ebook img

Transport out of locally broken detailed balance PDF

0.16 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transport out of locally broken detailed balance

Chapter 1 Transport out of locally broken detailed balance 7 RafaelSa´nchez 1 0 2 n a J 1 1 ] l l a AbstractElectronsmovealongpotentialorthermalgradients.Inthepresenceofa h globalgradient,appliede.g.tothetwoterminalsofaconductor,thisinduceselec- - s tricchargeandheatcurrents.Theycanalsoflowbetweentwoequilibratedterminals e (atthesamevoltageandtemperature)ifdetailedbalanceisbrokeninsomepartof m thesystem.Aminimalmodelinvolvingtwometallicislandsinseriesisintroduced . whoseinternalpotentialandtemperaturescanbeexternallymodulated.Thecondi- t a tionsforafiniteelectricflowarediscussed. m - d n 1.1 Introduction o c [ Anelectronicconductorrespondstoanonequilibriumsituationintheformofcharge 1 and heat currents. It can be due to the presence of electric or thermal gradients v appliedtothetwoterminalsofthesystem,V −V andT −T .Transportishowever L R L R 1 notrestrictedtothissituation.Theroleoffluctuationsintheintermediateregion(the 7 system)cannotbeoverlooked.Ifthetwoterminalsareinthermalequilibrium(for 0 3 beingatthesametemperatureandpotential)acurrentcanneverthelessflowdueto 0 rectifiednoise. . TherelevanceofnoisystateswaspointedoutbyLandauerformodifyingtherela- 1 0 tiveoccupationofbistablepotentials[1].Thisisthecaseforinstanceiftemperature 7 is locally increased (with an ideal blowtorch) on one side of the barrier only [1]. 1 These ideas were later applied to transportconfigurationsin a series of papers by : v Bu¨ttiker[2],vanKampen[3] andLandauer[4].Theypredictclassicalparticlesto i flowalongsymmetricpotentialswhicharesubjecttostate-dependentnoise.Asan X example,particlesovercomeapotentialbarrierfromthesidewherethediffusionco- r a efficientishigher(duee.g.toalocallyincreasedtemperature,cf.Fig.1.1),leading RafaelSa´nchez InstitutoGregorio Milla´n,Universidad Carlos III deMadrid, 28911Legane´s, Madrid, Spain, e- mail:[email protected] 1 2 RafaelSa´nchez Fig. 1.1 Transport in the presenceofstate-dependent noise.Symmetricpotential V(x) and temperature distribu- T(x) tions give nevertheless a finiteparticlecurrentiftheir respective maximaaredis- placed[2,3,4]. toabrokendetailedbalancesituation.Theresultingcurrentsdependonthesepara- tionofthepotentialandtemperaturefields:symmetricstate-dependentpotentialand temperaturedistributionsgivenotransport[2].OfcourseOnsagerrelationsarestill fulfilled[5]ifonetakesintoaccounttheheatinjected(bytheblowtorch)inorderto keepthetemperaturestationary. Similarideashavemotivatedproposalsofthermalratchets[6,7]andthermoelec- tricmetamaterials[9],andthemeasurementofradiationinducedcurrents[8,10]or transverserectificationinsemiconductor2DEGs[11,12].Theyarecloselyrelated totherecentfieldofmesoscopicthree-terminalthermoelectrics[13,14]whichdis- cussestheconversionofaheatcurrentoutathermalreservoirintoachargecurrent inanequilibriumconductor[15,16,17,18,19,20,21,22,23,24,25,26,27].Also noisegeneratedeitherinacoupledconductor[28,29,30]orexternally[31,32]is used for this purpose.Most of these cases use discrete levels in quantumdot sys- tems where a temperature cannot be properly defined [33]. Another possibility is a thermocouple configuration [34, 35, 36, 37, 38] where the current is due to the separationofelectron-holeexitacionsatthetwocontactsofahotcavity. Hereaminimalmodelofamesoscopicconductorisproposedwhereallthenec- essary ingredientscan be engineeredandcontrolledexperimentally.Itis based on the discretization of a metallic conductor by means of three tunnel junctions, cf. Fig. 1.2. This way an array of two small metallic islands are formed whose level Fig.1.2 Sketchofoursys- Γ1L Γ21 ΓR2 tem. Two metallicislands T1 T2 aretunnel-coupledinseries ΓL1 gate1 Γ12 gate2 Γ2R inatwo-terminalconfigura- tion.Electronsareassumedto thermaliseatadifferenttem- CL CC CR peratureT ineachpieceof VL,T φ1,T1 φ2,T2 VR,T i theconductor.Theislandin- ternalpotentialscanbetuned bygatevoltagesVg,i.Thetwo Cg1 Cg2 terminalsareconsideredatthe samevoltage,VL=VR=0, Vg1 Vg2 and temperature, T. The epxiepceerwieinsceeCdobuylotmunbngealipngUji U1L U21 U2R electronscanbemodulated withthegatevoltagesV . L 1 2 R gk 1 Transportoutoflocallybrokendetailedbalance 3 spacingismuchsmallerthanthethermalenergy,D E≪k T.Theelectron-electron B relaxationrateisfastsuchthattheyequilibratetoaFermidistributionfunction.This way, each island has a well defined temperature,T. A physicalmesoscopic blow- i torchcanbedefinedthatmodulatesthetemperatureofthesystemlocally.Thiscan bedoneeitherbyintroducingtimedependentdrivings[39,40,41],orbyusingeither on-chiprefrigerators[42,43,44,45,46]orthenoisegeneratedinacoupledconduc- tor[47,28].Inthefirstcase,thefrequencyofthedrivingmustbemuchlargerthan the energyrelaxationrate suchthatelectronshave anincreasedeffectivetempera- tureintheisland.Inthesecondcase,itisimportantthattherefrigeratorexchanges heatbutnochargewiththeconductor[15].Theinternalpotentialofeachislandcan beexternallymodulatedbymeansofgatevoltages.Thisway,bothtemperatureand potentialprofilescanbespaciallyresolvedandtunedinasimpleconfiguration. 1.2 Two Coulombislandsinseries Ourmodelisbasedonthewellknownphysicsofsingleelectrontunnelingatsmall- capacitancetunneljunctions[48].Metallicislandsofamicrometersizecanbesep- aratedbyinsulatingbarrierssuchthattheenergycostforaddingan extraelectron (the charging energy, E) is larger than the thermal energy E ≫k T. This intro- i i B duceselectron-electroncorrelationsthatsuppressesthelowvoltagetransport,what is called Coulomb blockade. The extra energy can be supplied by a gate voltage V such that electrons can flow one by one throughthe island giving rise to con- gi ductance[49,50,51]andthermopower[52,53,54,55,56]oscillations.Electronic coolingbasedonthesepropertieshasbeenrecentlyproposed[57]andrealizedex- perimentally[58]insingleelectrontransistors. Consideranarrayofthreetunneljunctionsformingtwoislands[59,60,61,62], assketchedinFig.1.2.EachbarrierisdescribedbyacapacitanceC andaresistance i R in parallel. The former determine the electrostatic potential of each island, f , i i which is obtainedself-consistentlyfromthe equationsfor the chargeaccumulated ineachisland: Q =C (f −V )+C (f −f )+C V (1.1) 1 L 1 L C 1 2 g1 g1 Q =C (f −V )+C (f −f )+C V . (1.2) 2 R 2 R C 2 1 g2 g2 The electrostaticpotentialin the coupledsystem isU(Q ,Q )=(cid:229) dQf . Itde- 1 2 i i i fines the charging energies Ei = e2/2C˜i, with C˜i = CS 1CS 2−CC2 R/CS i¯ (where i¯ denotes the island next to i), in terms of the total g(cid:0)eometric cap(cid:1)acitance CS i = Ca i+CC+Cgi of each island i (with a 1 =L and a 2 =R), the centre capacitance C ,andtheonecouplingtothegate,C .Thereisacrossedchargingenergyrelated C gi totheoccupationofthenextisland,parametrizedasJ=2e2CC/ CS 1CS 2−CC2 .It correspondstotherepulsionofelectronsindifferentislands.The(cid:0)internalpoten(cid:1)tial oftheislandsisfurthermoretunedbythecontrolparameters 4 RafaelSa´nchez 1 4E E J n = 1 2 Qext− Qext , (1.3) gi eJ2−4E E (cid:18) i 4E i¯ (cid:19) 1 2 i withtheexternallyinducedcharges[50]Qext=C V +C V andQext=C V + 1 L L g1 g1 2 R R C V .Hereweareinterestedinthecurrentgeneratedinanunbiasedconfiguration, g2 g2 such that V =V =0. Hence, n depends only on the gate voltages. Note that L R gi each gate affectsthe two islands. Single electron pumpsbased on time dependent modulationofthegatesachievemetrologicalprecisions[60,61]. AllthesecanbecastintotheelectrostatictermoftheHamiltonianofthesystem: H=(cid:229) E(n −n )2+J(n −n )(n −n ), (1.4) i i gi 1 g1 2 g2 i wheren =Q/eisthenumberofelectronsineachisland.Letusrestrictheretothe i i simplest configurationwith up to one extra electron in the system, i.e. the charge configurationofthesystemisdescribedbythethreestates(n ,n ):(0,0),(1,0)and 1 2 (0,1). TunnelingeventsarecharaterizedbytheenergycostU (theCoulombgap)for ji electronstunnelingfromregionito j,whichread: 1 U = 2E −n −Jn (1.5) 1L 1 g1 g2 (cid:18)2 (cid:19) 1 U = 2E −n −Jn (1.6) 2R 2 g2 g1 (cid:18)2 (cid:19) U = E −E (1.7) 21 2R 1L in the absence of a bias voltage. Obviously, U =−U . We emphasize that the ij ji energetics of the mesoscopic junction is fully tunable with the gate voltages. The ratesforthecorrespondingtunnelingtransitionsaregivenby: 1 G = dEf(E,T)[1−f(E−U ,T )], (1.8) ji e2RjiZ i ji j whereR =R ,R orR ,dependingontheinvolvedjunction.Notethattheresis- ji L C R tancesRiareenergyindependentparameters.Here f(E,T)= 1+eE/kBT −1isthe Fermi-DiracdistributionforaregionattemperatureT. (cid:0) (cid:1) Withthese,onecanwritetherateequations: P˙ =G P +G P −(G +G )P (0,0) L1 (1,0) R2 (0,1) 1L 2R (0,0) P˙ =G P +G P −(G +G )P (1.9) (1,0) 1L (0,0) 12 (0,1) L1 21 (1,0) P˙ =G P +G P −(G +G )P , (0,1) 21 (1,0) 2R (0,0) 12 R2 (0,1) forthedynamicsoftheoccupationprobabilityofeachstate,Pa (t). ThestationaryoccupationsareobtainedbysolvingP˙=0,giving: P =G −2(G G +G G +G G ) (0,0) T 21 R2 L1 12 L1 R2 1 Transportoutoflocallybrokendetailedbalance 5 P =G −2(G G +G G +G G ) (1.10) (1,0) T 1L R2 12 1L 12 2R P =G −2(G G +G G +G G ), (0,1) T L1 2R 21 1L 21 2R withG T2givenbythenormalizationcondition,(cid:229) a Pa =1.Thestationarystateobeys detailed balance if tunneling transitions satisfy: G P =G P , for the left 1L (0,0) L1 (1,0) G P =G P ,forthecenter,andG P =G P ,fortherightjunction. 12 (1,0) 21 (0,1) 1R (0,0) R1 (0,1) Hence,thecurrentintherightterminal: I =e G P −G P , (1.11) R R2 (0,1) 2R (0,0) (cid:0) (cid:1) gives a measure of the deviation from detailed balance for processes at the right barrier.Injectedcurrentfromtheterminalisdefinedaspositive.UsingEqs.(1.10) resultsintheexpression: e I = (G G G −G G G ). (1.12) R G 2 1L 21 R2 L1 12 2R T Note that the first term in the right hand side of Eq. (1.12) is proportionalto the rateforanelectrontobetransportedfromtherighttotheleftterminal.Thesecond termisproportionaltotherateoftheoppositeprocess.Itisthenclearthatthecase ofhavingtransitionssatisfyinglocaldetailedbalanceateveryjunctionresultsinno netcurrent.In the unbiasedand isothermalconfiguration,this translatesto having tunnelingratesrelatedbyG ij=G jieUij/kBT.Thisisnotthecaseifoneoftheleadsor islandsisatadifferenttemperature,asdiscussedinthenextsection. 1.2.1 Brokendetailedbalance. Linear response Letusfirst emphasizetheimportanceofthe Coulombgapintroducedbythe elec- tronicconfinementintheisland.IfU =0,tunnelingiselectron-holesymmetricand ji atemperaturedropacrossthejunctionisnotsufficienttobreakdetailedbalance.It canbeeasilyshownfromsymmetriesoftheFermifunctionthat: ¥ ¥ dEf(E,T)[1−f(E,T′)]= dEf(E,T′)[1−f(E,T)]. (1.13) Z−¥ Z−¥ HenceG =G ,forU =0,independentlyofthetemperaturesT andT . ji ij ji i j Inthefollowing,thecasewithfiniteU isassumed,unlessexplicitelymentioned. ji SomeoftheratesEq.(1.8)canbeanalyticallycalculatedbyusingtherelation: E E′ f(E,T)[1−f(E′,T′)]=n − [f(E′,T′)−f(E,T)], (1.14) B(cid:18)k T k T′(cid:19) B B wheren (x)=(ex−1)−1istheBose-Einsteindistributionfunction.Fortransitions B betweenregionsatthesametemperatureonegets: 6 RafaelSa´nchez U U G (0)=− ji n ji eUji/kBT (1.15) ji e2R B(cid:18)k T(cid:19) ji B and,ontheotherhand: U U G (0)=− ji n ji , (1.16) ij e2R B(cid:18)k T(cid:19) ji B forthereversedprocess.Itisstraightforwardtocheckthatlocaldetailedbalanceis satisfiedatsuchajunction.Iffurthermorethegatesaretunedsuchthatthereisno energycost,U =0,tunnelingisgovernedbythermalfluctuations:G (0)=G (0)= ji ji ij kBT . e2Rji Thisisnotthecasewhenthejunctionseparatestwopiecesofthemetalwhichare atdifferenttemperatures.Thiseffectshowsupin thelinearregime.Consideringa smalltemperaturedifferenced T =T −T,onecanlinearizetheinvolvedtunneling j i rates,G ≈G (0)+d TG (1)withG (1)= 1 J(U /k T)and: ji ji T ji ji e2Rji ji B p 2 J(x)=ex[n (x)]2 +x2+Li (−ex)+Li −e−x , (1.17) B 2 2 (cid:20) 6 (cid:21) (cid:0) (cid:1) withthe dilogarithmfunctionLi (z)=(cid:229) ¥ zk.Forthesame gradientandtheop- 2 k=1k2 positetransition:G (1)=G (1).Hence: ij ji G d T G ji ≈eUji/kBT+ T F(Uji), (1.18) ij doesnotsatisfydetailedbalance,whereF(U )=U−1J(U /k T)[n (U )]−2.Note ji ji ji B B ji that the effect appearsin the simultaneousoccuranceof a temperaturedrop and a Coulombgap. Using the above relations in the expression for the charge current, Eq. (1.12), onefindsthatbreakingdetailedbalanceinasinglebarrierisenoughtohaveafinite current,evenifthetwoterminalsareatthesamevoltageandtemperature. To be more specific, let us consider the case where only the first island is at a differenttemperature,T =T+d T,withT =T.Thenacurrentisgenerated: 1 2 d T I (cid:181) e−U21/kBTF(U )−eU1L/kBTF(−U ) , (1.19) R 21 1L T h i intermsoftheenergycostfortunnelingtothehotislandfromtheleftleadandfrom theotherisland,U and−U ,respectively.Theavoidedprefactordependsonthe 1L 21 equilibriumrates,G (0).Itisclearfromtheaboveexpressionthatnocurrentwillflow ji ifdetailedbalanceisbrokensymmetricallyatthetwobarriersofthehotisland,i.e. iftheenergycostisequal:U =−U . Thisway,tuningthegatevoltagesallows 1L 21 onetocontrolthecurrent. 1 Transportoutoflocallybrokendetailedbalance 7 (a) (b) 5 I[10−4(e2R0)−1] -5 0 5 −1] 1 ) R0 0 2e ( −410 T1100[mK]: [ I 150 C -5 200 250 ng2 0.5 300 B 0 0.5 1 ng2 A A: B: 0 0 0.5 1 C: ng1 Fig.1.3 Transportfromahotspot.(a)Currentasafunctionoftheislandcontrolparameters,n gi foranunbiasedconfigurationVL=VR=0andT =T2=200mK.Thetemperatureofisland1is increasedatT1=150mK,withRL=RC=RR=R0,E1=E2=0.15meV,andJ=0.05meV.The configurationsinpointsA,BandCaresketchedontherightbottomside.(b)Cutalongthewhite dashedlinein(a)asafunctionofng2.Island1istunedsuchthatU1L=0.015meVisconstant. ReversingthetemperaturegradientorthesignofU changesthesignofthecurrent. 2R 1.3 Transport from a hotspot As discussed in the previous section, broken detailed balance occurs in tunneling throughajunctionseparatingregionsatdifferenttemperatures.Thisishowevernot a sufficient condicion to generate transport in a conductor in global equlibrium. Forexample,nocurrentwilloccurinasystemconsistingonasinglehotisland,as brokendetailedbalanceissymmetricinthetwojunctions.Inordertohaveacurrent, anasymmetryneedstobeintroduced,e.g.bymakingtheenergycostfortunneling throughthetwobarriersdifferent.Inourcase,thisistheroleofthesecondisland. ItschargingenergyliftstheasymmetrymakingU andU different.Furthermore, 1L 12 thisasymmetrycanbetunedwithgatevoltagesV andV ,asdiscussedabove.If g1 g2 thesecondislandisatthesametemperatureasthetwoterminals,T =T,detailed 2 balanceissatisfiedatthethirdjunction,withG 2R=G R2eU2R/kBT. ThecurrentgeneratedinsuchaconfigurationwithT 6=T isplottedinFig.1.3(a) 1 asafunctionofthecontrolparametersn andn .Fixingthegatevoltageinisland g1 g2 1,thecurrentchangessignwhenthegatevoltageofisland2istuned.Asdepicted in the inset, the sign of the current depends on the sign of U +U : electrons 1L 21 tunneling out from the hot island into the region i giving the largest U have a 1i largerrate.ForU ≫k T,thedifferenceofthetworatesisexponentiallysmalland 1i B thereforecurrentissuppressed. 8 RafaelSa´nchez Fig.1.4 Anarrayofislandsofdifferentsizeinthepresenceofalocaltemperatureincrease.The chargingenergyofeachislanddependsonitssize,henceintroducinganspacialmodulationofthe Coulombgap(blacksolidlines).Thepiece-wisetemperaturedistribution(reddottedlines)allows forawiderextensionduetoheatleakingtoneighbourislands. Reversing the sign of the local temperature gradient, T −T, changes the sign 1 of the current, cf. Fig. 1.3(b). Being an obvious statement, it has practical conse- quences:ratherthanbyheatingoneoftheislands,theeffectcanbeexperimentally detectedbycoolingit.Thiscanbedonelocallyandnon-invasivelywithinnowadays technology[44,46]. Aparticularlyinterestingconfigurationiswhenn istunedsuchthatU =0. g2 2R ThisisconfigurationBinFig.1.3.Then,G =G =k T/(e2R )onlycontribute R2 2R B R to the prefactor of the current and the second island plays no role. In this case, U =U , i.e. the temperaturegradientand the energycost are the same for tun- 1L 12 nelingthroughbothjunctionsofisland1.Henceelectronsinthehotislandhaveno preferreddirectiontotunnelout.Thusdetailedbalanceissymmetricallybrokenin the two junctions, with the overall rate through the island being the same in both directions:G G =G G ,andthecurrentiszero,seeEq.(1.12). 1L 21 12 L1 1.4 Multijunction arrays Onecanenvisiontoextendtheaboveresultstolongerarrays,cf.Fig.1.4.Thisre- laxestherequirementtoincreasethetemperatureinamicrometer-sizesingleisland. Thesizeoftheislandscanbecontrolledinthesamplegrowth,whichintroducesa natural way to spacially modulate the Coulomb gap in the device. This way the needtogatethesystemcanalsobeavoided.Thecurrentistheninducedbythein- terplayoflocalnon-equilibriumandelectron-electroninteractions,emphasizingthe mesoscopicnatureofthedevice. 1.5 Summary Asimplemodeloflocalbrokendetailedbalancegivingrisetotransportinanelec- tronic conductoris presented.A system of two metallic islands, one of which ex- periences a differenttemperature,can be interpreted as a mesoscopic analogue of transportinstate-dependentdiffusionatasinglescatterer.Partitioningtheconductor intoanarrayofmetallicislandsallowsforthelocalcontrolofvoltagesandtemper- 1 Transportoutoflocallybrokendetailedbalance 9 atures.ThecooperativeoccurranceofalocaltemperaturegradientandaCoulomb gapintroducesapreferreddirectionfortunnelingelectrons.Thisasymmetry,which determinesthesignofthecurrent,canbefurthermoretunedbymeansofgatevolt- ages applied to each island. Broken detailed balance is of relevance e.g. for the investigationoftheJarzynskiequalityandfluctuationtheorems[40,28,63,64,65], andcanbedetectedinthefullcountingstatistics[66]. Theelectron-holeasymmetryrequiredforhavingathermoelectricresponseisin- troducedbyinhomogeneoustunnelingchargingenergies.Thusenergy-dependence of the barriers is not necessary. The involved technology is within nowadays reach[60,61,62,44,40,46]andcouldreadilybetested.Thisproposalcontributes tothefieldofinteraction-inducedthermoelectricproperties[57,58]andthecontrol ofthermalflows[67,68]inlow-dimensionalmetallicconductors. Acknowledgements I acknowledge Markus Bu¨ttiker and Jukka P. Pekola for discussions and commentsonanearlierversionoftheresultspresentedhere.WorksupportedbytheSpanishMin- isteriodeEconom´ıayCompetitividadviagrant No.MAT2014-58241-P. IalsothanktheCOST ActionMP1209“Thermodynamicsinthequantumregime”. References 1. Landauer,R.:Inadequacyofentropyandentropyderivativesincharacterizingthesteadystate, Phys.Rev.A12,636(1975). 2. Bu¨ttiker, M.: Transport as a consequence of state-dependent diffusion, Z.Phys.B68,161(1987). 3. van Kampen, N. G.: Relative stability in nonuniform temperature, IBMJ.Res.Dev.32,107(1988). 4. Landauer,R.:Motionoutofnoisystates,J.Stat.Phys.53,233(1988). 5. van Kampen, N. G.: Onsager relations for transport in inhomogeneous media, J.Stat.Phys.63,1019(1991). 6. Blanter, Y. M., Bu¨ttiker, M.: Rectification of Fluctuations in an Underdamped Ratchet, Phys.Rev.Lett.81,4040(1998). 7. Benjaminm,R.,Kawai,R.:InertialeffectsinBu¨ttiker-Landauermotorandrefrigeratoratthe overdampedlimit,Phys.Rev.E77,051132(2008). 8. Olbrich, P., Ivchenko, E. L., Ravash, R., Feil,T., Danilov, S. D.,Allerdings, J., Weiss, D., Schuh,D.,Wegscheider,W.,Ganichev,S.D.:RatchetEffectsInducedbyTerahertzRadiation inHeterostructureswithaLateralPeriodicPotential,Phys.Rev.Lett.103,090603(2009). 9. Humphrey, T. E., Linke, H.: Reversible Thermoelectric Nanomaterials, Phys.Rev.Lett.94,096601(2005). 10. Olbrich,P.,Karch,J.,Ivchenko, E.L.,Kamann,J.,Ma¨rz,B.,Fehrenbacher, M.,Weiss,D., Ganichev,S.D.:Classicalratcheteffectsinheterostructureswithalateralperiodicpotential, Phys.Rev.B83,165320(2011). 11. Ganczarczyk, A. , Rojek, S., Quindeau, A., Geller, M., Hucht, A., Notthoff, C., Ko¨nig, J., Lorke, A., Reuter, D., Wieck, A. D.: Transverse rectification in density-modulated two- dimensionalelectrongases,Phys.Rev.B86,085309(2012). 12. Rojek,S.,Ko¨nig,J.:Mesoscopicdiffusionthermopowerintwo-dimensionalelectrongases, Phys.Rev.B90,115403(2014). 13. Sothmann, B.,Sa´nchez, R.,Jordan, A.N.:Thermoelectric energy harvestingwithquantum dots,Nanotechnology26,032001(2015). 10 RafaelSa´nchez 14. Benenti,G.,Casati,G.,Saito,K.,Whitney,R.S.:Fundamentalaspectsofsteady-stateconver- sionofheattoworkatthenanoscale,arXiv:1608.05595(2016). 15. Sa´nchez, R., Bu¨ttiker, M.: Optimal energy quanta to current conversion, Phys.Rev.B83,085428(2011). 16. Thierschmann, H., Sa´nchez, R., Sothmann, B., Arnold, F., Heyn, C., Hansen, W., Buh- mann,H.,Molenkamp,L.W.:Three-terminal energyharvesterwithcoupledquantum dots, Nat.Nanotechnol.10,854(2015). 17. Thierschmann, H.,Sa´nchez, R.,Sothmann, B.,Buhmann, H.,Molenkamp, L.W.:Thermo- electricswithCoulombcoupledquantumdots,C.R.Physique,17,1109(2016). 18. Entin-Wohlman,O.,Imry,Y.,Aharony,A.:Three-terminalthermoelectrictransportthrougha molecularjunction,Phys.Rev.B82,115314(2010). 19. Ruokola, T.,Ojanen,T.:Theoryofsingle-electron heatengines coupledtoelectromagnetic environments,Phys.Rev.B86,035454(2012). 20. Sothmann,B.,Sa´nchez,R.,Jordan,A.N.,Bu¨ttiker,M.:Rectificationofthermalfluctuations inachaoticcavityheatengine,Phys.Rev.B85,205301(2012). 21. Roche,B.,Roulleau,P.,Jullien,T.,Jompol,Y.,Farrer,I.,Ritchie,D.A.,Glattli,D.C.:Har- vestingdissipatedenergywithamesoscopicratchet,NatureComm.6,6738(2015). 22. Jiang, J.-H.,Entin-Wohlman, O.,Imry, Y.:Thermoelectric three-terminal hopping transport throughone-dimensionalnanosystems,Phys.Rev.B85,075412(2012). 23. Jiang, J.-H., Entin-Wohlman, O., Imry, Y.: Three-terminal semiconductor junction thermo- electricdevices:improvingperformance,NewJ.Phys.15,075021(2013). 24. Jiang,J.-H.,Entin-Wohlman,O.,Imry,Y.:Hoppingthermoelectrictransportinfinitesystems: Boundaryeffects,Phys.Rev.B87,205420(2013). 25. Mazza, F., Bosisio, R., Valentini, S., Benenti, G., Giovannetti, V., Fazio, R., Taddei, F.: Thermoelectric efficiency of three-terminal quantum thermal machines, NewJ.Phys.16,085001(2014). 26. Entin-Wohlman,O.,Imry,Y.,Aharony,A.:Enhancedperformanceofjointcoolingandenergy production,Phys.Rev.B91,054302(2015). 27. Mazza, F., Valentini, S., Bosisio, R., Benenti, G., Giovannetti, V., Fazio, R., Tad- dei, F.: Separation of heat and charge currents for boosted thermoelectric conversion, Phys.Rev.B91,245435(2015). 28. Sa´nchez,R.,Lo´pez,R.,Sa´nchez,D.,Bu¨ttiker,M.:MesoscopicCoulombdrag,brokendetailed balanceandfluctuationrelations,Phys.Rev.Lett.104,076801(2010). 29. Bischoff,D.,Eich,M.,Zilberberg,O.,Ro¨ssler,C.,Ihn,T.,Ensslin,K.:MeasurementBack- ActioninStackedGrapheneQuantumDots,NanoLett.15,6003(2015). 30. Keller, A. J., Lim, J. S., Sa´nchez, D., Lo´pez, R., Amasha, S., Katine, J. A., Shtrikman, H., Goldhaber-Gordon, D.: Cotunneling drag effect in Coulomb-coupled quantum dots, Phys.Rev.Lett.117,066602(2016). 31. Hartmann,F.,Pfeffer,P.,Ho¨fling,S.,Kamp,M.,Worschech,L.:VoltageFluctuationtoCurrent ConverterwithCoulomb-CoupledQuantumDots,Phys.Rev.Lett.114,146805(2015). 32. Pfeffer,P.,Hartmann,F.,Ho¨fling,S.,Kamp,M.,Worschech,L.:LogicalStochasticResonance withaCoulomb-CoupledQuantum-DotRectifier,Phys.Rev.Applied4,014011(2015). 33. Whitney,R.S.,Sa´nchez,R.,Haupt,F.,Splettstoesser,J.:Thermoelectricitywithoutabsorbing energyfromtheheatsources,PhysicaE75,257(2016). 34. Humphrey,T.E.,Newbury,R.,Taylor,R.P.,Linke,H.:ReversibleQuantumBrownianHeat EnginesforElectrons,Phys.Rev.Lett.89,116801(2002). 35. Jordan, A.N.,Sothmann, B.,Sa´nchez, R.,Bu¨ttiker,M.:Powerful andefficient energy har- vesterwithresonant-tunnelingquantumdots,Phys.Rev.B87,075312(2013). 36. Sothmann,B.,Sa´nchez,R.,Jordan,A.N.,Bu¨ttiker,M.:Powerfulenergyharvesterbasedon resonant-tunnelingquantumwells,NewJ.Phys.15,095021(2013). 37. Sa´nchez, R., Sothmann, B., Jordan, A. N.: Chiral thermoelectrics withquantum Hall edge states,Phys.Rev.Lett.114,146801(2015). 38. Whitney,R.S.:QuantumCoherentThree-TerminalThermoelectrics:MaximumEfficiencyat GivenPowerOutput,Entropy18,208(2016).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.