ETH Library Transition-metal-catalysed hydroamination of alkenes theoretical studies using ab initio molecular dynamics Doctoral Thesis Author(s): Senn, Hans Martin Publication date: 2001 Permanent link: https://doi.org/10.3929/ethz-a-004085345 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH No. 13972 Transition-Metal-Catalysed Hydroamination of Alkenes: Theoretical Studies Using Ab Initio Molecular Dynamics A DISSERTATION SUBMITTED TO THE SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of Doctor of Natural Sciences presented by Hans Martin Senn Dipl. Chem. ETH born 18 May 1971 citizen of zollikon/zh and neerach/zh accepted on the recommendation of Prof. Dr. Antonio Togni, examiner Prof. Dr. Ursula Röthlisberger, co-examiner Prof. Dr. Peter E. Blöchl, co-examiner 2001 Produced on a Macintosh usingAdobe FrameMaker 6.0. Mathematical fomulas set with MathType 3.7 (Design Science), references managed with EndNote 4.0.1 (ISI Research Soft). Drawings made with Adobe Illustrator 9.0, chemical illustrations with ChemDraw Pro 6.0 (Cambridge-Soft), Ball & Stick 3.7.5 (N. Müller, UniversityofLinz), PowerMoMo (M.Dobler, ETHZürich), andWebLabViewerLite 3.2 (Molecular Simulations). Typesetin Stempel Garamond, Gill Sans, Symbol, andMathematicalPi. Printed and bound bybokos druck, Zürich. Seite Leer / Blank leaf To myparents So lange also nochfür die chymischen Wirkungen der Materien aufeinanderkein Be¬ griffaufgefunden wird, der sich konstruieren lässt, d.i. kein Gesetz derAnnäherung oder Entfernung der Teile angeben lässt, nach welchem etwa in Proportion ihrerDich¬ tigkeiten u. d. g. ihre Bewegungen samt ihrerFolgen sich im Räume apriori anschau¬ lich machen und darstellen lassen (eine Forderung, die schwerlichjemals erfüllt werden wird), so kann Chymie nichts mehr als systematische Kunst, oder Experimentallehre, niemals aber eigentliche Wissenschaft werden, weil die Prinzipien derselben bloss empi¬ risch sind und keine Darstellung apriori in derAnschauung erlauben,folglich die Grundsätze chymischer Erscheinungen ihrerMöglichkeit nach nicht im mindesten be¬ grifflich machen, weilsie derAnwendung der Mathematik unfähig sind. (ImmanuelKant, Metaphysische Anfangsgründe der Naturwissenschaft, 1786) Acknowledgments First and foremost, I should like to express my deep gratitude to my supervisor, Prof. Dr. Antonio Togni, for giving me the opportunity to conduct a thesis in an area un¬ common to his laboratories; for his confidence that permitted me to work independ¬ ently; for his amicable and frank attitude and his accessibility for discussions; and for his generosity that allowed me to participate at several international conferences. I am most grateful to my co-supervisor and teacher, Prof. Dr. Peter E. Blöchl, who generously shared his comprehensive knowledge and skills and patiently introduced me into the realms of computational chemistry and physics. He provided support whenever needed, and his enthusiasm and interest was a continual stimulation. I am indebted to Prof. Dr. Ursula Rothlisberger for kindly accepting to act as co-refe¬ for this thesis. ree For granting me hospitality during two years, I am obliged to the IBM Research Lab¬ oratory in Rüschlikon/ZH. Dr. Dirk V. Deubel is owed my thanks for his contributions to the investigation of electronic and steric ligand effects during a three-month stay at the ETH. It is my pleasure to thank all those who assisted me in anyway during my dissertation, in the Laboratory of Inorganic Chemistry, elsewhere at the ETH, or at the IBM lab. Special thanks are due to my friends and colleagues of the Togni group - Andrea, An¬ tonio, Arianna, Céline, Diego, Christoph, Francesca, Giorgio, Helen, Ivo, Luca, Lu¬ kas, Maria, Marie, Markus B., Markus H., Mauro, Nik, Pascal, Patrick, Peter, Raoul, Rhony, Robert, Romano, Stan, Stefan, Stephan, Terrance, Urs - for providing a stimu¬ lating atmosphere in the lab, for many engaging discussions on chemical and not-so- chemical topics during coffee and lunch breaks or over wine and cheese, and for the good time we had in and out of the labs. Seite Leer / Blank leaf Table Contents of Abstract XI Zusammenfassung xiii Publications and Presentations xv 1 Introduction 1 1.1 General Introductory Remarks and Overview 1 1.2 The Hydroamination ofAlkenes 2 1.2.1 Motivation and Background 2 1.2.2 FirstMechanistic Considerations 4 1.2.3 Experimental Studies 5 1.2.4 Previous Computational Studies 11 1.3 Computational Organometallic Chemistry 12 1.3.1 General Remarks and Literature Overview 12 1.3.2 Outline of Computational Methods 13 1.3.3 Criteria for Assessing Reaction Profiles 18 2 Theoretical and Computational Methods and Techniques 19 ... 2.1 Overview 19 2.2 Car-Parrinello Ab Initio Molecular Dynamics 20 2.2.1 Introduction: Ab Initio MolecularDynamics 20 2.2.2 The Car-Parrinello Fictitious Lagrangian Approach 21 2.2.3 Adiabaticity and Energy Conservation 23 2.2.4 Forces 24 2.2.5 ComplementingPerspectives onto the Car-Parrinello Approach 25 . 2.3 Density-FunctionalTheory 26 2.3.1 Introduction and Fundamentals 26 2.3.2 The Kohn-Sham Formulation of DFT 27 2.3.3 Exchange-CorrelationFunctionals 29 2.4 Plane "Waves as Basis Set 32 2.4.1 Basics 32 2.4.2 Advantages and Limitations of a Plane-Wave Basis 34 2.4.3 Decoupling of Periodic Images 35 Table ofContents VIII 2.5 The Projector-Augmented Wave Method 36 2.5.1 Introduction and Overview 36 2.5.2 Construction of the Wavefunctions 37 2.5.3 ExpectationValues, Total Energy, Operators 39 2.5.4 Propagation ofthe Nuclei and Wavefunctions 43 2.5.5 Constraints 44 2.6 Determination of Stationary Points and Reaction Paths 45 2.6.1 Introduction: The Potential-Energy Surface 45 2.6.2 StationaryPoints 46 2.6.3 Reaction Paths 49 2.7 Combined Quantum-Mechanical/Molecular-Mechanical Calculations . . 51 2.7.1 Introduction 51 2.7.2 QM/MM Implementations in PAW 52 2.7.3 PAW-UFF: Implementation of the Universal Force Field 53 3 Hydroamination via C=C Activation 59 3.1 Introduction 59 3.1.1 Aims and Scope 59 3.1.2 Related Experimental and Theoretical Studies 61 3.2 ComputationalDetails 63 3.3 Results and Discussion 64 3.3.1 Overview of the Complete Reaction Profiles 64 3.3.2 High-spin versus Low-spin 65 3.3.3 Nucleophilic Attack 66 3.3.4 M-C Bond Cleavage 71 3.3.5 Ligand Exchange 75 3.3.6 ß-Hydride Elimination from the Ammonioalkyl Complex 77 3.3.7 Electronic LigandEffects on Protonolytic Ni-C Cleavage 83 3.3.8 Supplementary Studies 86 3.4 Conclusions 89 4 Hydroamination via N-H Activation 91 4.1 Introduction 91 4.1.1 Aims and Scope 91 4.1.2 Topical Experimental and Theoretical Studies 93 4.1.3 Computational Details 97 4.2 Results and Discussion 97 4.2.1 N-H Oxidative Addition 97 4.2.2 Alkene Coordination 100 4.2.3 Alkene Insertion 102 Table ofContents ix 4.2.4 Reductive Elimination 107 4.2.5 Closing the Catalytic Cycle 110 4.2.6 Evaluation and Comparison of the Pathways 110 114 4.3 Conclusions 5 Structures and Donor Properties ofTertiary Phosphanes ... 117 5.1 Introduction 117 5.2 Computational Details 118 5.3 Results and Discussion 118 5.3.1 Structural Properties ofPhosphanes and Protonated Phosphanes 118 5.3.2 Lone-Pair Energies and ProtonAffinities ofTertiary Phosphanes 122 5.4 Conclusions 123 6 Affordable Modelling of Steric and Electronic Ligand Effects 125 6.1 Introduction 125 6.2 Steric Effects: QM/MM Studies 126 6.2.1 Motivation and Overview 126 6.2.2 Validation of PAW-UFF and Computational Setup 127 6.2.3 Results and Discussion 129 6.2.4 Summary and Conclusions 133 6.3 Electronic Effects: "Tailored" Atoms 134 6.3.1 Aims and Overview 134 6.3.2 Computational Procedure 134 6.3.3 Results and Discussion 135 6.3.4 Conclusions 138 7 Appendix 139 7.1 Units 139 7.2 List of Abbreviations and Ligand Names 140 8 References 143 Curriculum Vitae 163
Description: