ebook img

Transport Processes Primer PDF

298 Pages·2019·3.605 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transport Processes Primer

Constantine Pozrikidis Transport Processes Primer Transport Processes Primer Constantine Pozrikidis Transport Processes Primer 123 ConstantinePozrikidis CollegeofEngineering UniversityofMassachusettsAmherst Amherst,MA,USA ISBN978-1-4939-9908-8 ISBN978-1-4939-9909-5 (eBook) https://doi.org/10.1007/978-1-4939-9909-5 ©SpringerScience+BusinessMedia,LLC,partofSpringerNature2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronicadaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsand thereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobe trueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressor implied,withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisher remainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerScience+BusinessMedia,LLC,partofSpringerNature. Theregisteredcompanyaddressis:233SpringStreet,NewYork,NY10013,U.S.A. Preface Transport phenomena or transport processes is a concept proposed by chemical engineers in an effort to unify fluid mechanics, heat transfer, and mass transfer in a stationary material or moving fluid.Thecoreprocedureprescribedintextsandelsewhereinvolvesdefiningafiniteorinfinitesimal controlvolume,andthenperforminganintegralordifferentialmomentum,heat,mass,orsomeother typeofbalanceofatransportableentitytoderiveagoverningequation. Thebalancetypicallystatesthattherateofaccumulationofacertainextensivepropertyofinterest, such as mass, momentum, or total energy, is determined by the rates of convective and diffusive transportacrosstheboundariesofthecontrolvolume,aswellasbyappropriateratesofinteriorand surface loss or production. The control volume itself may be stationary or evolve in an arbitrary fashion. One subtlety of the aforementioned approach is that mass, momentum, and energy balances are consequences of the principle of mass conservation, Newton’s second law of motion, and the first law of thermodynamics. In their classical form, these natural laws apply to well-defined bodies or pieces of material (closed systems), as opposed to control volumes that allow matter to cross their boundaries(opensystems). Theprincipleofmassconservationispertinenttothemassofasingle-speciesmaterialparcelor speciesXparcel, (cid:2)(cid:2)(cid:2) (cid:2)(cid:2)(cid:2) ρdV, ρ dV, X where ρ is the density; Newton’s second law of motion is pertinent to the momentum of a single- speciesmaterialparcelorspeciesXparcel, (cid:2)(cid:2)(cid:2) (cid:2)(cid:2)(cid:2) ρudV, ρ u dV, X X where u is the fluid velocity; the first law of thermodynamics is pertinent to the total energy of a single-speciesmaterialparcelorspeciesXparcel, (cid:2)(cid:2)(cid:2) (cid:2)(cid:2)(cid:2) ρ(1 |u|2+v+u)dV, ρ (1 |u |2+v +u )dV, 2 X 2 X X X v vi Preface wherevisthespecificpotentialenergyanduisthespecificinternalenergy.Consequently,introducing fluid dynamics based on momentum transport over a control volume could be hard to justify in foresightthoughstraightforwardtoexplaininhindsight. A way out is to rewrite the natural laws so that they apply to open systems that allow solid or fluid material to enter or exit a control volume through inlets and outlets. However, the dual restatement may appear like a band-aid that undermines the omnipotence of the classical approach andunnecessarilycomplicatesthelogistics. Afurthercomplicationisthatasystemmaybeclosedwithregardtoonepropertybutopenwith regard to another.For example, a system may beclosed with respect to mass butopen with respect toenergy.Asystemthatisclosedwithregardtoeverypossibletransportableentityortransmittable field iscompletely isolated.Thenotionofopen,closed,and isolated systems has been discussed in thenaturalsciencesandundertheauspicesofinformationtheory,sociology,biology,anthropology, linguistics,history,politicalscience,andphilosophy. Toensureaccuracyandscientificrigor,thegoverningequationsoftransportphenomenaarebest derivedfromtheclassicalnaturallawsappliedtomaterialparcels.Thetransportapproachmaythen bevalidatedandemployedasapracticalmethodofformulatingequationsandobtainingsolutionsin scienceandengineeringapplications.Therecommendedprocedureinvolvesthefollowingsteps: 1. Write an expression for a property of interest attributed to a material parcel, such as mass, momentum,totalspecificenergy,orspeciesmass. 2. UsetheReynoldstransportequationtoexpresstherateofchangeoftheparcelpropertyinterms ofaccumulationovertheparcelvolumeandassociatedfluxintegratedovertheparcelsurface. 3. Introduce a physical law for the rate of change of the parcel property. For example, the rate of changeofmassiszeroandtherateofchangeofmomentumisgivenbyNewton’ssecondlawof motion. 4. Regardtheparcelasacontrolvolume,orelseconsidertheparceloccupyingacontrolvolumeof interestataparticularinstanttoobtainanintegraltransportbalance. 5. Applythedivergencetheoremtoconvertallboundaryintegralsintovolumeintegrals,anddiscard the integral signs to derive governing differential balances in the form of differential equations writteninconservativeornonconservativeform. My main goal in this book is to review the basic concepts and notions of transport processes and illustrate the origin of the governing equations by deriving and summarizing the equations of mass, momentum, energy, enthalpy, entropy, and other related transport for homogeneous fluids and mixtures of fluids in the context of mechanical, chemical, biological, biomedical, and other mainstreamscienceandengineering. Noteworthy features ofthe discourse with regard to mass transportincludesthe interpretationof diffusionintermsofspeciesparcelkinematics,thediscussionofFick’sandfractionaldiffusionlaws, the introduction of partial stresses and associated equations of motion for individual species in a mixture,andthestudyofspeciesandmixtureenergetics. A summary of transport equations in differential and integral forms are presented and unified in Appendix A. All necessary relations from thermodynamics employed in the text are derived in AppendixBforaself-containeddiscourse. Preface vii Matlab1 programsperformingnumericalsimulationsofrandomwalksthatillustratethenatureof ordinaryandfractionaldiffusionarelistedinthetext. Amherst,MA,USA ConstantinePozrikidis 1Matlab(cid:2)R is a proprietary computing environment for numerical computation and data visualization. Matlab and Simulink are registered trademarks of The MathWorks, Inc. For product information, please contact: The Math- Works, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA, Tel: 508-647-7000, Fax: 508-647-7001, E-mail: [email protected],Web:www.mathworks.com. Contents 1 HomogeneousFluids .......................................................... 1 1.1 TheConceptofFluidVelocity ............................................. 1 1.1.1 ContinuumApproximation......................................... 1 1.1.2 VelocityField.................................................... 2 1.1.3 Differentiability .................................................. 2 1.1.4 MaterialPointParticles............................................ 2 1.1.5 MaterialParcel................................................... 3 1.1.6 Exercise ........................................................ 3 1.2 DensityandOtherIntensiveFields.......................................... 3 1.2.1 DensityasaFieldFunction ........................................ 3 1.2.2 ExtensiveandIntensiveProperties .................................. 4 1.2.3 TemperatureField ................................................ 4 1.2.4 Exercise ........................................................ 4 1.3 FundamentalDecompositionofKinematics .................................. 4 1.3.1 Velocity-GradientTensor .......................................... 5 1.3.2 DivergenceoftheVelocity ......................................... 5 1.3.3 FundamentalDecompositionofKinematics........................... 6 1.3.4 VorticityVector .................................................. 6 1.3.5 TheVorticityIstheCurloftheVelocity .............................. 6 1.3.6 FourTypesofLocalMotion........................................ 7 1.3.7 Translation ...................................................... 7 1.3.8 Rotation ........................................................ 7 1.3.9 Deformation..................................................... 8 1.3.10 ContractionandExpansion......................................... 8 1.3.11 Exercises........................................................ 8 1.4 LagrangianMappingofPointParticles ...................................... 9 1.4.1 RGB ........................................................... 9 1.4.2 Point-ParticlePosition............................................. 9 1.4.3 Point-ParticleVelocity ............................................ 9 1.4.4 LabelingandPhysicalSpaces ...................................... 10 1.4.5 JacobianMatrix .................................................. 10 1.4.6 MaterialVectors.................................................. 10 1.4.7 VolumetricCoefficient ............................................ 11 1.4.8 Exercise ........................................................ 11 1.5 TheMaterialDerivative................................................... 11 1.5.1 RateofChangeFollowingaPointParticle............................ 11 1.5.2 RelationtoEulerianDerivatives .................................... 12 ix x Contents 1.5.3 DirectionalDerivative............................................. 12 1.5.4 Point-ParticleVelocity ............................................ 13 1.5.5 Point-ParticleAcceleration......................................... 13 1.5.6 PropertiesoftheMaterialDerivative................................. 13 1.5.7 FundamentalLawofKinematics.................................... 13 1.5.8 VolumetricEvolutionEquation ..................................... 14 1.5.9 ExpansionorContractionofaMaterialParcel......................... 14 1.5.10 Exercises........................................................ 14 1.6 MaterialParcelsandNaturalLaws.......................................... 14 1.6.1 ParcelProperties ................................................. 15 1.6.2 IntegrationinLabelingSpace....................................... 15 1.6.3 EvolutionofParcelProperties ...................................... 15 1.6.4 NaturalLaws .................................................... 16 1.6.5 SurfaceFluxandVolumeProduction ................................ 16 1.6.6 ConductiveFluxandSurfaceTraction ............................... 16 1.6.7 NarrativeForm................................................... 17 1.6.8 TransportBalances ............................................... 17 1.6.9 GeneralizedLaws ................................................ 17 1.6.10 Exercises........................................................ 17 1.7 TheReynoldsTransportEquation .......................................... 17 1.7.1 FormalDerivation ................................................ 18 1.7.2 PowersoftheMetricCoefficient .................................... 18 1.7.3 ReynoldsTransportEquation....................................... 18 1.7.4 ConvectionbyNormalMotion...................................... 19 1.7.5 OrientationoftheUnitNormalVector ............................... 19 1.7.6 EvolutionofaParcel’sVolume ..................................... 19 1.7.7 EssentialStep.................................................... 20 1.7.8 EvolutionEquations .............................................. 20 1.7.9 Exercise ........................................................ 20 1.8 IntegralBalanceOveraControlVolume..................................... 20 1.8.1 ControlVolumeOccupiedbyaParcel................................ 21 1.8.2 EvolvingControlVolume.......................................... 22 1.8.3 Accumulation.................................................... 22 1.8.4 ConvectiveTransport ............................................. 22 1.8.5 Control-VolumeBalance........................................... 23 1.8.6 BalanceOveranOpenSystem...................................... 23 1.8.7 Exercise ........................................................ 23 1.9 MassConservationandMaterialContinuity .................................. 23 1.9.1 MassConservationforaClosedSystem.............................. 23 1.9.2 InstanceofaGeneralLaw ......................................... 24 1.9.3 ContinuityEquation .............................................. 24 1.9.4 MaterialContinuity............................................... 25 1.9.5 EulerianForm ................................................... 25 1.9.6 IncompressibleFluids............................................. 25 1.9.7 EvolutionofaSpecificParcelProperty............................... 26 1.9.8 Traveler’sTimeDerivative ......................................... 26 1.9.9 Exercises........................................................ 27 Contents xi 1.10 Rankin–HugoniotDensityCondition........................................ 27 1.10.1 EnsuringRegularity............................................... 27 1.10.2 One-DimensionalFlow............................................ 28 1.10.3 Exercise ........................................................ 29 1.11 IntegralMassBalance .................................................... 29 1.11.1 MassAccumulation............................................... 29 1.11.2 MassAccumulationDuetoConvection .............................. 29 1.11.3 StationaryorRecirculatingFluid.................................... 30 1.11.4 EngineeringAnalysis ............................................. 30 1.11.5 MassConservationforanOpenSystem .............................. 30 1.11.6 Exercise ........................................................ 30 1.12 TracersandPackets ...................................................... 30 1.12.1 LabelingTracers ................................................. 30 1.12.2 ReynoldsTransportEquation....................................... 31 1.12.3 RateofChangeofaPacketProperty................................. 32 1.12.4 FluxandProduction .............................................. 33 1.12.5 PacketPropertyConservation ...................................... 33 1.12.6 Accumulation.................................................... 34 1.12.7 ControlVolumeOccupiedbyaPacket ............................... 34 1.12.8 Mixtures ........................................................ 35 1.12.9 Exercise ........................................................ 35 2 MomentumandForces ........................................................ 37 2.1 TractionandtheStressTensor ............................................. 37 2.1.1 ForceinTermsoftheTraction...................................... 38 2.1.2 TractioninTermsoftheStressTensor ............................... 38 2.1.3 Hydrostatics ..................................................... 39 2.1.4 PressureinHydrodynamics ........................................ 39 2.1.5 DeviatoricStressTensor........................................... 39 2.1.6 IncompressibleNewtonianFluids ................................... 39 2.1.7 Exercise ........................................................ 40 2.2 ParcelMomentum ....................................................... 40 2.2.1 MomentuminTermsofthePoint-ParticleAcceleration................. 40 2.2.2 AlternativeDerivations............................................ 41 2.2.3 Exercise ........................................................ 41 2.3 Cauchy’sEquationofMotion .............................................. 41 2.3.1 InstanceofaGeneralForm ........................................ 41 2.3.2 Point-ParticleAcceleration......................................... 42 2.3.3 Euler,Bernoulli,andNavier–StokesEquations ........................ 42 2.3.4 EulerianForm ................................................... 43 2.3.5 ConservativeForm ............................................... 43 2.3.6 Stress–MomentumTensor ......................................... 43 2.3.7 Exercise ........................................................ 44 2.4 Rankin–HugoniotMomentumCondition .................................... 44 2.4.1 One-DimensionalFlow............................................ 45 2.4.2 Exercise ........................................................ 46

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.