ebook img

Transit timing variations in WASP-10b induced by stellar activity? PDF

2.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transit timing variations in WASP-10b induced by stellar activity?

Mon.Not.R.Astron.Soc.000,1–17(2002) Printed17January2013 (MNLATEXstylefilev2.2) Transit timing variations in WASP-10b induced by stellar activity? S. C. C. Barros 1⋆, G. Boue´ 2,3,4, N. P. Gibson 5, D. L. Pollacco6, A. Santerne 1, 3 F. P. Keenan 7, I. Skillen8, R. A. Street9 1 0 1AixMarseilleUniversite´,CNRS,LAM(Laboratoired’AstrophysiquedeMarseille)UMR7326,13388,Marseille,France 2 2CentrodeAstrof´ısica,UniversidadedoPorto,RuadasEstrelas,4150-762Porto,Portugal 3AstronomieetSyste`mesDynamiques,IMCCE-CNRSUMR8028,ObservatoiredeParis,UPMC,77Av.Denfert-Rochereau,75014Paris,France n 4DepartmentofAstronomyandAstrophysics,UniversityofChicago,5640SouthEllisAvenue,Chicago,IL60637,USA a 5EuropeanSouthernObservatory,Karl-Schwarzschild-Str.2,85748GarchingbeiMunchen,Germany J 6DepartmentofPhysics,UniversityofWarwick,CoventryCV47AL,UK 6 7AstrophysicsResearchCentre,SchoolofMathematicsandPhysics,Queen’sUniversityBelfast,UniversityRoad,Belfast,BT71NN,UK 1 8IsaacNewtonGroupofTelescopes,ApartadodeCorreos321,E-38700SantaCruzdelaPalma,Tenerife,Spain 9LasCumbresObservatory,6740CortonaDriveSuite102,Goleta,CA93117,USA ] P E . h Accepted2013January16,Received2013January15,inoriginalform2012November14 p - o ABSTRACT r t Thehot-JupiterWASP-10bwasreportedbyMaciejewskietal.(2011a,b)toshowtransittim- s ing variations(TTV) with an amplitude of ∼ 3.5 minutes. These authors proposedthat the a [ observed TTVs were caused by a 0.1 MJup perturbing companion with an orbital period of ∼ 5.23d, and hence, close to the outer 5:3 mean motion resonance with WASP-10b. To 1 test this scenario, we presenteightnew transitlight curvesof WASP-10b obtainedwith the v FaulkesTelescopeNorthandtheLiverpoolTelescope.Thenewlightcurves,togetherwith22 0 previouslypublished ones, were modelled with a Markov-ChainMonte-Carlotransit fitting 6 code. 7 Transit depth differencesreported for WASP-10b are thoughtto be due to star spot in- 3 . duced brightness modulation of the host star. Assuming the star is brighter at the activity 1 minimum, we favour a small planetary radius. We find R = 1.039+0.043R in agree- 0 p −0.049 Jup ment with Johnsonetal. (2009) and Maciejewskietal. (2011b). Maciejewskietal. (2011a) 3 and Husnooetal. (2012) find no evidence for a significant eccentricity in this system. We 1 presentconsistentsystem parametersfora circularorbitand refine the orbitalephemerisof : v WASP-10b. i OurhomogeneouslyderivedtransittimesdonotsupportthepreviousclaimedTTVsig- X nal, which was strongly dependenton 2 previously published transits that have been incor- r a rectlynormalised.Nevertheless,alinearephemerisisnot astatisticallygoodfittothetransit timesofWASP-10b.Weshowthattheobservedtransittimevariationsareduetospotocculta- tionfeaturesorsystematics.Wediscussandexemplifytheeffectsofoccultationspotfeatures inthemeasuredtransittimesandshowthatdespitespotoccultationduringegressandingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times ofWASP-10areconsistentwitha linearephemeriswiththeexceptionofonetransit(epoch 143)which isa partialtransit. Therefore,thereis currentlyno evidenceforthe existenceof acompaniontoWASP-10b.OurresultssupportthelackofTTVsofhot-Jupitersreportedfor theKeplersample. Keywords: stars:planetarysystems–stars:individual(WASP-10)–stars:spots–techniques: photometric 1 INTRODUCTION ThediscoveryofWASP-10b,a 3MJuphot-Jupiterplanetina3.09 day orbit, was reported by Christianetal. (2009). Its host star is ⋆ E-mail:[email protected] a K5V type with Teff = 4675 ±100K, [M/H] = 0.03 ±0.2 2 S.C.C. Barroset al. (Christianetal. 2009) and is relatively young, with an age of Thenew observations are described inSection 2. InSection 270±80 Myr(Maciejewskietal.2011a).Usingahighsignal-to- 3,wediscussourtransitmodel.Wepresenttheupdatedparameters noise transit light curve, Johnsonetal. (2009) updated the stellar ofthesysteminSection4andinSection5discussourresultsand densityandre-derivedthestellarmasstoM∗ = 0.75±0.04M⊙ show possible causes of spurious TTVs. Finally, we present our and radius to R∗ = 0.698 ± 0.012R⊙. There has been some conclusionsinSection6. discussion about the planetary size, with Christianetal. (2009), Dittmannetal.(2010)andKrejcˇova´etal.(2010)obtainingaplane- taryradiusof1.28±0.09RJup whileJohnsonetal.(2009)derived 2 OBSERVATIONS asmallerradiusof1.08±0.02RJup.Maciejewskietal.(2011b) arguethatthediscrepancyinpreviousresultswasduestarspotin- We present further high precision transit observations of WASP- ducedbrightnessvariability.Infact,WASP-10hasbeenshownto 10btakenwithFaulkesTelescopeNorth(FTN)andwiththeLiver- havestellarvariabilityduetotherotationmodulationofspotswith poolTelescope(LT). aperiodof11.91±0.05 d(Smithetal.2009)andsemi-amplitude TwofulltransitsofWASP-10bwereobservedonthe2008-09- up to 10.1mmag. Starspots reduce the effective stellardisc area 15and2008-09-19withtheMeropecameraontheFTNusingthe leadingtoanunderestimationofthestellarradiusandalargertran- SDSS-ifilter.TheMeropecameraconsistsofae2V,2048×2048 sitdepth.Thisvariationoftransitdepthwithspotcoverageexplains pixel-CCDandhasafieldofviewof4.7’×4.7’.Aperturephotom- thedifferencesinthemeasuredplanetaryradius(e.g.Czeslaetal. etry was performed with the DAOPHOT package (Stetson 1987) 2009).Usingatransittakenclosetomaximumbrightnessthatcor- within the IRAF4 environment. The differential photometry was respondstoaminimumspotcoverage,Maciejewskietal.(2011b) performedrelativetoatleast5comparison starsthatwerewithin obtainedamaximumplanetaryradiusof1.03+−00..0073 RJup. theFTNfield-of-view. Interestingly, Maciejewskietal. (2011a) reported a periodic Another six transits were observed with the fast CCD cam- modulationoftransittimingvariations(TTVs)forWASP-10with era RISE (Steeleetal. 2008; Gibsonetal. 2008) mounted on the anamplitudeof∼3.5±1.0minutes.Theysuggesteda0.1MJup 2.0m Liverpool Telescope on La Palma, Canary Islands. RISE planet companion in theouter5:3 meanmotion resonant orbit as hasawidebandfiltercovering ∼ 500–700nmwhichcorresponds thecauseofthemeasuredTTVs.Later,Maciejewskietal.(2011b) approximately to V+R. The pixel scale is 0.54 arcsec/pixel re- confirmed the TTV solution and showed that only spots located sulting in a 9.4’ × 9.4’ field-of-view. Thanks to its frame trans- close to the stellar limb would affect the transit times but they fer CCD, RISE has a deadtime of only 35 ms for exposures wouldalsoresultintransitdurationvariations.Sincenotransitdu- longer than 1 second. To decrease systematic noise due to poor rationvariationswerefoundintheirsample,theauthorsarguedthat guiding (Barrosetal. 2011) the telescope was defocussed to - spot occultationfeaturesdidnot significantlyaffect themeasured 0.6mm and we used an exposure time of 9 seconds. However, transittimesofWASP-10. in one of the observations (2010-11-10) we experimented with a higherdefocussingof-1.0mmandlongerexposuretimeof34sec- The possibility of finding additional planets by measuring theireffectonthecentral transittimesofknowntransitingplanet onds.TheRISEdatawerereducedusingtheULTRACAMpipeline (Dhillonetal.2007)followingthesameprocedure asforWASP- systemswasproposedbyHolman&Murray(2005)andAgoletal. 21b (Barrosetal. 2011). Details of the observations are given in (2005). They showed that for systems near mean-motion reso- Table1. nances this method can be sensitive to planets less massive than The final new high precision transit light curves for WASP- theEarth.ThishasledmanygroupstosearchforTTVsfromthe 10bareshowninFigure1alongwiththebest-fitmodeldescribed ground.However,mostofthesearchesresultedinonlyupperlim- inSection3.3.Weoverplotthemodelresidualsandtheestimated its on the mass of possible companions (e. g. Miller-Riccietal. uncertainties,whicharediscussedinSection3.2. 2008; Bean 2009; Gibsonetal. 2009, 2010). The few initial re- Previously published WASP-10b light curves were included ports of TTVs were unconfirmed later. For example, D´ıazetal. inouranalysiswhichwerekindlymadeavailablebytheauthors. (2008) found TTVs in OGLE-111b which were unconfirmed in Detailsof these observations are given in Table 2. Forcomplete- later studies (Adamsetal. 2010; Hoyeretal. 2011). At present, nesswealsoshowthenewbest-fitmodeloverplotedontheprevi- onlythreehot-JupitertransitingsystemsshowTTVsthatweremea- ouslypublishedtransitlightcurvesinFigure2,whosereferences suredfromground-baseddata:WASP-3(Maciejewskietal.2010), forthesedataaregiveninTable2. WASP-10 (Maciejewskietal. 2011a), and WASP-5 (Fukuietal. Hereafter, we refer to each light curve by their epoch num- 2011).Meanwhile,Keplerdatahasallowedthediscoveryofmany berrelativetotheephemeris presented inSection4.2.Theepoch TTV systems (e.g. Kepler-9 (Holmanetal. 2010) and Kepler-11 numberisalsogivenintheobservationlogsandlightcurveplots. (Lissaueretal. 2011) ). However, a recent TTV study of the Ke- plersamplerevealedthelackofTTVsinhot-Jupiters,contrasting with the TTVs found for longer-period Jupiters or hot-Neptunes (Steffenetal.2012).Theauthorssuggestedthatthisimpliedadif- 3 DATAANALYSIS ferent formation and/or evolution history for hot-Jupiters. There- 3.1 Re-analyseoftheradialvelocityobservations fore,itisveryimportanttoconfirmandunderstandthehot-Jupiter TTVdetectionsthathavebeenreportedfromground-baseddata. ThediscoverypaperforWASP-10b(Christianetal.2009)favoured ToconfirmandpossiblycharacteriseWASP-10b’scompanion an eccentric orbit for the planet e = 0.059+0.014 and ω = −0.004 weobtainednewhighprecisiontransitlightcurvesofWASP-10b. 2.917+0.222).However,Maciejewskietal.(2011a)arguedthatec- −0.245 SixtransitobservationsofWASP-10bwereobtainedwiththeRISE centricitymighthavebeenoverestimatedduetostellarvariability fast CCD camera mounted on the Liverpool Telescope and two and favoured a circular orbit. Later, Husnooetal. (2012) showed morewiththeMeropecameraontheFaulkesTelescopeNorth.We that the eccentricity detection was dependent on the first two ra- combinedthenewobservationswithpreviouslypublished22light dial velocity (RV) SOPHIE observations that could have a dif- curvesofWASP-10tohomogeneouslyderivethetransittimes. ferent zero point. Using a method of Bayesian model selection TTVs inWASP-10binducedbystellaractivity? 3 1.00 FTN 20 FTN 21 0.99 (1.3) (1.7) 0.98 0.97 0.96 0.95 0.94 1.00 RISE 26 RISE 252 0.99 (2.0) (2.0) 0.98 0.97 0.96 x d flu 0.95 e s 0.94 ali m 1.00 or RISE 254b RISE 265 N 0.99 (3.0) (3.0) 0.98 0.97 0.96 0.95 0.94 1.00 RISE 274 RISE 285 0.99 (2.2) (1.5) 0.98 0.97 0.96 0.95 0.94 −2 −1 0 1 −22 −1 0 1 2 Time (hours) Time (hours) Figure1.Phase-foldednewlightcurvesforWASP-10.Fromtoptobottomandlefttorightinchronologicalorder;FTN2008September15and19,RISE2008 October04,RISE2010September03and09,RISE2010October13,RISE2010November10,RISE2010December14.Thelightcurvenameincluding theepochnumberisprintedineachplot.Foreachlightcurve,wesuperimposethebest-fittransitmodel2(solidredline),showtheresidualsfromthismodel atthebottomofeachtheplot,andgivetheestimatedrednoiseparametrisedbyβinsideparenthesis.Forsomelightcurveswealsoshowatransitmodelthat includesaspotfeature(dashedgreenline).ThelightcurvesandmodelshavebeenshiftedtotheT0determinedwithmodel2.TheRISEdataarebinnedinto 45secondperiodsexceptforthe2010November10whichhadalongerexposuretime.Theindividuallightcurvesplottedhereareavailableinelectronicform atCDS. 4 S.C.C. Barroset al. 1.00 Mercator −103 Tenegra −89 Tenagra −88 0.99 0.98 0.97 0.96 0.95 0.94 1.00 Hawaii 0 Slovak 36 Torun 56 0.99 (1.4) 0.98 0.97 0.96 x u 0.95 d fl e alis 0.94 m 1.00 Nor Jena 123a Rozhen 123b Rozhen 124 0.99 (1.1) (1.1) 0.98 0.97 0.96 0.95 0.94 1.00 Rozhen 132 Slovak 133a Jena 133b 0.99 (1.7) (1.8) 0.98 0.97 0.96 0.95 0.94 −2 −1 0 1 −22 −1 0 1 −22 −1 0 1 2 Time (hours) Time (hours) Time (hours) Figure2.Phase-foldedlightcurvesforWASP-10frompreviouslypublishedlightcurveswhicharedescribedinTable2.Othercommentsarethesameas Figure1butrednoisevaluesequalto1wereomitted. TTVs inWASP-10binducedbystellaractivity? 5 1.00 Rozhen 134 Rozhen 143 Slovak 144 0.99 (1.3) (1.8) (1.6) 0.98 0.97 0.96 0.95 0.94 1.00 Slovak 145 Kuiper 147 Tenegra 158 0.99 (2.3) (4.3) 0.98 0.97 0.96 x u 0.95 d fl e alis 0.94 m Nor C A 242 C A 243 C A 253 (1.8) (2.3) (2.0) −2 −1 0 1 −22 −1 0 1 2 1.00 C A 254a Time (hours) Time (hours) 0.99 (1.2) 0.98 0.97 0.96 0.95 0.94 −2 −1 0 1 2 Time (hours) Figure2–continued 6 S.C.C. Barroset al. Table1.WASP-10bnewobservationslog. Epoch Date telescope exptime numberexposures apertureradius sec arcsec 20 2008-09-15 FTN 125 115 6.1 21 2008-09-19 FTN 125 109 7.0 26 2008-10-04 RISE 5 1580 8.6 252 2010-09-03 RISE 9 1195 8.1 254b 2010-09-09 RISE 9 1233 8.6 265 2010-10-13 RISE 9 1063 10.3 274 2010-11-10 RISE 34 339 11.4 285 2010-12-14 RISE 9 755 9.2 Table2.WASP-10bpreviousobservations log.Thereferences areA=Christianetal.(2009),B=Johnsonetal.(2009),C=Dittmannetal.(2010),D= Krejcˇova´etal.(2010),E=Maciejewskietal.(2011a),andF=Maciejewskietal.(2011b). Epoch Date telescope exptime numexp filter ref sec arcsec -103 2007-09-01 Mercator 30 170 V A -89 2007-10-15 Tenagra 125 125 I A -88 2007-10-18 Tenagra 125 91 I A 0 2008-07-16 2.2mHawaii 50 194 sloanz’ B 36 2008-11-04 Slovak 120 R D 56 2009-01-05 0.6mTorun 50 254 R E 123a 2009-07-31 0.6mJena 70 144 R E 123b 2009-07-31 0.6mRozhen 120 116 R E 124 2009-08-03 0.6mRozhen 90 122 R E 132 2009-08-28 0.6mRozhen 90 99 R E 133a 2009-08-31 Slovak 165 R D 133b 2009-08-31 0.6mJena 55 203 R E 134 2009-09-03 0.6mRozhen 90 105 R E 143 2009-10-01 2.0mRozhen 15 548 V E 144 2009-10-04 Slovak 118 R D 145 2009-10-07 Slovak 114 R D 147 2009-10-14 Kuiper 10 579 I C 158 2009-11-17 Tenagra 76 76 R E 242 2010-08-03 2.2mCalarAlto 40 165 R F 243 2010-08-06 2.2mCalarAlto 40 213 R F 253 2010-09-06 2.2mCalarAlto 50 164 R F 254a 2010-09-09 2.2mCalarAlto 60 184 R F theyfindtheeccentricitydetectionisnot significantandobtained a sinusoidal effect (semi-amplitude of 65m/s) in the measured e=0.052±0.031.Furthermore,theeccentricityisverycorrelated RVs which should be accounted for when deriving the stellar withtheoffsetbetweentheSOPHIEandFIESdata.Forallthese reflex velocity due to WASP-10b. Following the procedure of reasonsweassumeacircularorbit.Abetterconstraint ontheec- Maciejewskietal. (2011a), we computed the Lomb-Scargle peri- centricityrequiresfurtherRVobservations.Toestimatethestellar odogram of the RV residuals after removing the circular model reflexvelocityforacircularorbitwere-analysedtheRVobserva- givenabove.ThisisshowninFigure3aswellasthestellarrotation tionspresentedinChristianetal.(2009)usingthenewephemeris periodof11.91±0.05 ddeterminedbySmithetal.(2009)andthe giveninSection4.2. falsealarmprobabilityat2σ(95.4%)confidencelimit.Wefindno significantpeakatthestellarrotationperiod,andhencewecannot Using an MCMC routine we fitted 5 parameters of a keple- confirmthattheradialvelocitiesaremodulatedbyspotvariability. rian model for the host star reflex motion: orbital period, central Moreover,otherhoststarsthatshow1-2%photometricvariability transittime(T0),RVsemi-amplitude(K),centre-of-massvelocity havesmalleractivity induced jitterinthe measured RVsthan the (γ),andanoffsetbetweenSOPHIEandFIESdata.Weimposeda claimed65m/sforWASP-10.Forexample,HD189733bhasaRV GaussianpriortotheorbitalperiodandT0usingthenewephemeris jittersemi-amplitudeof15m/s(Boisseetal.2009)andCoRoT-7b giveninSection4.2andobtainedK = 506.4±7.4ms−1,γ = has a RV jittersemi-amplitude smallerthan 20m/s (Quelozetal. −11427.9±5.3ms−1,andoffset= 112.0±1.2ms−1.Thisso- 2009).Therefore,weconcludethattheextrajitterobservedinthe lutionhasmedianrmsof43m/swhichcompareswiththemedian RVs of WASP-10 does not appear to be periodic. Including one RV uncertainty of 20 m/s. Hence, theradial velocities haveextra jitterparameterforeachdata setintheradial velocityfitwefind jitterwhichcouldbeduetostellaractivity. that the FIESdata jitteris less than 13ms−1 while the SOPHIE Maciejewskietal.(2011a)arguedthatthestellaractivityhad TTVs inWASP-10binducedbystellaractivity? 7 Table3.Estimatedrednoisevaluesparametrisedasβcalculatedaccording 7 Prot toWinnetal.(2008) 6 2 sigma 5 Epoch betaind betasimu wer 4 Po 3 -103 1.0 1.0 -89 1.0 1.0 2 -88 1.0 1.0 1 0 1.0 1.0 0 20 1.0 1.3 10 Period (days) 21 1.5 1.7 26 1.5 2.0 36 1.4 1.4 Figure3.Lomb-ScargleperiodogramoftheRVresidualsaftersubtracting 56 1.0 1.0 acircularorbitforWASP-10b.Theverticallineshowstherotationperiod 123a 1.1 1.1 of11.91andthe horizontal line shows thefalse alarm probability at 2σ 123b 1.1 1.1 confidencelimit. 124 1.1 1.0 132 1.0 1.0 data jitter is 41 ± 17ms−1. The latter is much higher than the 133a 1.4 1.7 expected jitterfor SOPHIEsupporting the result of Husnooetal. 133b 1.7 1.8 (2012)aboutthepossibleoffsetofthetwofirstSOPHIEpointsrel- 134 1.3 1.3 143 1.5 1.8 ativeto thesubsequent observations. Thus, we experimented dis- 144 1.4 1.6 cardingthefirsttwoSOPHIEpointsfromthefitwhichresultedin 145 1.9 2.3 amuchlowerestimatedjitterfortheSOPHIEdata=13±18ms−1 147 2.4 4.3 compatiblewiththeexpectedvaluesforthisinstrument.Thiswas 158 1.0 1.0 adopted as our final solution for the RVs with the remaining pa- 242 1.5 1.8 rametersbeing:FIESjitter8±13ms−1,K = 540±11ms−1, 243 1.8 2.3 γ = −11461±13ms−1,andoffset= 84±18ms−1.Ourfinal 252 2.0 2.0 solutionforthestellarreflexvelocityisinagreementwiththevalue 253 1.7 2.0 presentedbyChristianetal.(2009).TheexpectedRVsignalofthe 254a 1.0 1.2 possiblecompanionof14m/sisbelowthemedianRVuncertainty, 254b 3.0 3.0 265 2.7 3.0 asalsopointedoutbyMaciejewskietal.(2011a). 274 1.8 2.2 285 1.3 1.5 3.2 Photometricerrors Anaccurateestimateofthephotometricerrorsisimportant toob- fitting analyses we fit all the light curves simultaneously. How- tainreliablesystemparameters.Webeginbyscalingtheerrorsof ever, here we also present the individual light curve fits, mostly each light curve so that the χ2 of the best fitting model is 1.0. red for comparison with previous results and call the latter model 1 Thisisespeciallyimportantinourcasebecausewearecombining andtheformermodel2.WeusedtheMandel&Agol(2002)tran- datafromdifferentinstrumentswhichwerereducedwithdifferent sitmodelparametrisedbythenormalisedseparationoftheplanet, pipelines. Exoplanettransitobservationsareoftenaffectedbycorrelated a/R∗, ratio of planet radius to star radius, Rp/R∗, orbital incli- red noise which must be taken intoaccount in erroranalyses. To nation, i, and the transit epoch, T0, of each light curve. A circu- larorbitwasadoptedasdiscussedabove.Foreachlightcurve,we estimatethetime-correlatednoisefactorβwefollowedtheproce- dureofWinnetal.(2008).Thisconsistsofcomparingthestandard alsoincludetwoextraparameters(FoutandTgrad)toaccountfor alinearnormalisation. Weused the quadratic limbdarkening co- deviationoftheresidualsofthebestfitsolutionfordifferenttime efficients(LDCs)deduced fromthe tablesof Howarth (2011) for bins.Foreachlightcurve,werescaledtheerrorsbytheestimated T = 4675K,logg= 4.4 and [M/H] = 0.03 (Christianetal. β which isgiven in Table3. Thisprocedure does not distinguish eff 2009).Mostofthelightcurvesareofinsufficientqualitytoallow betweensystematicnoiseandrealstellarvariability.Alldepartures forthefittingoftheLDCs.Tobeconsistentinthetreatmentofall fromthetransitshapeareconsideredasnoise.Forexample, when thelightcurveswefixedthelimbdarkeningcoefficientstothethe- wefitsimultaneously alllight curves(model 2), variations of the oreticalvalues.Althoughthismayleadtoaslightunderestimation transitshapewillalsobeconsideredasnoise.Therefore,thevalues of the errors, it was preferred toavoid spurious correlations. The ofβforthesimultaneousfitarehigherthanfortheindividualfits. valuesoftheLDCsusedforeachfilteraregiveninTable4. Iftheshapevariationsarerealthisprocedurewilloverestimatethe The MCMC chains were constructed following the errors. However, if they are indeed caused by systematic noise it Metropolis-Hastings algorithm. At each step of the chain willallowamoreaccurateerrorestimation. each parameter is perturbed by a jump function, which is a random numbersampled fromaGaussiandistributionwithmean 3.3 Transitmodelandfittingprocedure zero and standard deviation equal to the respective parameter uncertainty. The new parameter set is accepted with probability: To determine the planetary and orbital parameters, we fitted the P = min 1,exp −∆χ2 where ∆χ2 isthedifference inthe light curves of WASP-10b with a transit model coupled with an (cid:16) (cid:16) 2 (cid:17)(cid:17) Markov Chain Monte Carlo (MCMC) routine, a procedure simi- χ2 of subsequent parameters sets. Thejump functions are scaled lar to Barrosetal. (2011) for WASP-21b. In our previous transit by a common factor in order to ensure that the percentage of 8 S.C.C. Barroset al. theonetakeninthereddestfilter,andhencethatshouldbelessaf- Table4.Limbdarkeningcoefficientsusedforeachfilter. fectedbystellarvariability.Therefore,atotalof30×4+3=123 parameterswerefittedsimultaneously.WecomputedsevenMCMC filter linearcoefa quadraticcoefb chainseachof1500000pointsanddifferentinitialparameters. sloanz’ 0.391 0.210 I 0.421 0.192 R 0.602 0.133 rise 0.612 0.146 V 0.763 0.036 4 RESULTS 4.1 Model1 accepted steps lies between 20% and 30%. Further details about The individual light curve fittedparameters are given in Table 5. thefittingprocedurecanbefoundinBarrosetal.(2011).Forboth Transit times were converted to Barycentric Dynamical Time modelstheinitial20%ofeachMCMCchainthatcorrespondedto (TDB)usingtheIDLcodeskindlymadeavailablebyEastmanetal. theburn-inphasewerediscardedandtheremainingpartsmerged (2010). The weighted mean of the fitted parameters is: a/R∗ = into a master chain. The best fit parameter was estimated as the 11.910±0.024, Rp/R∗ = 0.15869±0.00019, and i = 88.67 medianofitsprobabilitydistributionandthe1σlimitsasthevalue degreesandthedispersionofinclinationisequalto0.13 degrees at which the integral of the distribution equals 0.341 from both asexpectedfromtheprior. sides of the median. To test convergence, the Gelman&Rubin Comparing the values of a/R∗ for all light curves we con- (1992) statistic was computed for each fitted parameter and was clude that individual deviations from the mean value of the nor- found to be less than 0.9% from unity for all the parameters in malisedseparation of theplanet aresmallerthan 2σ except for2 bothmodels. transits. These are epoch 20 which was observed in 2008-09-15 withFTNandepoch147(Dittmannetal.2010).Bothhavea/R∗ higherthanthemeana/R∗bymorethan3σ.Bothofthesetransits 3.3.1 Model1 showsignsofcorrelatednoiseeitherduetosystematicsorstellar variabilityandwillbediscussedinsection5.2. The existence of an additional planet or moon affects the tran- Asexpected,duetospotinducedbrightnessvariabilityofthe sit timings of the transiting planet, but can also affect the or- bital parameters of the system. Hence, in previous analyses of host star,theparameter Rp/R∗ showsawidespread. Twoof the lightcurves(243,254a)showasignificantlyhigher(3σ)valueof the transit times of WASP-10, the authors opted for fitting each Rp/R∗,whilethreelightcurves(0,133,158) show asignificantly light curve individually (Dittmannetal. 2010; Maciejewskietal. lowervalue.Therefore,weconfirmtransitdepthvariationsreported 2011a,b).However, in somecases they wereforced tofixthein- byotherauthorsandtheneedtoincludetheextradf parameterin clinationofthesystemduetothepoorqualityof individual light theglobal fit.Forcompleteness we alsotested amodel withfree curves.Here,wefollowthesameprocedureprimarilyforcompari- inclination and concluded that the inclination is constant within sonwithpreviousmethods.Theresultswillalsotestpossiblevari- theuncertainties.Hence,weconcludethattherearenosignificant ationsofthelightcurveshape.Thus,wefittedeachlightcurvein- shape variations apart from the transit depth, except for transits dividuallyusingtheMCMCmethodexplainedabovewith500000 epoch20and147. pointsperchain.Fivechainswerecombinedtoobtainthefinalre- Besides testing variations of transit shape, model 1 is also sult.Insteadoffixingtheinclinationwechoosetoimposeaprior useful for direct comparison with previous transit times. This al- oftheform: lowstobetterisolatethecausesforthedifferencesintheestimated (i−i0)2, (1) transittimes.Thefirstthreetransits(-103,-89,-88)werepreviously σ2 combinedtogetherwiththeWASPdatainasingleephemeris,and i hence,theycannotbedirectlycompared.Regardingtheotherprevi- whereweassume i0 = 88.66,σi = 0.12, takenfromthesimul- ouslypublishedtransittimes,ourresultsarewithin1σofprevious taneousfit(model2).Thisallowstoaccountfortheuncertaintyof resultsexceptforepochs36and147forwhichthedifferenceisre- theinclinationinthefit.Werefertothisasmodel1. spectively−2.0±0.94and0.67±0.47minutes.Thedisagreement canbeexplainedbyfailuretoaccountforthebaselinefunctionin thepreviousanalysisofthesetransits.Inourmodelalineartrendis 3.3.2 Model2 fittedsimultaneouslywiththetransitmodel.Whenwedonotfita Formodel2weassumethatapossibleadditionalplanethasnosig- trendwerecoverthepreviouspublishedresults.T0correlateswith nificanteffectonthetransitshapeduringthetimespanoftheobser- thebaselinefunctionbecausethelatteraffectsthesymmetryofthe vations.Therefore,weperformedasimultaneousMCMCfittoall lightcurve.Therefore,includingthebaselinefunctioniscrucialto 30lightcurves,fittinggloballya/R∗,Rp/R∗,andiandindividu- obtainreliableT0s allyT0,FoutandTgrad.Weremindthereaderthatdeviationsfrom Ingeneral,weobtainslightlylargererrors(∼1.6×)thanpre- aconstantshapeareconsideredtobeonlyduetosystematicnoise viousstudies.Foreachcasethisisduetooneormoreofthefol- orintrinsicstellarvariabilityandhencearetreatedasnoise.Specif- lowingdifferences fromtheprevious results:inclusion of abase- ically,deviationsoflimbdarkeningparametersfromthetabulated linefunctioninthefit,inclusionoftherednoisefactor,and/orthe valuesarealsoconsideredasnoise.However,sincethebrightness treatmentoftheinclination.Wearguethatfixingorartificiallycon- ofWASP-10hasbeenshowntovarysignificantlyduetostarspots straining the inclination will cause underestimation of the transit (Smithetal. 2009; Maciejewskietal. 2011a) a factor df was in- timeerrors. cluded to account for out-of-transit flux variability between each Despitethedifferencefrompreviousresultsbeingsmall,the lightcurve.Thisfactorhasbeensetarbitrarilytozerofor ourbest new transit times are in much better agreement with a linear quality light curve (Epoch0, Johnsonetal.(2009)) whichis also ephemeris. The χ2 of a linear fit to the transit times is 91.95 for TTVs inWASP-10binducedbystellaractivity? 9 7 2 sigma 1 0 36 56 123a123b124 132 133b133a134 143 144 145 147 158 242 243 253 254a 6 Prot minutes) 0 5 1 sigma Time dif (−1 4 wer −2 Po 5 3 4 12 Error ratio23 1 0 0.0 0.1 0.2 0.3 0.4 0 0 36 56 123a123b124 132 133b133a134 143 144 145 147 158 242 243 253 254a Frequency (cyc/Pb) Figure4.Lomb-Scargleperiodogramofresidualtransittimesfrommodel Figure5.Comparisonbetweenourresultsandpreviouslypublishedones. 1aftersubtractingalinearephemeris.Theverticaldash-dottedlineshows Weshowthetimedifferenceinthetoppanelandtheerrorratiointhebottom therotationperiodof11.91.ThedashedlinesshowtheTTVfrequencies panel. Model 1 comparison is shown as black stars and model 2 as red proposedbyMaciejewskietal.(2011a)andthehorizontal lineshowsthe circles. falsealarmprobabilityat1and2σconfidencelimit. fore,weconfirmthatourchosenzeropointisvalid.However,this 28degreesoffreedom,i.e.χ2 =3.28whichcompareswith13.8 zeropointmightnotcorrespondtotherealmaximumbrightnessof red WASP-10,andhencetheplanettostarratiocouldstillbeoveresti- foundbyMaciejewskietal.(2011a).However,thep-valueisstill low9.777×10−9andhencethenullhypothesiscanbediscarded mated. InFigure5weplotthedifferencebetweentheourtransittimes at5.7σ.Fourofthenewtransittimesdeviatemorethan3σfrom derivedwithmodel1(blackstars)andmodel2(reddots)andprevi- a linear ephemeris. These are epochs 20, 21, 143, and 147. Both ouslypublishedtransittimes.Wealsoshowtheratiooftransittime epoch21andepoch147showtrendsinthelightcurvethatcanbe errors.Thehighestdifferenceintimesisfoundfortransits36,132 affectingthetransittimes. and147.Forepochs36and147thisisduetothebaselinefunction TotestthemodelfortheTTVsproposedbyMaciejewskietal. not been accounted forin previous fits, asmentioned before. For (2011a) we fitted the sinusoidal model given by equation 1 of Maciejewskietal.(2011a)forfrequencies:fttv =0.183cyclP−1 epoch132thedifferenceiswithintheerrorsanditisduetoepoch and fttv = 0.175cyclP−1, where P is1the orbital period of 132beingapartialtransitandhenceverysensitivetothedetailsof 2 the model fit. The transit timesderived from model 1 and model WASP-10b.ThepreferredsolutionpresentedbyMaciejewskietal. (2011a)forfrequencyfttvhadap-valueequalto3.4×10−4which 2are consistent within 1σ.Thebiggest differences intheresults 1 fromthetwomodelsareinpartialtransits.Inmodel2,theglobal suggeststhatthemodelcouldberejectedatthe3.6σ level.How- shapeofthetransitdefinedbythecompletetransitsconstrainsthe ever,weremindthereaderthatthissinusoidalmodelisonly used shapeofpartialtransits,thisallowsabetterconstrainonthebase- to estimate the most probable TTV frequency to be used later in linefunctionthatcorrelateswiththetransittimes. the 3-body simulations. Therefore, the p-value test cannot be di- From the bottom panel of Figure 5 it is also clear that our rectly applied. Nevertheless, we found that the sinusoidal model estimatederrorsarehigher thanprevious ones. Thisisduetothe fittothenew transittimesisworse, asitresultsinamuchlower p-value4.1×10−7forbothfrequenciesfttvandfttv.Mostimpor- inclusionofrednoiseinouranalysis.Formodel2theuncertainties 1 2 ofT0sofpartialtransitsaresmallerthanformodel1becausethe tantly,forthenewresultsweobtain3.5timessmallerTTVsemi- amplitudes:Attv =0.48±0.18andAttv =0.53±0.14. shape of the transit in model 2 is almost fixed by the other light 1 2 curves.Incontrast,someT0uncertaintiesofcompletetransitsare In Figure 4 we show the Lomb-Scargle periodogram of higherbecausedifferencesfromthecommonshapeareconsidered the residual transit times of model 1 after subtracting a lin- red-noisewhichisaccountedforasexplainedinSection3.2.This ear ephemeris. Notice that the TTV frequencies proposed by isthe key difference between the models and implies that in this Maciejewskietal.(2011a)havedisappearedwhichagreeswiththe casemodel 2 willproduce much more reliableresults, aswill be muchloweramplitudesfoundforthesinusoidalmodelfit. discussedlater. Wecomputealinearephemerisusingthenewestimatedtransit timesformodel2: 4.2 Model2 The individual transit times and the out-of-transit flux variability Tt(TDB)=T(0)+EP, (2) derivedfromasimultaneousfitofthe30lightcurvesofWASP-10 where P = 3.09272932 ± 0.00000032 and T0 = aregiveninTable6. 2454664.038090±0.000048.Timeresiduals(orTTVs)fromthe We conclude that three light curves 242, 243, 254a linearephemerisaregiveninTable6andshowninFigure6.The (Maciejewskietal. 2011b) have a significantly lower df (at 3σ ) RISEdataareshowasstars,thenewFTNdataassquares,andthe thanthechosenzeropoint.Inournotationanegativedfmeansthe newresultsbasedonpreviouslypublishedlightcurvesascircles. star is fainter which corresponds to a larger transit depth. Some Theχ2ofthelinearephemerisis86for28degreesoffreedom light curves have a higher df, but this is non-significant. There- and the p-value is 5.7×10−8 so we conclude that the linear fit 10 S.C.C. Barrosetal. Table5.WASP-10MCMCfittedparametersformodel1(individualfit).TimesareinTDB. Number a/R∗ Rp/R∗ inc(degrees) T1−4(hours) T0(days) -103 12.02±0.21 0.1509±0.0034 88.67±0.12 2.198±0.043 4345.48630±0.00061 -89 12.02±0.17 0.1620±0.0030 88.65±0.12 2.219±0.033 4388.78602±0.00042 -88 11.13±1.06 0.1626±0.0046 88.67±0.12 2.411±0.245 4391.88193±0.00416 0 11.91±0.06 0.1575±0.0003 88.70±0.10 2.236±0.005 4664.03808±0.00005 20 12.35±0.13 0.1557±0.0011 88.64±0.12 2.143±0.017 4725.89175±0.00026 21 12.01±0.14 0.1570±0.0014 88.67±0.12 2.212±0.023 4728.98414±0.00038 26 11.15±0.41 0.1545±0.0021 88.72±0.11 2.392±0.097 4744.45206±0.00160 36 11.96±0.18 0.1641±0.0023 88.66±0.12 2.235±0.033 4775.37693±0.00051 56 11.93±0.15 0.1602±0.0017 88.65±0.12 2.233±0.027 4837.23105±0.00042 123 11.93±0.16 0.1572±0.0019 88.66±0.12 2.227±0.029 5044.44435±0.00044 123 11.90±0.16 0.1580±0.0026 88.68±0.12 2.238±0.031 5044.44407±0.00041 124 11.86±0.12 0.1559±0.0013 88.67±0.12 2.239±0.020 5047.53701±0.00033 132 11.67±0.51 0.1582±0.0057 88.66±0.12 2.281±0.116 5072.27832±0.00182 133 11.85±0.15 0.1598±0.0019 88.67±0.12 2.249±0.027 5075.37131±0.00041 133 12.11±0.21 0.1511±0.0024 88.67±0.12 2.181±0.038 5075.37145±0.00063 134 11.75±0.23 0.1623±0.0043 88.66±0.12 2.274±0.051 5078.46453±0.00080 143 11.76±0.14 0.1576±0.0024 88.68±0.11 2.265±0.028 5106.29690±0.00038 144 11.62±0.24 0.1629±0.0035 88.67±0.12 2.304±0.049 5109.39109±0.00080 145 11.50±0.26 0.1649±0.0034 88.67±0.12 2.334±0.055 5112.48544±0.00088 147 12.41±0.13 0.1601±0.0013 88.65±0.12 2.142±0.019 5118.66785±0.00030 158 12.00±0.15 0.1529±0.0018 88.66±0.12 2.206±0.026 5152.68920±0.00041 242 11.83±0.11 0.1608±0.0010 88.67±0.12 2.256±0.016 5412.47863±0.00024 243 11.81±0.09 0.1616±0.0009 88.68±0.12 2.264±0.013 5415.57161±0.00020 252 12.03±0.14 0.1550±0.0024 88.68±0.12 2.205±0.026 5443.40659±0.00035 253 11.80±0.09 0.1592±0.0009 88.68±0.11 2.260±0.013 5446.49881±0.00018 254 11.86±0.08 0.1610±0.0005 88.62±0.11 2.245±0.007 5449.59138±0.00007 254 11.86±0.12 0.1581±0.0014 88.66±0.12 2.245±0.020 5449.59120±0.00031 265 11.71±0.17 0.1614±0.0026 88.66±0.12 2.281±0.035 5483.61165±0.00054 274 11.92±0.10 0.1596±0.0008 88.67±0.12 2.236±0.014 5511.44560±0.00021 285 11.48±0.53 0.1573±0.0038 88.69±0.12 2.323±0.122 5545.46688±0.00205 4 3 ) 2 n i m ( 1 r a e n i 0 l C − O −1 −2 −3 −100 0 100 200 300 Epoch Figure6. Model2estimatedtransitresidualsofWASP-10baftersubtractingalinearephemeris.Thetransittimeswerederivedfromasimultaneousfitofall thelightcurves.Previouslypublishedfittedlightcurvesareshownascircles.ThenewRISEdataareshownasstarswhilethenewFTNdataassquares. isnot aagood fitat5.4σ confidence level.However, onlyepoch for27degreesoffreedomandthep-valueincreasesto0.00176and 143deviatessignificantly(at5.8σ)fromthelinearephemeris.This hencewecanonlyrejectthenullhypothesesatthe3.1σlevel. transitistheonlyoneobtainedwiththe2.0mRozhentelescopeand isapartialtransit.Ifwediscardepoch143theχ2 decreasesto53 For these new transit times derived with model 2 we also testedthesinusoidalmodelproposedbyMaciejewskietal.(2011a) forthetwoproposedfrequenciesasdoneintheprevioussectionfor

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.