ebook img

Transit probability of precessing circumstellar planets in binaries and exomoons PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transit probability of precessing circumstellar planets in binaries and exomoons

Mon.Not.R.Astron.Soc.000,1–??(2016) Printed17January2017 (MNLATEXstylefilev2.2) Transit probability of precessing circumstellar planets in binaries and exomoons David. V. Martin ObservatoiredeGene`ve,Universite´deGene`ve,51chemindesMaillettes,Sauverny1290,Switzerland,E-mail:[email protected] 7 1 Accepted.Received 0 2 ABSTRACT n a J Over two decades of exoplanetology have yielded thousands of discoveries, yet some types of systems are yet to be observed. Circumstellar planets around one star in a binary 6 1 have been found, but not for tight binaries ((cid:46) 5 AU). Additionally, extra-solar moons are yettobefound.Thispapermotivatesfindingbothtypesofthree-bodysystembycalculating ] analyticandnumericalprobabilitiesforalltransitconfigurations,accountingforanymutual P inclinationandorbitalprecession.Theprecessionandrelativethree-bodymotioncanincrease E the transit probability to as high as tens of per cent, and make it inherently time-dependent h. overaprecessionperiodasshortas5-10yr.Circumstellarplanetsinsuchtightbinariespresent p a tempting observational challenge: enhanced transit probabilities but with a quasi-periodic - signaturethatmaybedifficulttoidentify.Thismayhelpexplaintheirpresentnon-detection, o ormaybetheysimplydonotexist.Whilstthispaperconsidersbinariesofallorientations,itis r t demonstratedhoweclipsingbinariesfavourablybiasthetransitprobabilities,sometimestothe s pointofbeingguaranteed.Transitsofexomoonsexhibitasimilarbehaviourunderprecession, a [ butunfortunatelyonlyhaveonestartotransitratherthantwo. 1 Keywords: binaries:close,eclipsing–astrometryandcelestialmechanics:celestialmechan- v ics,eclipses–planetsandsatellites:detection,dynamicalevolutionandstability,fundamental 9 parameters–methods:analytical 2 1 4 0 . 1 INTRODUCTION does have theoretical merit (Kraus et al. 2016). Each star is ex- 1 pected to have its own circumstellar disc, but if the two stars are 0 Weknowroughlyeverystarhostsatleastoneplanet(Petiguraet close enough this will be tidally truncated to roughly 15-35% of 7 al.2013),andthat∼50%ofstarsexistinbinariesorhigher-order 1 thebinaryseparation(Artymowicz&Lubow1994).Binariescloser multiples (Duquennoy & Mayor 1991). It is with natural inquisi- : than∼10−30AUmayeventruncatethediscinteriortoitssnow v tionthatwepondertheexistenceofplanetsinmulti-starsystems, line, suggesting that giant planet formation is inhibited (Kraus et i aconceptdatingbackasfarasFlammarion(1874).Forveryclose X binaries((cid:46)0.5AU)planetsareknownonwiderorbitsaroundboth al. 2012),althoughonemustrecallthatthepreviouslymentioned KOI-12575.3AUbinaryhostsa1.45M planet. r stars-acircumbinaryorp-typeplanet(e.g.Kepler-16,Doyleetal. Jup a However,despitethepaucityofcircumstellarplanetsintighter 2011).Inthispaperweconsiderthealternative:acircumstellaror binaries,onemustrememberthatthehistoryofexoplanetsisoneof s-typeplanetthatorbitsjustoneofthetwostarsinawiderbinary. surprises.Thediscoveryofevenasinglecircumstellarplanetorbit- Observationshaveuncoveredaninfluenceofthebinaryseparation; stellar companions closer than (cid:46) 100 AU reduce the occurrence ingwithinaverytightbinarywouldalreadyposeintriguingtheo- reticalquestions,whilstasampleofmanywouldrevolutioniseour rate of planets whilst planets in wider binaries seemingly have a understanding of the robustness of planet formation. One should distributionsimilartothataroundsinglestars(Eggenbergeretal. therefore be motivated, rather than deterred, to find such plan- 2007).Thetightestbinaryknowntohostacircumstellarplanetis ets. The recent paper Oshagh et al. (2016) followed this philos- the5.3AUKOI-1257(Santerneetal.2014)1,andnocircumstellar ophy, assessing the detectability of circumstellar planets orbiting planetsareknownineclipsingbinaries. close eclipsing binaries using a combination of radial velocities Theobservedpaucityofcircumstellarplanetsintightbinaries andeclipsetimingvariations.Thisalleviatesdegeneraciesbetween theplanetmassandsemi-majoraxisthatexistwhenusingsolely 1 AlthoughonemayalsoconsidertheborderlinecaseofWASP-81.Itcon- eclipsetimingvariations. tainsahot-JupiterorbitingaSolarmassstar,withanouter2.4AUBrown TheworkofOshaghetal.(2016)hasrootsinaconceptually Dwarfcompanionwithaminimummassof56.6MJup(Triaudetal.2016). similar three-body system: extra-solar moons. Methods to detect (cid:13)c 2016RAS 2 Martin 0.5 0.25 host (cid:49) (cid:54) n i a aout s 0 in (cid:47) / I satellite (cid:54) −0.25 companion −0.5 Figure1.Geometryoftheinnerrestrictedthree-bodyproblem.Forcircum- −0.5 −0.25 0 0.25 0.5 (cid:54)I/(cid:47) cos(cid:54)(cid:49) stellarplanetsinbinariestheredmasslesssatelliteistheplanetandthetwo bluebodiesarestars.Inthisimagetheplanetisarbitrarilyorbitingthesec- Figure2.N-bodysimulationsover5,000yearsofamasslesscircumstellar obnludearhyossttaisr.tFhoerpelaxnoemtoaonndsththeelirgehdtmblauseslceosmspsaatneilolinteisisthtehestmaro.on,thedark pinlaitniaelt∆aIn.dStywstoemSosldaervsotiadrsofwliatrhgeaiKno=za0i-.L1idAoUv,cayocultes=ar2etAhUecaenndtradlicffiercrelenst drawnwithsoldlines,where∆I0rangesfrom10◦(red)to40◦(purple)in stepsof10◦.SystemswithKozai-Lidovcycleshaveamorecomplicated themhavefocusedonthetransittiminganddurationvariationsthey evolutionandaredrawnwithdashedlinesfor∆I0rangingfrom50◦(dark induceonatransitingexoplanet(Sartoretti&Schneider1999;Kip- green)to80◦(orange).Inallsimulations∆Ω0=0◦. pingetal.2009)andtransitsofthemoonsthemselves(Sartoretti& Schneider1999).However,despitesearchattemptsusingthehigh precision and lengthy continuous photometry of Kepler (Kipping theouterorbitcontains100%oftheangularmomentum.Thetran- etal.2015),detectionshavenotyetbeenforthcoming.IntheSolar sitprobabilitiesderivedinthispaperwouldalsoworkforamore Systemnomoonsareknownaroundplanetslessthan1AUfrom massivesatelliteaslongastheinnerorbit’sangularmomentumre- theSun,butanotherlessonfromtwodecadesofexoplanetsurveys mainedmuchlessthantheouter.Theorientationofeachorbitwith hasbeentoavoidneighbourhood-inducedpreconceptions. respecttotheobserverischaracterisedbytheinclinationIandthe This paper is an analytic and numerical study of the transit longitudeoftheascendingnodeΩ.Theorbitaldynamicsbetween probabilityofbothcircumstellarplanetsinbinariesandexomoons thetwoorbitsaredictatedbytherelativeorientation,whichwede- in planetary systems. The mathematics and geometry derived are fineusingthemutualinclination, doneinfullgeneralitytobeequallyapplicabletobothcases.Ad- vancesaremadeonexistingstudiesbyincludingNewtonianthree- bodyorbitalprecessionoftheplanet/moonandconsideringallmu- cos∆I=cos∆ΩsinIinsinIout+cosIincosIout, (1) tual inclinations. This is shown to both increase the transit prob- where∆Ω = Ω −Ω .Transitobservationsareonlysensitiveto in out abilityandmakeittime-dependent,inawaysimilartocircumbi- ∆ΩandnottheindividualvaluesofΩsowearbitrarilysetΩ =0. out naryplanets(Schneider1994;Martin&Triaud2014,2015;Martin Bothorbitsareassumedtobecircular. 2017).Theworkisapplicabletoallbinaries,notjustthosewhich Theinnerorbitfeelsgravitationalperturbationsfromtheouter eclipse. orbitandconsequentlyevolveswithtime,whilsttheouterorbitre- ThegeometryandorbitaldynamicsareintroducedinSect.2. mains constant. In Fig. 2 we illustrate the evolution of the orien- Next,inSect.3wederivetheprobabilityoftransitingthehostbody tation of the inner orbit with respect to the outer, using N-body thatthesatellite(planetormoon)orbits,beforeinSect.4deriving simulationsofa0.1AUplanetorbitingonestarina2AUbinary theprobabilityoftransitingtheother,companionbody.Finallyin oftwoSolarstars,withdifferentmutualinclinations.Itisseenthat Sect.5N-bodysimulationsareruntotestavarietyofexamplesand for∆I(cid:46)40◦thereisaprecessionof∆Ωoverafull360◦,whilst∆I illustratetheobservationalsignature,beforeconcluding. remainsconstant(theevolutiontracesoutacircleinthe∆Icos∆Ω vs∆Isin∆Ωdomain).If∆Iisinitiallygreaterthan(cid:38)40◦thenthe precessionbehaviourisdifferentundertheinfluenceoftheKozai- 2 PROBLEMSETUP Lidoveffect(Lidov1961;Kozai1962),inwhichcase∆Ibeginsto varyalongwithe ,evenforinitiallycircularorbits.Constancyof Weconsidertheinnerrestrictedthree-bodyproblem,illustratedin in ∆I isfundamentalinthispapersowearerestrictedto∆I (cid:46) 40◦. Fig.1.Namely,thereisamasslesssatellite(thecircumstellarplanet Assumingthis,theobservationalconsequenceofthisprecessionis inabinaryortheexomoon)onacloseorbitofperiodT andsemi- in thatI oscillatesaroundtheconstantI , majoraxisa aroundahostbody(fortheexomoonthehostisthe in out in planet)ofmass M andradiusR .Onawiderorbit(T ,a ) host host out out (cid:32) (cid:33) isanoutercompanion(fortheexomoonthecompanionisthestar) 2πt I (t)=∆Icos +I , (2) with Mcomp andRcomp.Itisan“innerrestricted”problembecause in Tprec out (cid:13)c 2016RAS,MNRAS000,1–?? Circumstellarplanetsinbinariesandexomoons 3 (a)FixedMcomp=1M(cid:12),variableMhost (a) 10000 Tout = 2000 d celestial! sphere ) 1000 Tout = 1000 d r (y Tout = 500 d c 100 e pr Tout = 200 d T 10 Tout = 100 d 2θA 1 2ΔI 0 0.2 0.4 0.6 0.8 1 M (M ) host Sun M (M ) host Sun 2ζ (b)FixedMhost=1M(cid:12),variableMcomp 2θ A 10000 Tout = 2000 d T = 1000 d out ) 1000 r Tout = 500 d y ( ec 100 Tout = 200 d (b) r p T T = 100 d 10 out 1 0 0.2 0.4 0.6 0.8 1 M (M ) comp Sun M (M ) comp Sun (c) Figure3.PrecessionperiodcalculatedbyEq.3whereinallsimulations a in Tin = 10dand∆I = 30◦,whilstTout = 100d(black),200d(red),500 ζ ΔI d (green), 1000 d (magenta) and 2000 d (blue). In (a) Mcomp is fixed at 1M(cid:12)andMhostvariesbetween0(likeforanexomoon)and1M(cid:12)(likefor Rcomp acircumstellarplanetinabinary).In(b)insteadMhostisfixedat1M(cid:12)and Mcompvariesbetween0(likeforasinglestarplanetwithanouterplanetary aout companion)and1M(cid:12)(likeforacircumstellarplanetinabinary). Figure4.(a)Side-onviewofasatellite(red)orbitingitshost(darkblue) whichisinturninorbitaroundthecompanionbody(lightblue).Thesatel- liteorbitvariesduringprecession,andisillustratedinthetwoextremeori- entations.Darkandlightbluehatchedregionsprojectedontothecelestial spherecorrespondtoobserverswhowillseetransitsonthehostandcom- panionbody,respectively.(b)Front-onviewofanexampletransitonthe where t is time, Tprec is the precession period and the semi- companion.(c)Zoomedside-onviewusedinderivingEq.7. amplitudeofoscillation∆Iisconstant.Equation2assumesΩ =0 in att=0. TherateofprecessionwascalculatedbyMardling(2010)to 3 PROBABILITYTOTRANSITTHEHOST be Foracircumprimary/circumsecondaryplanetthehostbodybeing 4M +M T2 1 orbited is a star. For an exomoon, however, the host body is the T = host comp out , (3) planetandthephotometricsignalofamoon-planettransitislikely prec 3 M T cos∆I comp in beyond present detection capabilities, but Cabrera & Schneider (2007) remain optimistic. Regardless, the geometry, mathematics wherebothorbitsareassumedtobecircular.InFig.3weevaluate andnotationusedareapplicabletobothtypesofsystem. Eq.3forTin = 10d,Tout between100and2000d,∆I = 30◦ and Thechanceofthesatelliteontheinnerorbittransitingitshost variousMhostandMcompbetween0and1M(cid:12).InFig.3aweseethat issolelydictatedbytheirrelativeorientation;themovementofthe thereisonlyaweakdependenceonMhost,andthatprecessionofan hostintheouterorbitisirrelevant.Thetransitcriterionis exomoonisslightlyfasterthanofacircumstellarplanetinabinary. ThiscontrastswithFig.3bwhereTprecbecomesverylargeasMcomp (cid:12)(cid:12) π(cid:12)(cid:12) (cid:32)R (cid:33) asitgoestozero.IntheexamplesshownTprecmaybeasshortas5- (cid:12)(cid:12)(cid:12)Iin− 2(cid:12)(cid:12)(cid:12)<θ=sin−1 ahost . (4) 10yr,whichisroughlycomparabletotheoriginalKeplermission’s in lifetime.ThenodalprecessionoftheMoonaroundtheEarthtakes Ifthisorientationwereconstantthentheprobabilityoftransiting 18yr,where∆I=5.14◦. the host body would be simply akin to that of a planet around a (cid:13)c 2016RAS,MNRAS000,1–?? 4 Martin singlestar: P = R /a .However,inclosebinariesonemust smallerthanthatforthehostbody.Theangleζwhichcharacterises host host in accountforvariationofthesatellite’sorbitalorientation.InFig.4a thisregionisdefinedmoreclearlyinFig.4candis we illustrate a host body (dark blue) and companion body (light blue)movingbackandforthalongthesolidlineconnectingthem, (cid:32)a sin∆I+R (cid:33) with dotted circles indicating their positions at the opposite edge ζ =tan−1 ain −a cosc∆omIp . (6) of their orbit. The red satellite orbits its host body with two ori- out in entations drawn, corresponding to the extremes of its inclination, Like in Sect. 3 one may integrate over this angle to calculate the I = I ±∆I,whichitreachesduringitsprecessionperiod.The probabilityoftransitability: in out satelliteorbitsubtendsanangleof2∆Ionthecelestialsphere.This ∆I,inadditiontothesizeofthehostbodyrelativetothesatellite, (cid:90) π/2 θ=sin−1(Rhost/ain),definestheregionofobserversonthecelestial Pcomp= sinIoutdIout, sphere(darkbluehatchedregion)thatwillseeatransitonthehost π/2(cid:34)−ζ (cid:32)a sin∆I+R (cid:33)(cid:35) atsomepointduringtheprecessionperiod. =sin tan−1 in comp , (7) Tocalculatetheprobabilitythatthesatellitewilltransititshost aout−aincos∆I atsomeunspecifiedpointintimeistocalculatetheprobabilityof ≈ ainsin∆I+Rcomp. anobserverbeingwithinthedarkbluehatchedregioninFig.4a. a −a cos∆I out in Weassumethatthethreebodysystemisrandomlyorientedonthe Aswasseenfortransitsonthehoststar,amutualinclination celestialsphere,whichischaracterisedbyauniformdistributionof increases the transit probability. There is also the expected result cosI ,andhenceaprobabilitydensityfunctionofsinI .Wethen out out thatcompanionbodiesthatarelargerandcloseraremorelikelyto integratesinI overtheangle∆I+θ: out betransited,althoughthecompanioncannotbetoocloseotherwise (cid:90) π/2 the system will be unstable (e.g. Holman & Wiegert 1999). The Phost= sinIoutdIout, efficiency of transitability, i.e. the chance that overlapping orbits π/2(cid:34)−∆I−θ (cid:32) (cid:33)(cid:35) (5) lead to transits within a given time, is a function of the various R =sin ∆I+sin−1 host . orbital parameters and is not trivial to calculate, as was seen in a in the case of circumbinary planets (Martin & Triaud 2015; Martin The integral is just done over a quarter of the projected celestial 2017).InSartoretti&Schneider(1999)thisiscalledthe“orbital sphere(π/2)butsymmetrypermitsthis.Alarge∆IincreasesP probability”andequationsarederivedinthecaseofexomoonsbut host asthesatellitesubtendsagreaterrangeofanglesonthesky.Likein withouttheinclusionoforbitalprecession.Inthispresentpaperwe thesinglestarcase,orbitingclosetoalargehostbodyincreasesthe usenumericalmethodsforthis. likelihood.For∆Ibeyondafewdegreestransitswillnotbecontin- ualbutratherwillcomeandgoovertimeasI changes.However, in ifthesatelliteisevertotransitthenitisguaranteedtodosowithin 5 ANALYSISANDAPPLICATIONS asingleprecessionperiod. 5.1 Comparisonwithnumericalsimulations Asimpletestisruntoshowthevalidityoftheanalyticwork.The percentageofsystemstransitingover35yearsiscalculatednumer- 4 PROBABILITYTOTRANSITTHECOMPANION icallyasaMonteCarloexperimentof2000N-bodysimulations3 Ifbothorbitswereperfectlyalignedwiththeobserver(I =I = where the three-body orientation with respect to the observer is out in 90◦)thenthesatellitewouldtriviallytransitboththehostandcom- randomised isotropically. A system is recorded to have a transit panion.However,transitsonthecompanionarestillpossibleforin- if the projected sky position of the satellite intersects the host or clinedcases.InFig.4bisanexample,showingafront-onobserver companion disc at least once. The detectability of the transit sig- perspective of a red satellite orbiting the dark blue host, transit- nal,i.e.itsdepth,durationandfrequency,isnotaccountedforin ingthelightbluecompanion.However,unlikeinSect.3wherethe thetransitprobability.However,takingthesatelliteasapointbody host body is stationary with respect to the satellite, the compan- is equivalent to demanding at least half of the satellite’s disc in- ion is moving. This means that overlapping orbits of the satellite tersectsthehost/companiondisc,andhencehighlygrazingtransits and companion, accounting for its radius, make transits possible areexcluded.Theexpectedtimingoftransitsisdiscussedbrieflyin butnotguaranteedoneverypassing.Wecallsuchaconfiguration Sect.5.4. “transitability”aswasdoneinMartin&Triaud(2014)todescribe ThenumericalresultsarethencomparedwithEqs.5and 7. theconceptuallysimilarcaseofinclinedcircumbinaryplanets.Sar- Twoexamplesystemsaretested:forbothT = 11d,T = 100 in out toretti&Schneider(1999)callthisthe“geometricprobability.” d,∆I = 30◦ andthecompanionbodyisaSun.Inonesystemthe Toworkoutiftransitsarepossiblewecalculatethelimitsof hostbodyisalsoaSun,andintheotheritisaJupiter.Owingto transitability,correspondingtowhentheprojectedseparationofthe Kepler’s laws, a = 0.0968 AU for the circumstellar planet and in starsisminimisedlikeinFig.4b.Thesatellite,whoseorbitistiedto a = 0.0095 AU for the exomoon4. The angle between the two in itshost,must“reach”overtothecompaniontotransit.Thisreach ismaximisedwhenΩ =02.DuringtheprecessionperiodΩ =0 in in (andhence∆Ω=0too)attheextremitiesI =I ±∆I. 3 A4th-orderRunge-Kuttawitha30minutetimestep,whichisthestan- in out dardKeplerobservingcadenceandconservesenergytowithin∼10−12%. InFig.4atheregionoftransitabilityonthecompanionbody All Monte Carlo simulations run in this paper are done with 2000 ran- isdenotedasalightbluehatchedregion.Generallythisregionis domisedsystems. 4 Anexomoonat0.0968AUwithallotherparameterskeptthesamewould beunstablebecausethehillsphereofaJupiter-massplanetismuchsmaller 2 Ωinrotatestheprojectedsatelliteorbitcounter-clockwise. thanaSolar-massstar. (cid:13)c 2016RAS,MNRAS000,1–?? Circumstellarplanetsinbinariesandexomoons 5 60 Circumprimaryplanetsimulations g n g30 Tout (days) ti50 transits on host in 100 si circumstellar planet it25 200 an40 exomoon ns 500 r a t r20 1000 s 30 t m transits on companion s e m15 syst20 ceixrocmuomosntellar planet yste10 % of 10 of s 5 0 % 0 5 10 15 20 25 30 35 0 time (yr) 0 2 4 6 8 10 time (yr) Figure5.ExampleN-bodysimulatedtransitpercentagescomparedwith analytictheory,foracircumstellarplanetinabinary(Tin=11d,Tout=100 Figure6.N-bodysimulationsoftransitsonthehoststar(solidlines)and d,∆I = 30◦,twoSolarstars)andanexomoon(sameparametersbutthe companionstar(dashedlines)foracircumprimaryplanetinabinarywith hostisaJupiter).Horizontaldashedlinesaretheanalyticequations(Eq.5, Solarandhalf-Solarstars.InallsimulationsTin=11d(planetperiod)and upper and Eq. 7, lower) and solid lines are N-body simulations. For the ∆I = 15◦.DifferentcoloursindicatedifferentbinaryperiodsTout:100d binarycasedarkandlightredaretransitsonthehostandcompanionbodies, (red),200d(green),500d(magenta)and1000d(blue). respectively,andforexomoonsdarkandlightbluearehostandcompanion transits.Thetwoblackverticaldashedlinesindicatetheprecessionperiod forthebinarycase(7.67yr)andexomoon(3.83yr).Theanalyticequation fortransitsonthehostcoincidentallygivesalmostanidenticalvalueinboth planetisarbitrarilychosentoorbittheprimarystarandhasafixed cases,andhencethedarkblueanddarkredhorizontaldashedlinesoverlap. T =11dandmutualinclination∆I=15◦. in Transits on the host star that the planet orbits initially have a probability of R /a , which then increases over time due to host in orbits,∆Ω,israndomisedbetween0and360◦,meaningthateach precession.ForTout =100dacompleteprecessionperiodiscom- pletedwithinthe10yearobservingwindow.Attheotherextreme, phase of the precession period is uniformly sampled. The results forT = 1000dtheprecessionperiodissolongthatthetransit areshowninFig.5. out probabilitybarelyincreasesover10years.Ultimately,accordingto In all four cases (i.e. the binary and exomoon cases and for Eq.5thetransitprobabilitywillreachthesamevalueregardlessof hostandcompaniontransits)theanalytictheoryaccuratelymatches T , but practically, accounting for orbital precession is only im- theamountoftransitsafterobservingformanyyears.Aspredicted, out portantforbinariesofacoupleofhundreddaysperiod.Transitson thepercentageofsystemstransitingthehostbodyplateausinless the companion star are systematically less likely than transits on thanaprecessionperiod.Thepercentageofsystemstransitingthe host star almost instantaneously (within one T = 11 d) rises to thehoststar,andsimilarlytendtobefavouredintighterbinaries. in R /a ,sincethisistheprobabilityforastaticorbitsanspreces- host in sion.Coincidentallythisratioisalmostthesameinthetwosystems tested,despiteR anda beingsignificantlydifferentinthetwo 5.2.2 Effectoftheinnerperiod host in cases, and hence the dark red and dark blue curves both start at WhilstincreasingT wasshowntoalwaysdecreasetransitproba- nearlythesamepercentageatt = 0andalsoplateauatnearlythe out bilitiesonbothstars,forT itislessstraightforward.Equation5 samepercentageaccordingtoEq.5.Whatisdifferentbetweenthe in predictsP todecreaseasT increases,whilstconverselyEq.7 host in two cases is the precession period, with the exomoon precessing predictsahigherP forlongerT .Thesepredictionsaretruein comp in faster. The percentage of systems with transits on the companion thelongterm,butasweknow,therateofprecessioniskeyintran- body rises slower and continues to do so after the precession pe- sitsoccurringwithinanobservabletimeframe,andT ∝ 1/T . prec in riod, as expected, and is significantly higher for the binary case N-bodysimulationsareshowninFig.7foracircumprimaryplanet (lightred)thantheexomooncase(lightblue).Thislatterresultis withdifferentT andafixedT =100d.Fortransitsonthehost in out becausea ismuchlargerinthebinarycase(0.0968AU)compared in star we see there is a balance: short-period planets are geometri- totheexomoon(0.0095AU). callyclosertothestar(that’sgood)butprecessslower(that’sbad). A short observing time (< 1 year) favours short T but after 10 in years the 10 day planet transits the most. Only the 20 day planet 5.2 Circumstellarplanetsinbinaries completesafullprecessionperiod.Fortransitsonthecompanion 5.2.1 Effectoftheouterperiod staritissimpler:longerperiodplanetsaremorelikelytotransit,as theyarenotonlygeometricallyfavourablebutprecessfaster. Severaltestsareruntocalculatethetime-dependenttransitprob- abilityofcircumstellarplanetsinbinaries.Numericalsimulations are run over 10 years to cover the existing Kepler mission (four 5.2.3 Effectofthemutualinclination years)andwhatmaybeconsideredreasonableforfuturemissions. First,inFig.6wetesttheeffectofthebinaryperiod,T ,between Akeyresultofthisworkistheimportanceof∆I.InFig.8therela- out 100 and 1000 d. The binary is constructed with a Solar primary tionshipbetweenthetransitprobabilityand∆I isshownforan11 andhalf-Solarsecondary(intermsofbothmassandradius).The daycircumprimaryplanetina100daybinarywith∆I between0 (cid:13)c 2016RAS,MNRAS000,1–?? 6 Martin Circumprimaryplanetsimulations Exomoonsimulations 35 g g30 n n i30 i t t nsi25 nsi25 Tout (days) a a 100 r r20 t20 t 200 ms Tin (day1s) 10 ms 15 500 e15 e 1000 t 3 20 t s s10 y10 5 y s s of 5 of 5 % % 0 0 0 2 4 6 8 10 0 2 4 6 8 10 time (yr) time (yr) Figure7.N-bodysimulationsoftransitsonthehoststar(solidlines)and Figure9.N-bodysimulationsoftransitsonthehostplanet(solidlines)and companionstar(dashedlines)foracircumprimaryplanetinabinarywith companionstar(dashedlines)foranexomoonaroundaJupiterplanetthat Solarandhalf-Solarstars.InallsimulationsTout = 100d(binaryperiod) isinturnorbitingaSolarstar.InallsimulationsTin =11d(moonperiod) and∆I = 15◦.DifferentcoloursindicatedifferentplanetperiodsTin:1d and∆I =15◦.DifferentcoloursindicatedifferentplanetperiodsTout:100 (black),3d(red),5d(green),10d(magenta)and20d(blue). d(red),200d(green),500d(magenta)and1000d(blue). Circumprimaryplanetsimulations star)aresignificantlyreducedintheexomooncase.Thisisbecause g70 ΔI (deg) for the same Tin = 11 d period ain is much smaller for an exo- n moon (0.0095 AU) than for the circumsecondary planet (0.0968 i60 40 t AU).Thisreducedprobabilityonthestarisunfortunatesincethose i 20 ns50 10 aretheeventslikelytobeactuallyobservable. a r 5 t40 s 0 5.4 Observationalsignature m e30 t TwoexamplesfromthecircumprimarysimulationsinFig.6with ys20 ∆I=15◦,Tin=11dandTout=100dareusedtoillustratethetim- s ingoftransitsonthehostandcompanionstar,theresultsofwhich f o10 areshowninFig.10a.Bothofthesebinarieseclipse.Thevariation % of Iin is shown to follow Eq. 2, except for tiny additional short- 0 periodfluctuations.Consecutivesequencesof∼ 18transitsonthe 0 2 4 6 8 10 time (yr) hostoccurwhenI isnear90◦.Thistransientsignalmaybemissed in ifsearchalgorithmsarenottunedtoanalysethelightcurveinseg- Figure8.N-bodysimulationsoftransitsonthehoststar(solidlines)and ments.Transitsonthecompanionarerarer,sparselydistributedand companionstar(dashedlines)foracircumprimaryplanetinabinarywith canoccuratatanyI .Inbothexamplesthereareonlythreetransits in Solarandhalf-Solarstars.InallsimulationsTin=11d(planetperiod)and onthecompanion,whichwastypicalofthe2000simulationsrun; Tout = 100d(binaryperiod).Differentcoloursindicatedifferentmutual planetsthattransitedthecompaniondidsoanaverageof3.8times. inclinations∆I:40◦ (black),20◦ (red),10◦ (green),5◦ (magenta)and0◦ Thesewillbehardertodetectandcharacterise,inasimilarwayto (blue). inclinedcircumbinaryplanets(Martin&Triaud2015;Kostovetal. 2014;Martin2017). WenextshowinFig.10bthecomparableresultsfortwoofthe and40◦.Fortransitsonthehoststartheinitialvalueisthesameir- exomoonsimulationsfromFig.9,whereagainweuse∆I = 15◦, respectivelyof∆I,butthehigherthe∆Ithehigherthetransitprob- T = 11dandT = 100d.TheamplitudeofthevariationofI abilityisovertime.Evenamere5◦ mutualinclinationcandouble in out in is the same as for the circumprimary planets in Fig. 10a, but the the transit probability on the host star within just four years. For precessionperiodisslightlyshorterasexpectedfromEq.3.Tran- coplanarplanetsthetransitprobabilityisstaticandminimiseddue sitsonthehostplanetagainoccurinconsecutiveblockswhenthe tothelackofprecession.Fortransitsonthecompanionstarwesee moon’sinclinationreaches90◦,butashasbeenstressedthroughout asimilartrendof∆Iaidingtransitprobabilities. thispaperthisislikelynotanobservablephenomenon.Transitson thecompanionstar,however,occuratanyI andinthesetwoex- in amplesinFig.10bareverynumerous:14inthetopsimulationand 5.3 Exomoons 37inthebottom,thelattercorrespondingtoonemoontransitevery In Fig. 9 we run similar simulations to Fig. 6 but with a Jupiter orbitofitsplanet.ThesetwoexamplesinFig.10barerepresenta- hostand Solarcompanion.Transitson thehostbody(the planet) tiveofthe2000simulationsrun,asmoonsthatwereobservedto occurataslightlyfasterratethanthecircumprimaryplanetcase, transitthecompanionstaronaveragedidso21times,muchmore owing to a shorter T , but transits on the companion body (the thantheaverageof3.8inthecircumprimaryexample.Thediffer- prec (cid:13)c 2016RAS,MNRAS000,1–?? Circumstellarplanetsinbinariesandexomoons 7 110 30 100 25 90 20 t g) 80 un15 de 70 Co10 ( 110 n 5 Ii100 0 90 70 80 90 100 110 I (deg) 80 out 700 2 4 6 8 10 (a)HistogramofIoutforalltransitingcircumprimaryplanetsfromthesimu- time ((yyera)rs) lationsinFig.6with∆I =15◦,Tin =11dandTout =100d.Thedarkblue histogramisforplanetstransitingthehoststarandthelightbluehistogram (a) Time variation of Iin for two example circumprimary planets from the isfortransitsonthecompanionstar.Thehistogrambinwidthsare1◦.When simulationsinFig.6with∆I = 15◦,Tin = 11dandTout = 100d,where Iout≈90◦theplanetisorbitinginaneclipsingbinary. thebinaryisknowntoeclipse.Transitsonthehostandcompanionstarare denotedbydarkblueandlightbluediamonds,respectively.Thedarkblue 30 diamondslookmergedtogetherbecauseonthehostthereareconcentrated 25 batchesof∼18transitsseparatedbyonlyTinwheneverIin≈90◦. 110 20 t n 100 u15 o C 10 90 5 ) 80 g 0 e 70 80 90 100 110 d 70 ( 110 I (deg) n out i I 100 (b)Thesameas(a)butforexomoonsimulationsfromFig.9with∆I=15◦, 90 Tin = 11dandTout = 100d.WhenIout ≈ 90◦ theexomoonisorbitinga transitingplanet. 80 Figure11. 70 0 2 4 6 8 10 time (yr) (b)Thesameas(a)butfortwoexomoonsimulationstakenfromFig.9with ∆I =15◦,Tin =11dandTout =100d.Inbothexamplestheplanethosting the moon is known to transit the star. Like in (a) transits on the host (the planet)comeinlargeconsecutivebuncheswhenIin ≈90◦buttransitsonthe companion(thestar)aremuchmorenumerousthanin(a),owingtoasmaller almostguaranteedtobewithinbothofthehatchedregionsdesig- ainforthesameTin. nating transits on the host and companion, and hence we have a favourablebias. Figure10. Tofurtherdemonstratethis,wetaketransitingcircumprimary planetsfromthesimulationsinFig.6,with∆I = 15◦,T = 100 out dandT = 11d,andplotahistogramof I ,showninFig.11a in out enceisthatfortheexomoona =0.0095is∼10timessmallerthan forbothhost(darkblue)andcompaniontransits(lightblue).For in forthecircumprimaryplanetwherea =0.0968AU,simplydueto transitsonbothbodiesthereisseentobearangeofI forwhich in out Kepler’slaws.Wethereforehaveaninterestingtrade-off:widening transits are permissible, centred around 90◦. This range is much thesatellite’sorbitincreasesincreasesitschanceoftransitabilityon largerfortransitsonthehostthanthecompanion.Withinthisrange thecompanion,andhencethelong-termtransitprobabilityaccord- thehistogramappearsroughlyflat,butmorethoroughsimulations ingtoEq.7,butdoingsodecreasestheefficiencyoftransitability, wouldbeneededtoprovethis. makingthesatellitehardertodetect. Inthe2000simulationstherewere618planetstransitingthe hoststarand95%ofthemdidsoonnon-eclipsingbinaries.Thisis duetothewiderangeofI permittingtransitsandthesimplefact 5.5 Advantageofeclipsingbinariesandexomoonsaround out thatmostbinariesdonoteclipse.Thisnumberisreducedto67% transitingplanets fortransitsonthecompanion.Whilsteclipsingbinariestherefore Theresultsthroughoutthispaperarecalculatedassumingistrorop- arenotanecessityfortransits,theyarehighlybeneficialasinthis icallydistributedsystems(auniformdistributionofcosI ).What smallsampletransitsoccurredonthehostandcompanionatarate out happens if we instead know that I ≈ 90◦, i.e. a circumstellar of100and97%,respectively,withinthesimulated10yr. out planetwithinaneclipsingbinaryoranexomoonaroundatransit- Eventhougheclipsingbinariesarebiasedtowardsshortperi- ingplanet?FromFig.4itisevidentthatobserversonthecelestial ods,andonemaynotexpectcircumstellarplanetsinsaya<100d spherewhoseethecompanionbodyinfrontofthehostbodyare binary,theKeplermissiondiscovered167eclipsingbinarieswith (cid:13)c 2016RAS,MNRAS000,1–?? 8 Martin periodsof100dandlonger5.Iftheydohostplanetsthereisavery 7 ACKNOWLEDGEMENTS highchanceofthemtransiting,albeitwithacomplicatedsignature. ThankyoutomyPhDsupervisorStephaneUdryforconstantsup- InFig.11bweproducethesamehistogrambutforexomoon port and discussions, Amaury Triaud for our circumbinary work simulations from Fig. 9, again with ∆I = 15◦, T = 100 d and out thatinspiredthispaper,RosemaryMardlingfortheorbitalpreces- T = 11 d. Compared with the circumprimary case the range of in siontimescale,andJeanSchneiderfortheFlammarion(1874)ref- I permittingtransitsonthehostisroughlythesame.However, out erence. This work was aided by the thoughtful comments of an transitsonthecompanionstaronlyoccurinamuchnarrowerrange anonymous referee. Finally, I thank the financial support of the ofI around90◦.Consequently,only38%ofexomoonstransited out SwissNationalScienceFoundationoverthepastfouryears. the star did so when the planet did not transit. This suggests that forsearchesfortransitingexomoonsitisrecommendedbutnotre- quiredthattheplanettransits. REFERENCES Finally,anotheradvantageofasatellitethatorbitsaneclips- ing binary or a transiting planet is that those eclipses/transits Artymowicz,P.&Lubow,S.H., 1994,ApJ,421,651 would also be identified by a continuous transit survey like Ke- Cabrera,J.&Schneider,J., 2007,A&A,464,1133 pler,TESSorPLATOandcanprovidecomplementaryinformation Cochran,W.D.,Hatzes,A.P.,Butler,P.R.&Marcy,G.W. 1997, likeeclipse/transittimingvariations(Sartoretti&Schneider1999; ApJ,483,1 Kippingetal.2009,2015;Oshaghetal.2016). Doyle,L.R.,Carter,J.A.,Fabrycky,D.C.,etal. 2011,Science, 333,1602 Duquennoy,A.&Mayor,M., 1991,A&A,248,485 Eggenberger,A.,Udry,S.,Chauvin,G.,etal., 2007,A&A,474, 6 CONCLUSION 273 TheequationsandN-bodysimulationsinthispaperhavedemon- Faigler,S.&Mazeh,T., 2011,MNRAS,415,3921 stratedthatforcircumstellarplanetsinclosebinariesandexomoons Flammarion,C, 1874,LaNature-Revuedessciences,161 inplanetarysystems,orbitalprecessionenhancestransitprobabili- Holman,M.J.,&Wiegert,P.A.1999,AJ,117,621 tiesandmakestheminherentlytime-dependent.Thetransitproba- Kipping,D.M., 2009,MNRAS,392,181 bilityofthesatellite(exomoonorcircumstellarplanet)onthehost Kipping, D. M., Schmitt, A. R., Huang, X., Torres, G., et al., body(fortheexomoonthatisitsplanet)risesroughlylinearlyover 2015,ApJ,813,14 aprecessionperiodbeforeplateauingatthevaluecalculatedinthis Kostov,V.B.,McCullough,P.R.,Carter,J.A.,etal. 2014,ApJ, paper.Thisprobabilitymaybeashighastensofpercent,largely 784,14 as a function of the mutual inclination, and may be reached over Kozai,Y., 1962ApJ,67,591 aprecessionperiodasshortas5-10yrforouterorbitsof100-200 Kraus,A.L.,Ireland,M.J.,Hillenbrand,L.A.&Martinache,F., d.Transitscomeandgo,exhibitingconsecutivesequenceswhen- 2012,ApJ,745,19 everthesatellite’sinclinationisnear90◦.Transitsonthecompan- Kraus, A. L., Ireland, M. J., Huber, D., Mann, A. W. & Dupuy, ionbody(fortheexomoonthatisitsstar)aresystematicallyless T.J., 2016,ApJ,152,8 likely but still have a time-dependence, which rises even slightly Lidov,M.L., 1961,Iskusst.SputnikiZemli,8,5 beyondtheprecessionperiod.Theymayoccuratanypointduring Mardling,R.A., 2010,MNRAS,407,1048 the satellite’s precession period but depending on the orbital pa- Martin,D.V.&Triaud,A.H.M.J., 2014,A&A,570,A91 rametersmaybeinasparsesequenceanddifficulttocharacterise. Martin,D.V.&Triaud,A.H.M.J., 2015,MNRAS,449,781 This odd transit signature draws parallels with inclined cir- Martin,D.V., 2017,MNRAS,465,3235 cumbinaryplanets(Martin&Triaud2015;Martin2017),suchas Oshagh,M.,Heller,R.,Dreizler,S., 2016,arXiv:1610.04047 themarginallyinclined(4◦)Kepler-413(Kostovetal.2014).Even Petigura,E.A.,Howard,A.W.&March,G.W., 2013,PNAS, if large circumstellar planets in close binaries have individually 110,19273 significant transits, they may be missed by automated detection Prsa,A.,Batalha,N.,Slawson,R.W.,etal., 2011,AJ,141,3 pipelinesthatrelyontransitregularity.Forexomoonsthereisthe Santerne, A., Hebard, G., Deleuil, M., et al., 2014, A&A, 571, added difficulty of the transits themselves generally being unde- A37 tectablysmall,andacleverdynamicalphase-foldingwouldbenec- Sartoretti,P.&Schneider,J., 1999,A&AS,134,553 essarytorecoverasignal. Schneider,J., 1994,Planet.SpaceSci.,42,539 Searches for circumstellar planets in close binaries are en- Triaud,A.H.M.J.,Neveu-VanMalle,M.,Lendl,M.,Anderson, hanced (and sometimes guaranteed) if the binary is known to D.R.,etal., 2016,arXiv:1612.04166 eclipse, particularly if transits are desired on both stars, but this is not a necessity. The sample of almost 3,000 eclipsing binaries found throughout the Kepler mission, with more to come partic- ularlyfromPLATO,provideshopeoffindingsuchplanetsifthey exist.Tofindexomoonstransittheirstaritishighlyrecommended thattheplanettransitstoo. Finally, we note that this work may be applied to eclipses/transitsofclosetriplestarsystemsandsimilar-massbinary planets. 5 OriginalsampleinPrsaetal.(2011)anduptodatecatalogavailableat http://keplerebs.villanova.edu/. (cid:13)c 2016RAS,MNRAS000,1–??

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.