.(Right) εBJmultipliedbyτasafunctionof √sNN forcentralAu+AuandPb+Pbcollisions. InadditiontothePHENIXdata,dataareshown fromCMS[10].Thelineisapowerlawfittoallofthedatapoints. 3. SystemSizeDependenceofTransverseEnergyProduction ThePHENIXdatasetincludesAu+Au,Cu+Au,andCu+Cucollisionsat √s =200GeValongwith NN Au+AuandCu+Cucollisionsat √s =62.4GeV.Thisfacilitatesastudyofthesystemsizedependenceof NN transverseenergyproduction. Figure2showstheBjorkenenergydensitymultipliedbytheformationtime asa functionof N forthese systems. Atagivencollisionenergy,ε forsystemsofdifferingsizes are part BJ consistentwitheachother. ThisdemonstratesthatεBJ isindependentofthesystemsizeat √sNN =200and 62.4GeV. 4. CentralityDependenceofTransverseEnergyProduction Thecentralitydependenceof(dE /dη)/(0.5N )istypicallyexpressedintermsofthenumberofnu- T part cleonparticipants,Npart,asshowninFigure3(left)forAu+Aucollisionsfrom √sNN =7.7to200GeV.Note thatthe midrapiditydata increase with increasing N and are notconsistentwith scaling by the number part ofnucleonparticipantsinAu+Aucollisionsfrom √s =200GeVallthewaydownto √s =7.7GeV. NN NN The data can also be examined as a function of centrality expressed as the number of constituent quark participants,N [11]. ThishasbeenestimatedusingaGlaubermodelcalculationthathasbeenmodifiedto qp replacenucleonswiththeirconstituentquarks[3]. TheresultsareshowninFigure3(right),whichshows (dET/dη)/(0.5Nqp)asafunctionofNqp forAu+Aucollisionsfrom √sNN =200GeVdownto7.7GeV.For allenergies,thedataarebetterdescribedbyscalingwithN thanscalingwithN . Thisisconsistentwith qp part /NuclearPhysicsA00(2016)1–4 3 6 200 GeV Cu+Au 200 GeV Cu+Cu 62.4 GeV Cu+Cu 200 GeV Au+Au c)] 62.4 GeV Au+Au 2 m 4 V/(f e G τ [ BJ 2 ε PHENIX 0 100 200 300 400 N part Fig.2. εBJasafunctionof √sNN forAu+Au,Cu+Au,andCu+Cucollisionsat √sNN =200and62.4GeV.Theerrorbarsrepresent thestatisticalandsystematicerrors. previousstudiesofchargedparticlemultiplicitydistributionsmeasuredbyPHOBOSdownto √s =19.6 NN GeV[12].Figure4shows(dET/dη)/(0.5Nqp)asafunctionofNqpforCu+AuandCu+Cucollisionsat √sNN =200and62.4GeV.ThedataarealsobetterdescribedbyscalingwithN forthesmallersystems. qp eV] 5 200 GeV Au+Au eV] 200 GeV Au+Au G 130 GeV Au+Au G 130 GeV Au+Au η [)) / (0.5 N/d(dE[y=0]Tpart43 63211729794.7... 465GG G eeGGGeVVeeeV VVVAA A uuAAAu++uuu+AA+++AuuAAAuuuu η [)) / (0.5 N/d(dE1qp[y=0]T.521 63211729794.7... 465GG G eeGGGeVVeeeV VVVAA A uuAAAu++uuu+AA+++AuuAAAuuuu 2 0.5 1 PHENIX PHENIX 0 0 100 200 300 Np4ar0t0 0 500 100N0qp Fig. 3. (Left) (dET/dη)/(0.5Npart) as a function of Npart for Au+Au collisions from √sNN = 200 GeV to 7.7 GeV. (Right) (dET/dη)/(0.5Nqp)asafunctionofNqp forAu+Aucollisionsfrom √sNN =200GeVto7.7GeV.Forbothplots,thelinesbound- ingthepointsrepresentthetriggerefficiencyuncertaintywithinwhichthepointscanbetilted. Theerrorbarsrepresenttheremaining statisticalandsystematicerrors. 5. Summary ThePHENIXexperimenthascompletedasystematicsurveyoftransverseenergyproductioninavariety ofcollisionsystemsfor √s =7.7GeVto √s =200GeV.TheBjorkenenergydensityforcentralAu+Au NN NN collisionsatmidrapidityiswelldescribedbya powerlaw from √s = 7.7GeV upto √s = 2.76TeV. NN NN At √sNN = 200 and 62.4 GeV, (dET/dη)/(0.5Npart) presented as a function of Npart is independentof the size of the system. For √s = 7.7 to 200 GeV, it is observedthattransverse energyproductionis better NN 4 /NuclearPhysicsA00(2016)1–4 V] 2 e G [)N1qp[y=0].5 5 0. η) / ( d /ET d 1 ( 200 GeV Cu+Au 200 GeV Cu+Cu 0.5 62.4 GeV Cu+Cu PHENIX 0 0 200 400 600 N qp Fig.4. (dET/dη)/(0.5Nqp)asafunctionofNqpforCu+AuandCu+Cucollisionsfor √sNN =200GeVand √sNN =62.4GeV.The linesboundingthepointsrepresentthetriggerefficiencyuncertaintywithinwhichthepointscanbetilted.Theerrorbarsrepresentthe remainingstatisticalandsystematicerrors. described by scaling with respect to the number of constituent quark participants than by the number of nucleonparticipants. References [1] B. Alver, et al., Phobos results on charged particle multiplicity and pseudorapidity distributions in Au+Au, Cu+Cu, d+Au, and p+p collisions at ultra-relativistic energies, Phys.Rev. C83 (2011) 024913. arXiv:1011.1940, doi:10.1103/PhysRevC.83.024913. [2] S. Adler, et al., Systematic studies of the centrality and s(NN)**(1/2) dependence of the d E(T) / d eta and d (N(ch) / d eta in heavy ion collisions at mid-rapidity, Phys.Rev. C71 (2005) 034908. arXiv:nucl-ex/0409015, doi:10.1103/PhysRevC.71.049901,10.1103/PhysRevC.71.034908. [3] A.Adare,etal.,Transverseenergyproductionandcharged-particlemultiplicityatmidrapidityinvarioussystemsfrom √sNN = 7.7to200GeVarXiv:1509.06727. [4] S. Adler, et al., Transverse-energy distributions at midrapidity in p+p , d+Au , and Au+Au collisions at √sNN = 62.4200 GeV and implications for particle-production models, Phys.Rev. C89 (4) (2014) 044905. arXiv:1312.6676, doi:10.1103/PhysRevC.89.044905. [5] J. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys.Rev. D27 (1983) 140–151. doi:10.1103/PhysRevD.27.140. [6] W. Reisdorf, et al., Central collisions of Au on Au at 150, 250 and 400 MeV/nucleon, Nucl.Phys. A612 (1997) 493–556. arXiv:nucl-ex/9610009,doi:10.1016/S0375-9474(96)00388-0. [7] L.Ahle,etal.,SimultaneousmultiplicityandforwardenergycharacterizationofparticlespectrainAu+Aucollisionsat11.6- A-GeV/c,Phys.Rev.C59(1999)2173–2188. doi:10.1103/PhysRevC.59.2173. [8] S.Afanasiev,T.Anticic,B.Baatar,D.Barna,J.Bartke,etal.,RecentresultsonspectraandyieldsfromNA49,Nucl.Phys.A715 (2003)161–170. arXiv:nucl-ex/0208014,doi:10.1016/S0375-9474(02)01424-0. [9] J.Adams,etal.,MeasurementsoftransverseenergydistributionsinAu+Aucollisionsats(NN)**(1/2)=200-GeV,Phys.Rev. C70(2004)054907. arXiv:nucl-ex/0407003,doi:10.1103/PhysRevC.70.054907. [10] S. Chatrchyan, et al., Measurement of the pseudorapidity and centrality dependence of the transverse energy density in PbPb collisions at √sNN = 2.76 TeV, Phys.Rev.Lett. 109 (2012) 152303. arXiv:1205.2488, doi:10.1103/PhysRevLett.109.152303. [11] S.Eremin,S.Voloshin,Nucleonparticipantsorquarkparticipants?,Phys.Rev.C67(2003)064905.arXiv:nucl-th/0302071, doi:10.1103/PhysRevC.67.064905. [12] R.Nouicer, Chargedparticle multiplicities inA+Aand p+pcollisions intheconstituent quarksframework, Eur.Phys.J.C49 (2007)281–286. arXiv:nucl-th/0608038,doi:10.1140/epjc/s10052-006-0128-z.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.