Chapter 1 Transport out of locally broken detailed balance 7 RafaelSa´nchez 1 0 2 n a J 1 1 ] l l a AbstractElectronsmovealongpotentialorthermalgradients.Inthepresenceofa h globalgradient,appliede.g.tothetwoterminalsofaconductor,thisinduceselec- - s tricchargeandheatcurrents.Theycanalsoflowbetweentwoequilibratedterminals e (atthesamevoltageandtemperature)ifdetailedbalanceisbrokeninsomepartof m thesystem.Aminimalmodelinvolvingtwometallicislandsinseriesisintroduced . whoseinternalpotentialandtemperaturescanbeexternallymodulated.Thecondi- t a tionsforafiniteelectricflowarediscussed. m - d n 1.1 Introduction o c [ Anelectronicconductorrespondstoanonequilibriumsituationintheformofcharge 1 and heat currents. It can be due to the presence of electric or thermal gradients v appliedtothetwoterminalsofthesystem,V −V andT −T .Transportishowever L R L R 1 notrestrictedtothissituation.Theroleoffluctuationsintheintermediateregion(the 7 system)cannotbeoverlooked.Ifthetwoterminalsareinthermalequilibrium(for 0 3 beingatthesametemperatureandpotential)acurrentcanneverthelessflowdueto 0 rectifiednoise. . TherelevanceofnoisystateswaspointedoutbyLandauerformodifyingtherela- 1 0 tiveoccupationofbistablepotentials[1].Thisisthecaseforinstanceiftemperature 7 is locally increased (with an ideal blowtorch) on one side of the barrier only [1]. 1 These ideas were later applied to transportconfigurationsin a series of papers by : v Bu¨ttiker[2],vanKampen[3] andLandauer[4].Theypredictclassicalparticlesto i flowalongsymmetricpotentialswhicharesubjecttostate-dependentnoise.Asan X example,particlesovercomeapotentialbarrierfromthesidewherethediffusionco- r a efficientishigher(duee.g.toalocallyincreasedtemperature,cf.Fig.1.1),leading RafaelSa´nchez InstitutoGregorio Milla´n,Universidad Carlos III deMadrid, 28911Legane´s, Madrid, Spain, e- mail:[email protected] 1 2 RafaelSa´nchez Fig. 1.1 Transport in the presenceofstate-dependent noise.Symmetricpotential V(x) and temperature distribu- T(x) tions give nevertheless a finiteparticlecurrentiftheir respective maximaaredis- placed[2,3,4]. toabrokendetailedbalancesituation.Theresultingcurrentsdependonthesepara- tionofthepotentialandtemperaturefields:symmetricstate-dependentpotentialand temperaturedistributionsgivenotransport[2].OfcourseOnsagerrelationsarestill fulfilled[5]ifonetakesintoaccounttheheatinjected(bytheblowtorch)inorderto keepthetemperaturestationary. Similarideashavemotivatedproposalsofthermalratchets[6,7]andthermoelec- tricmetamaterials[9],andthemeasurementofradiationinducedcurrents[8,10]or transverserectificationinsemiconductor2DEGs[11,12].Theyarecloselyrelated totherecentfieldofmesoscopicthree-terminalthermoelectrics[13,14]whichdis- cussestheconversionofaheatcurrentoutathermalreservoirintoachargecurrent inanequilibriumconductor[15,16,17,18,19,20,21,22,23,24,25,26,27].Also noisegeneratedeitherinacoupledconductor[28,29,30]orexternally[31,32]is used for this purpose.Most of these cases use discrete levels in quantumdot sys- tems where a temperature cannot be properly defined [33]. Another possibility is a thermocouple configuration [34, 35, 36, 37, 38] where the current is due to the separationofelectron-holeexitacionsatthetwocontactsofahotcavity. Hereaminimalmodelofamesoscopicconductorisproposedwhereallthenec- essary ingredientscan be engineeredandcontrolledexperimentally.Itis based on the discretization of a metallic conductor by means of three tunnel junctions, cf. Fig. 1.2. This way an array of two small metallic islands are formed whose level Fig.1.2 Sketchofoursys- Γ1L Γ21 ΓR2 tem. Two metallicislands T1 T2 aretunnel-coupledinseries ΓL1 gate1 Γ12 gate2 Γ2R inatwo-terminalconfigura- tion.Electronsareassumedto thermaliseatadifferenttem- CL CC CR peratureT ineachpieceof VL,T φ1,T1 φ2,T2 VR,T i theconductor.Theislandin- ternalpotentialscanbetuned bygatevoltagesVg,i.Thetwo Cg1 Cg2 terminalsareconsideredatthe samevoltage,VL=VR=0, Vg1 Vg2 and temperature, T. The epxiepceerwieinsceeCdobuylotmunbngealipngUji U1L U21 U2R electronscanbemodulated withthegatevoltagesV . L 1 2 R gk 1 Transportoutoflocallybrokendetailedbalance 3 spacingismuchsmallerthanthethermalenergy,D E≪k T.Theelectron-electron B relaxationrateisfastsuchthattheyequilibratetoaFermidistributionfunction.This way, each island has a well defined temperature,T. A physicalmesoscopic blow- i torchcanbedefinedthatmodulatesthetemperatureofthesystemlocally.Thiscan bedoneeitherbyintroducingtimedependentdrivings[39,40,41],orbyusingeither on-chiprefrigerators[42,43,44,45,46]orthenoisegeneratedinacoupledconduc- tor[47,28].Inthefirstcase,thefrequencyofthedrivingmustbemuchlargerthan the energyrelaxationrate suchthatelectronshave anincreasedeffectivetempera- tureintheisland.Inthesecondcase,itisimportantthattherefrigeratorexchanges heatbutnochargewiththeconductor[15].Theinternalpotentialofeachislandcan beexternallymodulatedbymeansofgatevoltages.Thisway,bothtemperatureand potentialprofilescanbespaciallyresolvedandtunedinasimpleconfiguration. 1.2 Two Coulombislandsinseries Ourmodelisbasedonthewellknownphysicsofsingleelectrontunnelingatsmall- capacitancetunneljunctions[48].Metallicislandsofamicrometersizecanbesep- aratedbyinsulatingbarrierssuchthattheenergycostforaddingan extraelectron (the charging energy, E) is larger than the thermal energy E ≫k T. This intro- i i B duceselectron-electroncorrelationsthatsuppressesthelowvoltagetransport,what is called Coulomb blockade. The extra energy can be supplied by a gate voltage V such that electrons can flow one by one throughthe island giving rise to con- gi ductance[49,50,51]andthermopower[52,53,54,55,56]oscillations.Electronic coolingbasedonthesepropertieshasbeenrecentlyproposed[57]andrealizedex- perimentally[58]insingleelectrontransistors. Consideranarrayofthreetunneljunctionsformingtwoislands[59,60,61,62], assketchedinFig.1.2.EachbarrierisdescribedbyacapacitanceC andaresistance i R in parallel. The former determine the electrostatic potential of each island, f , i i which is obtainedself-consistentlyfromthe equationsfor the chargeaccumulated ineachisland: Q =C (f −V )+C (f −f )+C V (1.1) 1 L 1 L C 1 2 g1 g1 Q =C (f −V )+C (f −f )+C V . (1.2) 2 R 2 R C 2 1 g2 g2 The electrostaticpotentialin the coupledsystem isU(Q ,Q )=(cid:229) dQf . Itde- 1 2 i i i fines the charging energies Ei = e2/2C˜i, with C˜i = CS 1CS 2−CC2 R/CS i¯ (where i¯ denotes the island next to i), in terms of the total g(cid:0)eometric cap(cid:1)acitance CS i = Ca i+CC+Cgi of each island i (with a 1 =L and a 2 =R), the centre capacitance C ,andtheonecouplingtothegate,C .Thereisacrossedchargingenergyrelated C gi totheoccupationofthenextisland,parametrizedasJ=2e2CC/ CS 1CS 2−CC2 .It correspondstotherepulsionofelectronsindifferentislands.The(cid:0)internalpoten(cid:1)tial oftheislandsisfurthermoretunedbythecontrolparameters 4 RafaelSa´nchez 1 4E E J n = 1 2 Qext− Qext , (1.3) gi eJ2−4E E (cid:18) i 4E i¯ (cid:19) 1 2 i withtheexternallyinducedcharges[50]Qext=C V +C V andQext=C V + 1 L L g1 g1 2 R R C V .Hereweareinterestedinthecurrentgeneratedinanunbiasedconfiguration, g2 g2 such that V =V =0. Hence, n depends only on the gate voltages. Note that L R gi each gate affectsthe two islands. Single electron pumpsbased on time dependent modulationofthegatesachievemetrologicalprecisions[60,61]. AllthesecanbecastintotheelectrostatictermoftheHamiltonianofthesystem: H=(cid:229) E(n −n )2+J(n −n )(n −n ), (1.4) i i gi 1 g1 2 g2 i wheren =Q/eisthenumberofelectronsineachisland.Letusrestrictheretothe i i simplest configurationwith up to one extra electron in the system, i.e. the charge configurationofthesystemisdescribedbythethreestates(n ,n ):(0,0),(1,0)and 1 2 (0,1). TunnelingeventsarecharaterizedbytheenergycostU (theCoulombgap)for ji electronstunnelingfromregionito j,whichread: 1 U = 2E −n −Jn (1.5) 1L 1 g1 g2 (cid:18)2 (cid:19) 1 U = 2E −n −Jn (1.6) 2R 2 g2 g1 (cid:18)2 (cid:19) U = E −E (1.7) 21 2R 1L in the absence of a bias voltage. Obviously, U =−U . We emphasize that the ij ji energetics of the mesoscopic junction is fully tunable with the gate voltages. The ratesforthecorrespondingtunnelingtransitionsaregivenby: 1 G = dEf(E,T)[1−f(E−U ,T )], (1.8) ji e2RjiZ i ji j whereR =R ,R orR ,dependingontheinvolvedjunction.Notethattheresis- ji L C R tancesRiareenergyindependentparameters.Here f(E,T)= 1+eE/kBT −1isthe Fermi-DiracdistributionforaregionattemperatureT. (cid:0) (cid:1) Withthese,onecanwritetherateequations: P˙ =G P +G P −(G +G )P (0,0) L1 (1,0) R2 (0,1) 1L 2R (0,0) P˙ =G P +G P −(G +G )P (1.9) (1,0) 1L (0,0) 12 (0,1) L1 21 (1,0) P˙ =G P +G P −(G +G )P , (0,1) 21 (1,0) 2R (0,0) 12 R2 (0,1) forthedynamicsoftheoccupationprobabilityofeachstate,Pa (t). ThestationaryoccupationsareobtainedbysolvingP˙=0,giving: P =G −2(G G +G G +G G ) (0,0) T 21 R2 L1 12 L1 R2 1 Transportoutoflocallybrokendetailedbalance 5 P =G −2(G G +G G +G G ) (1.10) (1,0) T 1L R2 12 1L 12 2R P =G −2(G G +G G +G G ), (0,1) T L1 2R 21 1L 21 2R withG T2givenbythenormalizationcondition,(cid:229) a Pa =1.Thestationarystateobeys detailed balance if tunneling transitions satisfy: G P =G P , for the left 1L (0,0) L1 (1,0) G P =G P ,forthecenter,andG P =G P ,fortherightjunction. 12 (1,0) 21 (0,1) 1R (0,0) R1 (0,1) Hence,thecurrentintherightterminal: I =e G P −G P , (1.11) R R2 (0,1) 2R (0,0) (cid:0) (cid:1) gives a measure of the deviation from detailed balance for processes at the right barrier.Injectedcurrentfromtheterminalisdefinedaspositive.UsingEqs.(1.10) resultsintheexpression: e I = (G G G −G G G ). (1.12) R G 2 1L 21 R2 L1 12 2R T Note that the first term in the right hand side of Eq. (1.12) is proportionalto the rateforanelectrontobetransportedfromtherighttotheleftterminal.Thesecond termisproportionaltotherateoftheoppositeprocess.Itisthenclearthatthecase ofhavingtransitionssatisfyinglocaldetailedbalanceateveryjunctionresultsinno netcurrent.In the unbiasedand isothermalconfiguration,this translatesto having tunnelingratesrelatedbyG ij=G jieUij/kBT.Thisisnotthecaseifoneoftheleadsor islandsisatadifferenttemperature,asdiscussedinthenextsection. 1.2.1 Brokendetailedbalance. Linear response Letusfirst emphasizetheimportanceofthe Coulombgapintroducedbythe elec- tronicconfinementintheisland.IfU =0,tunnelingiselectron-holesymmetricand ji atemperaturedropacrossthejunctionisnotsufficienttobreakdetailedbalance.It canbeeasilyshownfromsymmetriesoftheFermifunctionthat: ¥ ¥ dEf(E,T)[1−f(E,T′)]= dEf(E,T′)[1−f(E,T)]. (1.13) Z−¥ Z−¥ HenceG =G ,forU =0,independentlyofthetemperaturesT andT . ji ij ji i j Inthefollowing,thecasewithfiniteU isassumed,unlessexplicitelymentioned. ji SomeoftheratesEq.(1.8)canbeanalyticallycalculatedbyusingtherelation: E E′ f(E,T)[1−f(E′,T′)]=n − [f(E′,T′)−f(E,T)], (1.14) B(cid:18)k T k T′(cid:19) B B wheren (x)=(ex−1)−1istheBose-Einsteindistributionfunction.Fortransitions B betweenregionsatthesametemperatureonegets: 6 RafaelSa´nchez U U G (0)=− ji n ji eUji/kBT (1.15) ji e2R B(cid:18)k T(cid:19) ji B and,ontheotherhand: U U G (0)=− ji n ji , (1.16) ij e2R B(cid:18)k T(cid:19) ji B forthereversedprocess.Itisstraightforwardtocheckthatlocaldetailedbalanceis satisfiedatsuchajunction.Iffurthermorethegatesaretunedsuchthatthereisno energycost,U =0,tunnelingisgovernedbythermalfluctuations:G (0)=G (0)= ji ji ij kBT . e2Rji Thisisnotthecasewhenthejunctionseparatestwopiecesofthemetalwhichare atdifferenttemperatures.Thiseffectshowsupin thelinearregime.Consideringa smalltemperaturedifferenced T =T −T,onecanlinearizetheinvolvedtunneling j i rates,G ≈G (0)+d TG (1)withG (1)= 1 J(U /k T)and: ji ji T ji ji e2Rji ji B p 2 J(x)=ex[n (x)]2 +x2+Li (−ex)+Li −e−x , (1.17) B 2 2 (cid:20) 6 (cid:21) (cid:0) (cid:1) withthe dilogarithmfunctionLi (z)=(cid:229) ¥ zk.Forthesame gradientandtheop- 2 k=1k2 positetransition:G (1)=G (1).Hence: ij ji G d T G ji ≈eUji/kBT+ T F(Uji), (1.18) ij doesnotsatisfydetailedbalance,whereF(U )=U−1J(U /k T)[n (U )]−2.Note ji ji ji B B ji that the effect appearsin the simultaneousoccuranceof a temperaturedrop and a Coulombgap. Using the above relations in the expression for the charge current, Eq. (1.12), onefindsthatbreakingdetailedbalanceinasinglebarrierisenoughtohaveafinite current,evenifthetwoterminalsareatthesamevoltageandtemperature. To be more specific, let us consider the case where only the first island is at a differenttemperature,T =T+d T,withT =T.Thenacurrentisgenerated: 1 2 d T I (cid:181) e−U21/kBTF(U )−eU1L/kBTF(−U ) , (1.19) R 21 1L T h i intermsoftheenergycostfortunnelingtothehotislandfromtheleftleadandfrom theotherisland,U and−U ,respectively.Theavoidedprefactordependsonthe 1L 21 equilibriumrates,G (0).Itisclearfromtheaboveexpressionthatnocurrentwillflow ji ifdetailedbalanceisbrokensymmetricallyatthetwobarriersofthehotisland,i.e. iftheenergycostisequal:U =−U . Thisway,tuningthegatevoltagesallows 1L 21 onetocontrolthecurrent. 1 Transportoutoflocallybrokendetailedbalance 7 (a) (b) 5 I[10−4(e2R0)−1] -5 0 5 −1] 1 ) R0 0 2e ( −410 T1100[mK]: [ I 150 C -5 200 250 ng2 0.5 300 B 0 0.5 1 ng2 A A: B: 0 0 0.5 1 C: ng1 Fig.1.3 Transportfromahotspot.(a)Currentasafunctionoftheislandcontrolparameters,n gi foranunbiasedconfigurationVL=VR=0andT =T2=200mK.Thetemperatureofisland1is increasedatT1=150mK,withRL=RC=RR=R0,E1=E2=0.15meV,andJ=0.05meV.The configurationsinpointsA,BandCaresketchedontherightbottomside.(b)Cutalongthewhite dashedlinein(a)asafunctionofng2.Island1istunedsuchthatU1L=0.015meVisconstant. ReversingthetemperaturegradientorthesignofU changesthesignofthecurrent. 2R 1.3 Transport from a hotspot As discussed in the previous section, broken detailed balance occurs in tunneling throughajunctionseparatingregionsatdifferenttemperatures.Thisishowevernot a sufficient condicion to generate transport in a conductor in global equlibrium. Forexample,nocurrentwilloccurinasystemconsistingonasinglehotisland,as brokendetailedbalanceissymmetricinthetwojunctions.Inordertohaveacurrent, anasymmetryneedstobeintroduced,e.g.bymakingtheenergycostfortunneling throughthetwobarriersdifferent.Inourcase,thisistheroleofthesecondisland. ItschargingenergyliftstheasymmetrymakingU andU different.Furthermore, 1L 12 thisasymmetrycanbetunedwithgatevoltagesV andV ,asdiscussedabove.If g1 g2 thesecondislandisatthesametemperatureasthetwoterminals,T =T,detailed 2 balanceissatisfiedatthethirdjunction,withG 2R=G R2eU2R/kBT. ThecurrentgeneratedinsuchaconfigurationwithT 6=T isplottedinFig.1.3(a) 1 asafunctionofthecontrolparametersn andn .Fixingthegatevoltageinisland g1 g2 1,thecurrentchangessignwhenthegatevoltageofisland2istuned.Asdepicted in the inset, the sign of the current depends on the sign of U +U : electrons 1L 21 tunneling out from the hot island into the region i giving the largest U have a 1i largerrate.ForU ≫k T,thedifferenceofthetworatesisexponentiallysmalland 1i B thereforecurrentissuppressed. 8 RafaelSa´nchez Fig.1.4 Anarrayofislandsofdifferentsizeinthepresenceofalocaltemperatureincrease.The chargingenergyofeachislanddependsonitssize,henceintroducinganspacialmodulationofthe Coulombgap(blacksolidlines).Thepiece-wisetemperaturedistribution(reddottedlines)allows forawiderextensionduetoheatleakingtoneighbourislands. Reversing the sign of the local temperature gradient, T −T, changes the sign 1 of the current, cf. Fig. 1.3(b). Being an obvious statement, it has practical conse- quences:ratherthanbyheatingoneoftheislands,theeffectcanbeexperimentally detectedbycoolingit.Thiscanbedonelocallyandnon-invasivelywithinnowadays technology[44,46]. Aparticularlyinterestingconfigurationiswhenn istunedsuchthatU =0. g2 2R ThisisconfigurationBinFig.1.3.Then,G =G =k T/(e2R )onlycontribute R2 2R B R to the prefactor of the current and the second island plays no role. In this case, U =U , i.e. the temperaturegradientand the energycost are the same for tun- 1L 12 nelingthroughbothjunctionsofisland1.Henceelectronsinthehotislandhaveno preferreddirectiontotunnelout.Thusdetailedbalanceissymmetricallybrokenin the two junctions, with the overall rate through the island being the same in both directions:G G =G G ,andthecurrentiszero,seeEq.(1.12). 1L 21 12 L1 1.4 Multijunction arrays Onecanenvisiontoextendtheaboveresultstolongerarrays,cf.Fig.1.4.Thisre- laxestherequirementtoincreasethetemperatureinamicrometer-sizesingleisland. Thesizeoftheislandscanbecontrolledinthesamplegrowth,whichintroducesa natural way to spacially modulate the Coulomb gap in the device. This way the needtogatethesystemcanalsobeavoided.Thecurrentistheninducedbythein- terplayoflocalnon-equilibriumandelectron-electroninteractions,emphasizingthe mesoscopicnatureofthedevice. 1.5 Summary Asimplemodeloflocalbrokendetailedbalancegivingrisetotransportinanelec- tronic conductoris presented.A system of two metallic islands, one of which ex- periences a differenttemperature,can be interpreted as a mesoscopic analogue of transportinstate-dependentdiffusionatasinglescatterer.Partitioningtheconductor intoanarrayofmetallicislandsallowsforthelocalcontrolofvoltagesandtemper- 1 Transportoutoflocallybrokendetailedbalance 9 atures.ThecooperativeoccurranceofalocaltemperaturegradientandaCoulomb gapintroducesapreferreddirectionfortunnelingelectrons.Thisasymmetry,which determinesthesignofthecurrent,canbefurthermoretunedbymeansofgatevolt- ages applied to each island. Broken detailed balance is of relevance e.g. for the investigationoftheJarzynskiequalityandfluctuationtheorems[40,28,63,64,65], andcanbedetectedinthefullcountingstatistics[66]. Theelectron-holeasymmetryrequiredforhavingathermoelectricresponseisin- troducedbyinhomogeneoustunnelingchargingenergies.Thusenergy-dependence of the barriers is not necessary. The involved technology is within nowadays reach[60,61,62,44,40,46]andcouldreadilybetested.Thisproposalcontributes tothefieldofinteraction-inducedthermoelectricproperties[57,58]andthecontrol ofthermalflows[67,68]inlow-dimensionalmetallicconductors. Acknowledgements I acknowledge Markus Bu¨ttiker and Jukka P. Pekola for discussions and commentsonanearlierversionoftheresultspresentedhere.WorksupportedbytheSpanishMin- isteriodeEconom´ıayCompetitividadviagrant No.MAT2014-58241-P. IalsothanktheCOST ActionMP1209“Thermodynamicsinthequantumregime”. References 1. Landauer,R.:Inadequacyofentropyandentropyderivativesincharacterizingthesteadystate, Phys.Rev.A12,636(1975). 2. Bu¨ttiker, M.: Transport as a consequence of state-dependent diffusion, Z.Phys.B68,161(1987). 3. van Kampen, N. G.: Relative stability in nonuniform temperature, IBMJ.Res.Dev.32,107(1988). 4. Landauer,R.:Motionoutofnoisystates,J.Stat.Phys.53,233(1988). 5. van Kampen, N. G.: Onsager relations for transport in inhomogeneous media, J.Stat.Phys.63,1019(1991). 6. Blanter, Y. M., Bu¨ttiker, M.: Rectification of Fluctuations in an Underdamped Ratchet, Phys.Rev.Lett.81,4040(1998). 7. Benjaminm,R.,Kawai,R.:InertialeffectsinBu¨ttiker-Landauermotorandrefrigeratoratthe overdampedlimit,Phys.Rev.E77,051132(2008). 8. Olbrich, P., Ivchenko, E. L., Ravash, R., Feil,T., Danilov, S. D.,Allerdings, J., Weiss, D., Schuh,D.,Wegscheider,W.,Ganichev,S.D.:RatchetEffectsInducedbyTerahertzRadiation inHeterostructureswithaLateralPeriodicPotential,Phys.Rev.Lett.103,090603(2009). 9. Humphrey, T. E., Linke, H.: Reversible Thermoelectric Nanomaterials, Phys.Rev.Lett.94,096601(2005). 10. Olbrich,P.,Karch,J.,Ivchenko, E.L.,Kamann,J.,Ma¨rz,B.,Fehrenbacher, M.,Weiss,D., Ganichev,S.D.:Classicalratcheteffectsinheterostructureswithalateralperiodicpotential, Phys.Rev.B83,165320(2011). 11. Ganczarczyk, A. , Rojek, S., Quindeau, A., Geller, M., Hucht, A., Notthoff, C., Ko¨nig, J., Lorke, A., Reuter, D., Wieck, A. D.: Transverse rectification in density-modulated two- dimensionalelectrongases,Phys.Rev.B86,085309(2012). 12. Rojek,S.,Ko¨nig,J.:Mesoscopicdiffusionthermopowerintwo-dimensionalelectrongases, Phys.Rev.B90,115403(2014). 13. Sothmann, B.,Sa´nchez, R.,Jordan, A.N.:Thermoelectric energy harvestingwithquantum dots,Nanotechnology26,032001(2015). 10 RafaelSa´nchez 14. Benenti,G.,Casati,G.,Saito,K.,Whitney,R.S.:Fundamentalaspectsofsteady-stateconver- sionofheattoworkatthenanoscale,arXiv:1608.05595(2016). 15. Sa´nchez, R., Bu¨ttiker, M.: Optimal energy quanta to current conversion, Phys.Rev.B83,085428(2011). 16. Thierschmann, H., Sa´nchez, R., Sothmann, B., Arnold, F., Heyn, C., Hansen, W., Buh- mann,H.,Molenkamp,L.W.:Three-terminal energyharvesterwithcoupledquantum dots, Nat.Nanotechnol.10,854(2015). 17. Thierschmann, H.,Sa´nchez, R.,Sothmann, B.,Buhmann, H.,Molenkamp, L.W.:Thermo- electricswithCoulombcoupledquantumdots,C.R.Physique,17,1109(2016). 18. Entin-Wohlman,O.,Imry,Y.,Aharony,A.:Three-terminalthermoelectrictransportthrougha molecularjunction,Phys.Rev.B82,115314(2010). 19. Ruokola, T.,Ojanen,T.:Theoryofsingle-electron heatengines coupledtoelectromagnetic environments,Phys.Rev.B86,035454(2012). 20. Sothmann,B.,Sa´nchez,R.,Jordan,A.N.,Bu¨ttiker,M.:Rectificationofthermalfluctuations inachaoticcavityheatengine,Phys.Rev.B85,205301(2012). 21. Roche,B.,Roulleau,P.,Jullien,T.,Jompol,Y.,Farrer,I.,Ritchie,D.A.,Glattli,D.C.:Har- vestingdissipatedenergywithamesoscopicratchet,NatureComm.6,6738(2015). 22. Jiang, J.-H.,Entin-Wohlman, O.,Imry, Y.:Thermoelectric three-terminal hopping transport throughone-dimensionalnanosystems,Phys.Rev.B85,075412(2012). 23. Jiang, J.-H., Entin-Wohlman, O., Imry, Y.: Three-terminal semiconductor junction thermo- electricdevices:improvingperformance,NewJ.Phys.15,075021(2013). 24. Jiang,J.-H.,Entin-Wohlman,O.,Imry,Y.:Hoppingthermoelectrictransportinfinitesystems: Boundaryeffects,Phys.Rev.B87,205420(2013). 25. Mazza, F., Bosisio, R., Valentini, S., Benenti, G., Giovannetti, V., Fazio, R., Taddei, F.: Thermoelectric efficiency of three-terminal quantum thermal machines, NewJ.Phys.16,085001(2014). 26. Entin-Wohlman,O.,Imry,Y.,Aharony,A.:Enhancedperformanceofjointcoolingandenergy production,Phys.Rev.B91,054302(2015). 27. Mazza, F., Valentini, S., Bosisio, R., Benenti, G., Giovannetti, V., Fazio, R., Tad- dei, F.: Separation of heat and charge currents for boosted thermoelectric conversion, Phys.Rev.B91,245435(2015). 28. Sa´nchez,R.,Lo´pez,R.,Sa´nchez,D.,Bu¨ttiker,M.:MesoscopicCoulombdrag,brokendetailed balanceandfluctuationrelations,Phys.Rev.Lett.104,076801(2010). 29. Bischoff,D.,Eich,M.,Zilberberg,O.,Ro¨ssler,C.,Ihn,T.,Ensslin,K.:MeasurementBack- ActioninStackedGrapheneQuantumDots,NanoLett.15,6003(2015). 30. Keller, A. J., Lim, J. S., Sa´nchez, D., Lo´pez, R., Amasha, S., Katine, J. A., Shtrikman, H., Goldhaber-Gordon, D.: Cotunneling drag effect in Coulomb-coupled quantum dots, Phys.Rev.Lett.117,066602(2016). 31. Hartmann,F.,Pfeffer,P.,Ho¨fling,S.,Kamp,M.,Worschech,L.:VoltageFluctuationtoCurrent ConverterwithCoulomb-CoupledQuantumDots,Phys.Rev.Lett.114,146805(2015). 32. Pfeffer,P.,Hartmann,F.,Ho¨fling,S.,Kamp,M.,Worschech,L.:LogicalStochasticResonance withaCoulomb-CoupledQuantum-DotRectifier,Phys.Rev.Applied4,014011(2015). 33. Whitney,R.S.,Sa´nchez,R.,Haupt,F.,Splettstoesser,J.:Thermoelectricitywithoutabsorbing energyfromtheheatsources,PhysicaE75,257(2016). 34. Humphrey,T.E.,Newbury,R.,Taylor,R.P.,Linke,H.:ReversibleQuantumBrownianHeat EnginesforElectrons,Phys.Rev.Lett.89,116801(2002). 35. Jordan, A.N.,Sothmann, B.,Sa´nchez, R.,Bu¨ttiker,M.:Powerful andefficient energy har- vesterwithresonant-tunnelingquantumdots,Phys.Rev.B87,075312(2013). 36. Sothmann,B.,Sa´nchez,R.,Jordan,A.N.,Bu¨ttiker,M.:Powerfulenergyharvesterbasedon resonant-tunnelingquantumwells,NewJ.Phys.15,095021(2013). 37. Sa´nchez, R., Sothmann, B., Jordan, A. N.: Chiral thermoelectrics withquantum Hall edge states,Phys.Rev.Lett.114,146801(2015). 38. Whitney,R.S.:QuantumCoherentThree-TerminalThermoelectrics:MaximumEfficiencyat GivenPowerOutput,Entropy18,208(2016).