ebook img

Transgenic Mice Overexpressing Renin Exhibit Glucose Intolerance and Diet-Genotype Interactions. PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transgenic Mice Overexpressing Renin Exhibit Glucose Intolerance and Diet-Genotype Interactions.

ORIGINALRESEARCHARTICLE published:07January2013 doi:10.3389/fendo.2012.00166 Transgenic mice overexpressing renin exhibit glucose intolerance and diet-genotype interactions SarahJ.Fletcher1,NishanS.Kalupahana2,MorvaridSoltani-Bejnood3,JungHanKim4,ArnoldM.Saxton5, DavidH.Wasserman6,BartDeTaeye6,BrynnH.Voy5,AnnieQuignard-Boulange7 and NaimaMoustaid-Moussa8* 1GenomeScienceandTechnologyProgram,UniversityofTennessee,Knoxville,TN,USA 2DepartmentofPhysiology,FacultyofMedicine,UniversityofPeradeniya,Peradeniya,SriLanka 3PellissippiState,Knoxville,TN,USA 4DepartmentofPharmacology,PhysiologyandToxicology,SchoolofMedicine,MarshallUniversity,Huntington,WV,USA 5DepartmentofAnimalScience,UniversityofTennessee,Knoxville,TN,USA 6DepartmentofMolecularPhysiologyandBiophysics,SchoolofMedicineandMouseMetabolicPhenotypingCenter,VanderbiltUniversity,Nashville,TN,USA 7INRA-AgroParisTechUMR914,Paris,France 8NutritionalSciences,TexasTechUniversity,Lubbock,TX,USA Editedby: Numerous animal and clinical investigations have pointed to a potential role of the renin- TsuguhitoOta,KanazawaUniversity, angiotensinsystem(RAS)inthedevelopmentofinsulinresistanceanddiabetesincondi- Japan tionsofexpandedfatmass.However,themechanismsunderlyingthisassociationremain Reviewedby: unclear.Weusedatransgenicmousemodeloverexpressingreninintheliver(RenTgMK) UndurtiNarasimhaDas,UNDLife Sciences,USA to examine the effects of chronic activation of RAS on adiposity and insulin sensitivity. ToruAizawa,AizawaHospital,Japan Hepatic overexpression of renin resulted in constitutively elevated plasma angiotensin II *Correspondence: (four- to six-fold increase vs. wild-type,WT). Surprisingly, RenTgMK mice developed glu- NaimaMoustaid-Moussa,Nutritional coseintolerancedespitelowlevelsofadiposityandinsulinemia.Thetransgenicsalsohad Sciences,TexasTechUniversity,1301, lowerplasmatriglyceridelevels.Glucoseintoleranceintransgenicmicefedalow-fatdiet AkronStreet,Lubbock,TX79423, USA. wascomparabletothatobservedinhigh-fatfedWTmice.Thesestudiesdemonstratethat e-mail:naima.moustaid-moussa@ overexpressionofreninandassociatedhyperangiotensinemiaimpairglucosetolerancein ttu.edu adiet-dependentmannerandfurthersupportaconsistentroleofRASinthepathogenesis ofdiabetesandinsulinresistance,independentofchangesinfatmass. Keywords:adiposetissue,renin-angiotensinsystem,insulinresistance,angiotensinII INTRODUCTION AGT,ACE,renin,AT1,orAT2protectsrodentsfromdiet-induced The renin-angiotensin system (RAS) plays an important role in obesityandinsulinresistance(Massieraetal.,2001b;Yvan-Charvet the regulation of blood pressure, fluid, and electrolyte balance etal.,2005;Takahashietal.,2007;Jayasooriyaetal.,2008).Con- (Schmieder et al.,2007).Angiotensinogen (AGT),the precursor versely,chronicRASoveractivationviaAngIIinfusion(Ogihara peptide of this system, undergoes successive enzymatic cleav- etal.,2002)leadstoglucoseintoleranceandinsulinresistancein agesbyreninandangiotensinconvertingenzyme(ACE)toyield rodents, further supporting a role of RAS overactivation in the angiotensin I (Ang I) and angiotensin II (Ang II) respectively. pathogenesisofinsulinresistance. Thelatteristhemainbioactivepeptideofthissystem,whichacts Although obesity and increased adiposity are associated with via two G-protein coupled receptors, namely angiotensin Type- RAS overactivation, it is not clear whether systemic RAS over- 1 (AT1) and Type-2 (AT2) receptors, to exert its physiological activation can lead to both obesity and insulin resistance. It is effects.BecauseAT1activationbyAngIIleadstoelevationofblood important to test this because studies have documented differ- pressure,ACEinhibitors(ACEI)andAT1blockers(ARB)arephar- ences in RAS activity in humans,which have been attributed to macologicallyusedasanti-hypertensiveagents(Schmiederetal., polymorphisms in RAS coding (Jeunemaitre et al.,1999; Jeune- 2007). maitre,2008)orpromoterregions(Xiaoetal.,2006).Therefore, Interestingly,severalclinicalstudieshaveshownthatpatients understandingtheimplicationsofchronicelevationofRASmay onRASblockershavealowerriskofdevelopingType-2diabetes helpprovideinsightintometabolicconsequencesof chronically when compared to patients on other anti-hypertensive medica- elevatedRASinhumans. tions (Vermes et al., 2003; Bosch et al., 2006). Moreover, RAS While overexpression of RAS is consistently associated with blockadepreventsandreversesinsulinresistanceinducedbyhigh- insulin resistance and glucose intolerance, the effect of chronic fat feeding in rodents (Lee et al.,2008). Given that plasma and RASoveractivationonadiposityisnotclear.Thisisfurthercom- tissuelevelsof severalRAScomponentspositivelycorrelatewith plicatedbyexistenceoflocalRASinseveraltissueswiththelocal bodymassindex(Schorretal.,1998;VanHarmelenetal.,2000), effectscomplicatingtheunderstandingofsystemiceffectsofRAS itispossiblethatoveractivationoftheRASislinkedtothepatho- (KalupahanaandMoustaid-Moussa,2012b).Forexample,over- genesisofinsulinresistanceinobesity.Indeed,geneticdeletionof expressionofAGTinadiposetissueincreasesadiposityandblood www.frontiersin.org January2013|Volume3|Article166|1 Fletcheretal. Metabolicphenotypingofrenintransgenicmice pressure and leads to insulin resistance (Massiera et al., 2001a; GLUCOSETOLERANCETEST Kalupahanaetal.,2012).However,acuteorchronicsystemicRAS Mice were fasted overnight prior to the glucose tolerance test overactivation leads to decreased fat mass despite the develop- (GTT). Blood was collected in heparinized capillary tubes from mentofinsulinresistance(Brinketal.,1996).Thissuggeststhat theorbitalsinuspriortointra-peritonealinjectionwithglucose increased fat mass in the case of adipose RAS overexpression (1g/kg body weight),and then 15,30,60,90,and 120min after maybeduetolocaleffectsof AngIIproductionwithinadipose injection.Plasmaglucoseconcentrationswerecalculatedusinga tissue. One Touch ultra-monitoring system (Johnson & Johnson, Co., TofurtherdissecteffectsofelevatedsystemicAngIIoninsulin New Brunswick, NJ, USA). The GTT was performed on mice sensitivity and adiposity, we used a unique mouse model in 10weeks old and repeated when the mice reached 20weeks of whichAngIIischronicallyelevatedthroughoutlifetimethrough ageandtheareaunderthecurve(AUC)forglucoseandinsulin genetic manipulation. This mouse model is a unique genetic werecalculated. minipump model in which renin is overexpressed in the liver. Given that renin release is the rate-limiting step in the sys- PLASMAMEASUREMENTS temic RAS, this model offers the advantage of constant renin Serum was separated from blood samples collected during the overexpression independent of homeostatic control and a life- GTT by centrifugation at 3000rpm for 15min at 4˚C and then longelevatedlevelof AngII.Asexpected,thesetransgenicmice stored in aliquots at −80˚C until assayed. Serum insulin,leptin, (RenTgMK; Caron et al., 2002) exhibit elevated levels of circu- andadiponectinlevelsweremeasuredinduplicateusingcommer- lating renin and Ang I and develop chronic hypertension along ciallyavailableELISAkitsfollowingthemanufacturer’sprotocol withotherpathologicalmanifestations(Caronetal.,2002,2004). (insulin cat# 90060 and leptin cat# 90030, Crystal Chem, Inc., The RenTgMK mice thus allow us also to study the effects of Downers Grove, IL, USA; adiponectin cat# EZMADP-60, Linco systemic chronic elevations of Ang II on adiposity and glucose Research,Billerica,MA,USA).Absorbancewasreadat450nmon homeostasis,sothatwecandissecttheeffectsofsystemicvs.adi- aPackardSpectraCountmicroplatereader(PackardInstrument, pose RAS by comparing these results with the ones previously Co.,Meriden,CT,USA). reportedforlocaladiposeoverexpressionofRAS(Massieraetal., 2001a). DIETSTUDY We report here that elevated circulating Ang II due to renin Maleheterozygous(RenTgMK+/−)miceandtheirWTlittermates overexpressionleadstoglucoseintolerance,whichisfurtherexac- wererandomlyassignedtoeitherahigh-fatdiet(60%kcalfrom erbated by high-fat feeding. Unexpectedly, these mice exhibit fatcat#D12492,ResearchDiets,Inc.,NewBrunswick,NJ,USA) otherwise normal glucose metabolism and a transgene dose- or a low-fat diet (10% kcal from fat cat# D12450B, Research dependentdecreaseinfatmassandinsulinemia. Diets, Inc., New Brunswick, NJ, USA) for 18weeks. Each diet group(n=6/group)wascomprisedofthreemaleRenTgMK+/− MATERIALSANDMETHODS miceandthreemaleWTmice.Bodyweightmeasurementswere ANIMALS acquiredweeklyforthedurationof thestudy.Attheconclusion RenTgMK transgenic mice were kindly provided by Dr. Oliver of the 18-week diet study, a GTT was performed and plasma Smithies, University of North Carolina, Chapel Hill, NC, USA insulin, leptin, and adiponectin concentrations were measured, (Hatadaetal.,1999).Briefly,arenintransgeneconsistingofpor- asdescribedabove.Miceweresacrificed1weekaftertheGTT. tionsoftheRen2andRen-1dgenes(Ren2/1d)wasinsertedintothe genomeattheApoA1/ApoC3locusviahomologousrecombina- METABOLICSTUDIES tionandplacedundercontrolofanalbuminpromoter/enhancer Metabolic studies of the RenTgMK mice were performed at the (AlbP/E)toachieveliver-specificexpression. Mouse Metabolic Phenotyping Center (MMPC) at Vanderbilt MaleheterozygousRenTgMK(RenTgMK−/+)miceonaniso- University,Nashville,TN,USA.Glucoseinfiltrationrate,glucose genicSvEv129/6backgroundwerecrossedwithwild-type(WT) turnover rate, endogenous glucose turnover rate, and clearance SvEvfemales.SubsequentheterozygousF1progenywerematedto were measured. Whole-body insulin activity in vivo was exam- generatetheF2offspringthatwereusedinthisstudy.Miceused inedviaeuglycemichyperinsulinemicclamp.Detailedprocedure inthisstudywerebredandmaintainedattheUniversityofTen- has been previously reported (Ayala et al., 2006). Briefly, to nesseeaccreditedanimalfacility,ona12h:12hlight-darkcycleat assessinsulinsensitivityandglucosemetabolism,insulinwascon- 22˚C and fed a standard rodent chow and water ad libitum. All tinuously administered via euglycemic hyperinsulinemic clamp. experimentswereapprovedbytheInstitutionalAnimalCareand Catheters were chronically implanted in the jugular vein and UseCommitteeattheUniversityofTennessee. carotid artery. Arterial glucose levels were measured every 5– 10min during 120min and glucose infusion rates were deter- GENOTYPING minedbasedonthearterialglucosemeasurements.Plasmaglucose DNA was extracted from tail tips as previously described turnoverwasmeasuredinRenTgMK+/− andWTmales(n=8– (Truett et al., 2000). PCR-based genotyping was performed 12/group).Micewerecontinuouslyinfusedwith[3-3H]glucoseat using three primers: p1, 5(cid:48)-TGGGATTCTAACCCTGAGGACC- a rate of 0.4µCi/min. Glucose appearance (Ra) and disappear- 3(cid:48); p2, 5(cid:48)-CACAGATTGTAACTGCAAATCTGTCG-3(cid:48); p3, 5(cid:48)- ance(Rd)rateswereestimatedastheratiooftherateofinfusion GTTCTTCTGAGGGGATC-GGC-3(cid:48)(SigmaGenosys,TheWood- of[3-3H]glucoseandthesteady-stateplasma[3H]glucosespecific lands,TX,USA)aspreviouslydescribed(Caronetal.,2002). activity (dpm/mg),and the glucose disappearance was assumed FrontiersinEndocrinology|Diabetes January2013|Volume3|Article166|2 Fletcheretal. Metabolicphenotypingofrenintransgenicmice to be equal to the steady-state Ra rate. Glucose clearance was 4,6-diamidino-2-phenylindole(VectorLaboratories,Burlingame, calculated by dividing the Rd by the arterial glucose concentra- CA,USA)fornuclearstaining. tion.Tomeasuretissue-specificglucoseuptake,micewereinjected with12µCiof[3H]-labeled2-deoxyglucose([2-3H]DG).Arterial STATISTICALANALYSIS plasmasampleswerecollectedinintervalsfor40minbeforemice Data were analyzed in SAS (SAS Institute,Inc.,Cary,NC,USA) wereanesthetizedandtissueswereextractedandfrozeninliquid using a mixed model analysis of variance (http://dawg.utk.edu). nitrogenuntilfurtheranalysis. Fisher’stestfollowedbyTukey’sposthoc testwasusedformean separation.P<0.05wasconsideredstatisticallysignificant.Data PANCREASHISTOLOGYANDIMMUNOSTAINING arereportedasthemeans±SE. ThepancreaswascollectedfromWTandtransgenicmice.Tissues forimmunohistochemistrywerefixedin10%neutral,phosphate- RESULTS bufferedformalinfor24handparaffin-embedded.Subsequently, BODYWEIGHT,FATPADWEIGHT,ANDMETABOLICPARAMETERS theparaffin-embeddedtissueswereprocessedin4-µmsections. Body weights were comparable between mice with either one Sectionswerestainedusingrabbitanti-glucagonpolyclonalanti- or two copies of the renin transgene and WT control mice body and guinea pig anti-insulin serum (both from Millipore, (Figure 1A). Gonadal fat pad weight (Figure 1B) and adi- Billerica,MA,USA).Forfluorescencedetection,goatanti-guinea posity index (gonadal fat pad weight divided by body weight; pig IgG coupled to Texas Red and donkey anti-rabbit IgG cou- Figure 1C) were significantly lower in homozygous mice com- pledtoCy3wereused(bothfromJacksonImmunoResearch,West paredtoWTlittermates(P<0.05).Fastingserumglucose,leptin, Grove,PA,USA)followedbyVectashieldMountingMediumwith and adiponectin levels were comparable between all genotypes FIGURE1|Bodyandfatpadweightandglucosetoleranceinmale glucoselevelsweremeasuredat0,15,30,90,and120minandplotted RenTgMKmice.(A)Bodyweightattheageof20weeks.(B)Mice onagraph.(E)AreaUndertheCurve(AUC)wascalculatedas weresacrificedattheendofweek20andgonadalfatpadswere describedintheexperimentalprocedures.Valuesaremeans±SE. collectedandweighed.(C)Theadiposityindexwasdeterminedby n=6ForWT;n=5forRenTgMK+/−;n=4forRenTgMK+/+.Different dividinggonadalfatpadweightbyfinalbodyweight.Aglucose lettersindicateasignificantdifference(P<0.05).*Significantly tolerancetest(GTT)wasadministeredafterovernightfasting.(D)Blood different(P<0.05)fromWT. www.frontiersin.org January2013|Volume3|Article166|3 Fletcheretal. Metabolicphenotypingofrenintransgenicmice Table1|Serummetabolicmarkersinmalewild-typeandRenTgMK utilizationinthismodel.Accordingly,metabolicstudiesattheNIH mice. MMPCatVanderbiltUniversitywereconducted.Maleheterozy- gous mice were compared to WT mice because males exhibited WT RenTgMK+/− RenTgMK+/+ Pvalue glucose intolerance and sufficient numbers could be obtained Glucose,mg/dl 81.2±6.4 89.8±3.2 93.3±5.1 0.292 from a few litters. Steady-state glucose infusion rate (Figure 2), Insulin,ng/ml 0.62±0.07a 0.42±0.05b 0.36±0.07b 0.033 overall tissue-specific glucose uptake, glucose metabolism, and Leptin,ng/ml 2.1±0.7 2.3±0.6 1.3±0.5 0.535 endogenous glucose production (Table 2) did not significantly Adiponectin, 8.7±1.4 10.8±2.5 7.6±0.9 0.479 differbetweenRenTgMKandWTmice,indicatingnormalinsulin µg/ml sensitivityinthetransgenics. C-peptide, 1.4±0.1b 1.9±0.2a 2.0±0.1a 0.007 ng/ml EFFECTOFHIGH-FATDIETONBODYWEIGHT,ADIPOSITY,CIRCULATING FFA,mM 0.84±0.10 0.93±0.06 0.91±0.11 0.791 ADIPOKINES,ANDGLUCOSETOLERANCE Triglycerides, 60.1±6.4a 44.5±8.6a,b 23.7±8.7b 0.018 Asdescribedabove,renintransgeneoverexpressionledtoimpaired mg/dL glucose tolerance compared to WT mice when mice were fed a low-fatchowdiet.Totestwhetherthegeneticdifferenceswouldbe Valuesaremeans±SE.Animalswere21weeksold.Initialbodyweightmea- exacerbatedbyhigh-fatfeeding,wefedmaleheterozygousandWT surementsweretakenat10weeks.Bloodwascollectedafterfastingovernight micealow-orhigh-fatdiettoinvestigatediet-geneinteractions. andmetabolicparametersweremeasuredfromserum.n=6ForWT;n=5for Bodyweightswerenotsignificantlydifferentbetweengroupsat RenTgMK+/−; n=4 for RenTgMK+/+. C-peptide, connecting peptide; FFA, free thestartoftherandomizeddietstudy(Table3).High-fatfeeding fattyacid. increased body weight only in the wild-type mice (Figure 3A). Meansinarowwithsuperscriptswithoutacommonletterdiffer,P<0.05. Mice of both genotypes showed a trend for increased fat pad NumbersinboldindicateasignificanceofP<0.05. weight and adiposity with high-fat feeding,although the differ- encewasonlysignificantforadiposityintheRenTgMK+/− mice (Table1).Fastingseruminsulin,however,wassignificantlylower (Figures3B,C). inthetransgenicmice(bothhomozygousandheterozygous)com- Changesinadiposityareknowntoalterhormonalandmetabo- pared to WT littermates (P<0.05). Serum C-peptide levels,on litelevels.Asexpected,high-fatfeedingincreasedserumglucose the other hand, were higher in the transgenics than in the WT andleptinlevelsinbothmaleWTandtransgenicmice(P<0.05 mice(Table1).Interestingly,serumtriglyceridesweresignificantly for diet effect – Table 3). Interestingly, high-fat feeding also lowerinthehomozygousmicecomparedtoWTlittermates.On increasedserumresistinlevelsinWT,butnotintransgenicmales thislow-fatchowdietcondition,theoverallmetabolicphenotype (Table3).IntheWTmales,serumtriglycerideconcentrationwas waslesspronouncedinfemaletransgenicmicecomparedtoWT higherinthelow-fatfedmicewhencomparedtohigh-fatfedones femalelittermates(datanotshown). (Table3).Thiseffectwasminimalinthetransgenics. Low-fatfedmaleheterozygousmiceexhibitedahigherglucose GLUCOSEINTOLERANCEINRenTgMICE excursion and area under the glucose curve compared to their ToassessglucosetoleranceintheRenTgmice,anintra-peritoneal WTcounterparts,indicatingglucoseintolerance(Figures3D,E). GTTwasadministered.Baselinefastingglucoselevelswerecom- High-fatfeedingdidnotexacerbateglucoseintoleranceinRenT- parable between WT, RenTgMK+/− and RenTgMK+/+ mice gMKmice. (81.17±15.68, 89.80±7.16, and 93.25±10.28mg/dl, respec- tively).Heterozygousmicemaintainedsignificantlyhigherlevels PANCREASHISTOLOGYANDIMMUNOSTAININGOFRenTgMICE of glycemia compared to WT within 60min and remained ele- Because of the consistently lower insulin levels in heterozygous vated throughout the GTT (Figure 1D). These differences were micecomparedtoWTmice,weperformedimmunohistological observedasearlyas10weeksofage(datanotshown)andbecame studiesinthepancreastoassessisletmorphologyandhormone more pronounced with age by 20weeks. Glucose intolerance in content.Inbothgenotypes,isletsappearednormalandexhibited maleRenTgMKmicewasalsoevidentfromacomparisonofthe comparablestainingforglucagonandinsulin(Figure4). glucoseAUC(Figure1E).TheAUCvaluesforbothheterozygous and homozygous mice were higher (P<0.05) than that of WT DISCUSSION mice implying greater glucose intolerance in the transgenics. In Manylinesof evidencehavelinkedactivationof theRAStothe females,nosignificantdifferencesinGTTwereobservedbetween developmentofobesityandinsulinresistance(Schorretal.,1998; the three genotypes at 20weeks of age in these low-fat feeding Van Harmelen et al., 2000), but the effects of increased circu- conditions(datanotshown). lating levels of angiotensins on adiposity remain controversial. WehypothesizedthatchronicsystemicRASactivationviatrans- METABOLICPHENOTYPINGOFRenTgMICE genic renin overexpression in the liver would lead to glucose Insulin resistance is commonly associated with high adiposity. intolerance and systemic insulin resistance. We also predicted Theparadoxicalglucoseintolerancedespitelowadiposityandlow that increased systemic Ang II would increase adiposity, based insulinemia in the renin transgenic male mice vs. control litter- onpreviousworkbyusandothersshowingthatAngIIincreases matesledustofurtherinvestigatewhetherthesedifferenceswere adipocytelipogenesisandtriglyceridestorage.Ourresultsdemon- due to altered insulin sensitivity and/or glucose production or stratethatelevatedcirculatingAngIIduetoreninoverexpression FrontiersinEndocrinology|Diabetes January2013|Volume3|Article166|4 Fletcheretal. Metabolicphenotypingofrenintransgenicmice FIGURE2|Assessmentofinsulinsensitivityinmalewild-typeandRenTgMK+/−miceusinghyperinsulinemiceuglycemicclamp.Changesinblood glucoseconcentration(A)andglucoseinfusionrate(B)overtimeareshown.Valuesaremeans±SE.Animalswereapproximately9monthsold.n=8–9For WT;n=7forRenTgMK+/−. Table2|Metaboliccharacteristicsandaccumulationof[2-3H]DG thananincreaseinadiposityinmalemice.However,thesemice duringthehyperinsulinemic-euglycemicclampexperimentsinmale exhibit otherwise normal glucose metabolism and a transgene wild-typeandRenTgMK+/−mice. dose-dependentdecreaseininsulinemia. WT RenTgMK+/− Pvalue GLUCOSEINTOLERANCEINRenTgMKMICE GLUCOSEKINETICS ConsistentwithpreviousstudiesofAngIIinfusionandtransgenic Bloodglucose,mg/dl 114.7±5.8 114.6±5.0 0.996 reninexpression(Leeetal.,1996),maleRenTgMKtransgenicmice GTR,mg/kg/min 47.4±4.0 49.4±6.7 0.794 exhibited glucose intolerance, even on a low-fat diet. However, endoGTR,mg/kg/min 4.96±4.62 −2.29±7.60 0.416 despitethisglucoseintolerance,theRenTgMKmicemaintained Glucoseclearance,mg/kg/min 42.0±3.1 43.7±5.7 0.790 lowfastinginsulinemiaandnormalinsulinsensitivity,asindicated GIR,mg/kg/min 42.4±4.3 51.7±4.0 0.142 bynormalsteady-stateglucoseinfusionduringthehyperinsuline- ACCUMULATIONOF[2-3H]DG mic,euglycemic clamp studies. RenTgMK mice maintained low Soleus,µg/min/mgtissue 0.035±0.008 0.036±0.005 0.923 insulinemiaevenunderhigh-fatfeeding.Theglucoseintolerance Gastro,µg/min/mgtissue 0.025±0.005 0.033±0.003 0.229 inRenTgMKmiceinthepresenceofnormalfastingglucoselevels Vastusl.,µg/min/mgtissue 0.041±0.007 0.047±0.005 0.550 and low insulinemia, a feature that is a rather typical hallmark WAT,µg/min/mgtissue 0.004±0.001 0.006±0.001 0.067 ofincreasedinsulinsensitivity,couldbeduetodecreasedinsulin Diaphragm,µg/min/mgtissue 0.131±0.019 0.091±0.007 0.103 production/secretion and/or increased insulin clearance. Serum Heart,µg/min/mgtissue 0.431±0.057 0.320±0.043 0.161 C-peptidelevelwashigherinheterozygouscomparedtoWTmice Brain,µg/min/mgtissue 0.048±0.005 0.049±0.003 0.888 arguing against decreased insulin secretion accounting for low insulinemia in the RenTgMK mice. Immunohistochemistry of Valuesaremeans±SE.Animalswereapproximately9monthsold.n=8–9For the pancreas indicated normal islet morphology and hormone WT;n=7forRenTgMK+/−.GTR,glucoseturnoverrate;endoGTR,endogenous content, possibly indicating normal pancreatic function. How- glucoseturnoverrate;GIR,glucoseinfusionrate;[2-3H]DG,2-deoxy-[3H]glucose; ever,suchstudiesareonlyqualitativeanddonotallowtodetect Gastro,gastrocnemius;Vastusl.,vastuslateralis;WAT,whiteadiposetissue. clearquantitativedifferences.Thus,itisprobablyinsulinclearance, ratherthaninsulinsecretionthatmaybealteredinthismodel. leadstoglucoseintolerance,butwithconsistentlylowerlevelsof Liver is the primary site of insulin clearance (Duckworth plasma insulin. Further,chronic elevation of systemicAng II by etal.,1998),whichcanbeaffectedbybothnutritionalandhor- hepaticoverexpressionofthereningeneledtoareductionrather monalsignals.Insulinclearancerateisheritable(Goodarzietal., www.frontiersin.org January2013|Volume3|Article166|5 Fletcheretal. Metabolicphenotypingofrenintransgenicmice Table3|Effectsofhigh-fatdietonbodyweightandmetaboliccharacteristicsinmalewild-typeandRenTgMK+/−mice. WT RenTgMK+/− Pvalue LF HF LF HF Geno Diet GenoXdiet Initialbodyweight,g 27.2±2.2 29.2±1.4 26.2±0.6 25.7±0.9 NS NS NS Finalbodyweight,g 37.6±3.2a,b 46.9±5.6a 35.4±1.8b 37.8±2.1a,b NS NS NS Glucose,mg/dL 92.3±3.2b 123.7±7.7a 98.3±5.2b 127.3±2.9a NS 0.001 NS Insulin,ng/ml 1.29±0.31 2.07±0.60 0.91±0.04 1.14±0.25 NS NS NS Leptin,pg/ml 9.5±1.6 16.2±2.9 7.6±1.1 12.7±2.3 NS 0.019 NS Adiponectin,µg/ml 12.6±0.3 14.1±2.0 12.9±0.4 12.4±0.2 NS NS NS Resistin,pg/ml 475.8±37.3b 702.2±19.0a 545.8±48.7a,b 493.3±83.9b NS NS 0.030 MCP-1,pg/ml 29.9±8.0 53.0±18.9 30.5±1.6 34.0±12.9 NS NS NS PAI-1,pg/ml 3903.4±666.2 5903.4±834.8 4733.5±734.0 4526.8±961.3 NS NS NS C-peptide,ng/ml 1.9±0.3 3.3±1.2 2.4±0.4 2.3±0.2 NS NS NS FFA,mM 1.00±0.18 0.80±0.04 1.23±0.36 1.16±0.39 NS NS NS Triglycerides,mg/dL 132.4±16.5a 66.9±4.1b 66.8±4.4b 39.2±5.4b 0.001 0.001 0.074 Valuesaremeans±SE.Animalswerefedahigh-fatorlow-fatdietfor19weeks.Initialbodyweightmeasurementsweretakenatthebeginningofthestudy.Mice were3–5monthsold.Bloodwascollectedafterfastingovernightandmetabolicparametersweremeasuredfromserum.n=3Foreachgroup.LF,low-fat;HF,high-fat; MCP-1,monocytechemoattractantprotein-1;PAI-1,plasminogenactivatorinhibitor-1;C-peptide,connectingpeptide;FFA,freefattyacid. Meansinarowwithsuperscriptswithoutacommonletterdiffer,P<0.05. NumbersinboldindicateasignificanceofP<0.05. 2005) and is reduced in obesity and Type-2 diabetes (Duck- tissue(Achardetal.,2007)andthereforemaymediatetheobserved worth et al., 1998). Therefore, it could be an important factor adiposetissuephenotype. in the pathogenesis of Type-2 diabetes. Conversely, there are mousemodelswhichexhibitincreasedinsulinclearancesuchas RASOVERACTIVATIONANDINSULINRESISTANCE themouseoverexpressingcarcinoembryonicantigen-relatedcell Renin-angiotensinsystemoveractivationviachronicAngIIinfu- adhesionmolecule1(CEACAM1)intheliver(Najjar,2002).Addi- sion leads to the development of systemic insulin resistance tional studies beyond the scope of this work will be required in rodents. This is, in most part, due to the Ang II-mediated to address whether the RAS is involved in regulating insulin impairment of skeletal muscle glucose transport and utilization clearance. (KalupahanaandMoustaid-Moussa,2012a).AngIIimpedesthe Thefindingthattheglucoseintoleranceinmaletransgenicmice insulin-mediatedtyrosinephosphorylationoftheinsulinreceptor didnotworsenwithhigh-fatfeedingcouldpossiblyindicatethat substrate(IRS)-1,activationofAkt,andtranslocationofglucose RASoveractivationcouldatleastinpartplayaroleinhigh-fatdiet- transporter (Glut)-4 in the skeletal muscle in an NADPH oxi- inducedobesity.Alongthesamelines,miceoverexpressingAGT dase,AT1,and NF-kB-dependent manner. Ang II also increases inadiposetissuealsodevelopglucoseintoleranceonalow-fatdiet, hepaticglucoseproduction,whichalsopotentiallycontributesto whichisnotfurtherexacerbatedbyhigh-fatfeeding(Kalupahana alteredsystemicinsulinsensitivity.Incontrast,theRenTgMKmice etal.,2012).Femaletransgenicmiceexhibitednormalglucosetol- inthisstudyexhibitednormalsystemicinsulinsensitivity.While eranceonalow-fatdietwhilemalesbecameglucoseintoleranton theexactunderlyingmechanismsforthisdiscrepancyof insulin thesamedietwhencomparedtoWTlittermates.Further,female sensitivity between different models of RAS overactivation are transgenics became glucose intolerant when fed a high-fat diet unknown, it is possible that the low insulinemia present in the (datanotshown). RenTgMKmicecouldprotectthesemicefromthedevelopment ItislikelythatthemetabolicphenotypeoftheRenTgMKmice ofinsulinresistance.Previousstudieshaveshownthatanincrease is due to Ang II effects, rather than the effects of renin acting in plasma insulin by itself can induce insulin resistance. In the on the renin/prorenin receptor. We argue this because in renin studybyShaniketal.(2008),micetransfectedwithextracopies knockoutmice,themetabolicphenotypeofincreasedinsulinsen- of the insulin gene had a two- to four-fold increase in plasma sitivityandresistancetohigh-fatdiet-inducedglucoseintolerance insulinandexhibitednormalbodyweight,insulinresistanceand andinsulinresistancewasreversedbyAngIIinfusion(Takahashi hypertriglyceridemia. et al., 2007). It is also likely that these effects are mediated via Unlike models of chronic Ang II infusion (Ran et al.,2004), angiotensinreceptors,aspreviousstudiesontheRenTgMKmice RenTgMKmiceexhibitedlowerplasmatriglyceridelevels.Thus, demonstratedthatAT1receptorblockadereversedrenalpathol- the hypoinsulinemia in the RenTgMK could also potentially ogyandnormalizedbloodpressureintheRenTgMKmice(Caron explainthelowserumtriglyceridelevelsseeninthesemice.Given etal.,2002).Alternativemechanismsmayinvolvedirecteffectsof thismetabolicphenotypeofRenTgMKmice,itwouldbeinterest- reninmediatedbytherenin/proreninreceptoronthevasculature ingtoexplorewhethertheinsulinresistanceseeninseveralmodels oradiposetissue.Indeed,reninreceptorsareexpressedinadipose of chronic RAS overactivation is insulin-dependent and further FrontiersinEndocrinology|Diabetes January2013|Volume3|Article166|6 Fletcheretal. Metabolicphenotypingofrenintransgenicmice FIGURE3|Effectofhigh-fatdietonbodyandfatpadweightand padweightbyfinalbodyweightX100.(D)Aglucosetolerancetest(GTT)was glucosetoleranceofmalewild-typeandRenTgMK+/−mice.(A)Weight administeredafterovernightfasting.Bloodglucoselevelsweremeasuredat gainwascalculatedasthedifferencebetweentheinitialbodyweight 0,15,30,90,and120minandplottedonagraph.(E)AreaUndertheCurve measuredatweek1andthefinalweightmeasuredafter18weeks.(B)Mice (AUC)wascalculatedasdescribedintheexperimentalprocedures.Valuesare weresacrificedattheendofweek19andgonadalfatpadswerecollected means±SE.n=3Foreachgroup.*Significantlydifferent(P<0.05)from andweighed.(C)Theadiposityindexwasdeterminedbydividinggonadalfat WT-LF.Differentlettersindicateasignificantdifference(P<0.05). studies are warranted. The issue of whether the renin recep- thesefindings,theRenTgMKmicealsoexhibitedlowerfatmass tor may also in part modulate insulin sensitivity merits further comparedtoWTlittermates.Theadiposemasswassignificantly investigationaswell. decreased by the renin transgene in a gene dosage-dependent manner.Incontrast,micewithprimaryAGToverproductionin RASOVERACTIVATIONANDADIPOSITY adipose tissue exhibit higher adiposity (Massiera et al., 2001a). Both human and rodent studies have shown that obesity and Further, deletion of AGT and other RAS genes leads to lower increasedadiposityareassociatedwithbothsystemicandadipose fat mass and resistance to diet-induced obesity (Massiera et al., RASoveractivation(KalupahanaandMoustaid-Moussa,2012a). 2001b; Takahashi et al., 2007). Thus, it appears that while sys- However, it is not known whether primary RAS overactivation temic RAS overactivation leads to reductions in body weight, leadstoobesity.Transgenicmousemodelsclearlydemonstratethat localincreasesinRASactivityinadiposetissueleadstoincreased manipulatingcomponentsoftheRASaltersadiposity:miceover- adiposity. expressingAGTinadiposetissuehaveincreasedadiposity,while Thelow-fatmassobservedfollowingAngIIinfusionisattrib- deletionof eithertheAGTorAngIIreceptorgenesreducesfat- uted to both increased energy expenditure and reduced energy ness.Paradoxically,previousstudiesofchronicAngIIinfusionin intake (Brink et al., 1996; Cassis et al., 1998). In the RenTgMK rodentshaveshownthatchronicsystemicRASoveractivationleads mousemodel,wedidnotdetectanysignificantdifferencesinfood toweightloss,ratherthanweightgain(Griffinetal.,1991;Cassis intake (data not shown).Activation of the sympathetic nervous etal.,1998).ThetransgenicTGR(mREN2)27ratoverexpressing system may also account for changes in weight via modulation the mouse Ren2 renin gene also has a lean phenotype (Mullins of lipid metabolism and energy expenditure by catecholamines etal.,1990;Langheinrichetal.,1996;Leeetal.,1996).Similarto (Cassis, 2000). The differential effect of systemic vs. adipose www.frontiersin.org January2013|Volume3|Article166|7 Fletcheretal. Metabolicphenotypingofrenintransgenicmice FIGURE4|Isletpathology.Pancreashistologyandimmunostainingwereconductedtoassessisletmorphologyandhormonecontentinmalewild-typeand RenTgMKmice,20weeksofage. specific RAS overactivation on adiposity indicates that specific hypoinsulinemia,andhypotriglyceridemia,withnormalsystemic local overproduction of AGT in adipose tissue per se, may be insulin sensitivity. The hypoinsulinemia in these mice is possi- requiredforincreasingadiposity.Indeed,AngIIexertslocalana- bly due to increased insulin clearance, as indicated by elevated bolic effects in the adipose tissue (Massiera et al., 2001a). Ang C-peptide levels and normal pancreatic insulin levels indicating II also increases lipogenic gene expression and enzyme activ- normalpancreaticfunction.Whethertheunexpectedlowadipos- ityin3T3-L1murineadipocytesandhumanadipocytesinvitro ityandnormalinsulinsensitivitydespitethepresenceofglucose (Jonesetal.,1997).Thisisalsoinagreementwithstudiesshowing intoleranceintheRenTgMKmiceissecondarytohypoinsulinemia differentiation-dependent increase in AGT gene expression and meritsfurtherinvestigation. secretion in preadipocytes (Kim and Moustaid-Moussa, 2000). Ubiquitous inactivation of AGT, on the other hand, results in ACKNOWLEDGMENTS significant loss of fat mass. However, it is unclear whether tar- TheauthorsthankDr.OliverSmithiesforgenerouslyprovidingus geted inactivation of AGT in adipose tissue would specifically withtheRenTgmiceweusedtoperformthisstudyandDr.K.Car- alter fat mass and such studies would convincingly confirm ronandJ.Hagamanforprovidinghelpwithanimalbreedingand the role of adipose AGT in modulating insulin resistance or genotyping.ThisworkwassupportedbyaUSDANIFA-NRIGrant fatmass. 2005-35200-15224andanAHAGrantinAid(GreaterSoutheast Insummary,ourdatademonstratethattransgenichepaticover- affiliate0755626B).TheauthorswouldliketothankJeffreyMorris expressionofreninleadstoglucoseintolerance,decreasedfatmass, andTarynStewartfortheirtechnicalassistance. REFERENCES Bosch, J., Yusuf, S., Gerstein, H. C., et al. (2004). Cardiac hypertrophy renin. Curr. Hypertens. Rep. 2, Achard,V.,Boullu-Ciocca,S.,Desbriere, Pogue,J.,Sheridan,P.,Dagenais,G., and sudden death in mice with a 132–138. R., Nguyen, G., and Grino, M. etal.(2006).Effectof ramiprilon geneticallyclampedrenintransgene. Cassis,L.A.,Marshall,D.E.,Fettinger, (2007).Reninreceptorexpressionin theincidenceofdiabetes.N.Engl.J. Proc. Natl. Acad. Sci. U.S.A. 101, M.J.,Rosenbluth,B.,andLodder,R. humanadiposetissue.Am.J.Phys- Med.355,1551–1562. 3106–3111. A.(1998).Mechanismscontributing iol.Regul.Integr.Comp.Physiol.292, Brink,M.,Wellen,J.,andDelafontaine, Caron,K.M.,James,L.R.,Kim,H.S., toangiotensinIIregulationofbody R274–R282. P. (1996). Angiotensin II causes Morham,S.G.,SequeiraLopez,M. weight. Am. J. Physiol. 274(Pt 1), Ayala, J. E., Bracy, D. P., McGuin- weight loss and decreases circulat- L., Gomez, R. A., et al. (2002). A E867–E876. ness, O. P., and Wasserman, D. ing insulin-like growth factor I in geneticallyclampedrenintransgene Duckworth, W. C., Bennett, R. G., H. (2006). Considerations in the ratsthroughapressor-independent for the induction of hypertension. and Hamel, F. G. (1998). Insulin design of hyperinsulinemic- mechanism. J. Clin. Invest. 97, Proc. Natl. Acad. Sci. U.S.A. 99, degradation:progressandpotential. euglycemic clamps in the 2509–2516. 8248–8252. Endocr.Rev.19,608–624. conscious mouse. Diabetes 55, Caron, K. M., James, L. R., Kim, H. Cassis, L. A. (2000). Fat cell metab- Goodarzi, M. O., Taylor, K. D., Guo, 390–397. S., Knowles, J., Uhlir, R., Mao, L., olism: insulin, fatty acids, and X.,Quinones,M.J.,Cui,J.,Li,X., FrontiersinEndocrinology|Diabetes January2013|Volume3|Article166|8 Fletcheretal. Metabolicphenotypingofrenintransgenicmice etal.(2005).Variationinthegene tissuerenin-angiotensinsystemand Ogihara, T., Asano, T., Ando, K., with chronic heart failure: insight formuscle-specificAMPdeaminase metabolic disorders: a review of Chiba,Y.,Sakoda,H.,Anai,M.,et fromtheStudiesOfLeftVentricular isassociatedwithinsulinclearance, molecular mechanisms. Crit. Rev. al. (2002). Angiotensin II-induced Dysfunction (SOLVD). Circulation ahighlyheritabletrait.Diabetes54, Biochem.Mol.Biol.47,379–390. insulinresistanceisassociatedwith 107,1291–1296. 1222–1227. Kim, S., and Moustaid-Moussa, N. enhanced insulin signaling. Hyper- Xiao,F.,Wei,H.,Song,S.,Li,G.,and Griffin,S.A.,Brown,W.C.,MacPher- (2000). Secretory, endocrine and tension40,872–879. Song, C. (2006). Polymorphisms son, F., McGrath, J. C., Wil- autocrine/paracrinefunctionofthe Ran, J., Hirano, T., and Adachi, M. in the promoter region of the son, V. G., Korsgaard, N., et al. adipocyte. J. Nutr. 130, 3110S– (2004). Chronic ANG II infu- angiotensinogengeneareassociated (1991). Angiotensin II causes vas- 3115S. sion increases plasma triglyceride withlivercirrhosisinpatientswith cular hypertrophy in part by a Langheinrich, M., Lee, M. A., Bohm, levelbystimulatinghepatictriglyc- chronichepatitisB.J.Gastroenterol. non-pressormechanism.Hyperten- M., Pinto, Y. M., Ganten, D., and eride production in rats. Am. J. Hepatol.21,1488–1491. sion17,626–635. Paul, M. (1996). The hyperten- Physiol. Endocrinol. Metab. 287, Yvan-Charvet,L.,Even,P.,Bloch-Faure, Hatada, S., Kuziel, W., Smithies, O., sive Ren-2 transgenic rat TGR E955–E961. M., Guerre-Millo, M., Moustaid- and Maeda, N. (1999). The influ- (mREN2)27 in hypertension Schmieder, R. E., Hilgers, K. F., Moussa,N.,Ferre,P.,etal.(2005). ence of chromosomal location on research. Characteristics and func- Schlaich, M. P., and Schmidt, B. Deletionof theangiotensintype2 theexpressionoftwotransgenesin tionalaspects.Am.J.Hypertens.9, M. (2007). Renin-angiotensin sys- receptor(AT2R)reducesadiposecell mice.J.Biol.Chem.274,948–955. 506–512. temandcardiovascularrisk.Lancet sizeandprotectsfromdiet-induced Jayasooriya, A. P., Mathai, M. L., Lee,M.A.,Bohm,M.,Paul,M.,Bader, 369,1208–1219. obesityandinsulinresistance.Dia- Walker,L. L.,Begg,D. P.,Denton, M., Ganten, U., and Ganten, D. Schorr, U., Blaschke, K., Turan, S., betes54,991–999. D. A., Cameron-Smith, D., et al. (1996). Physiological characteriza- Distler, A., and Sharma, A. M. (2008). Mice lacking angiotensin- tionofthehypertensivetransgenic (1998). Relationship between converting enzyme have increased ratTGR(mREN2)27.Am.J.Physiol. angiotensinogen, leptin and blood Conflict of Interest Statement: The energyexpenditure,withreducedfat 270(Pt1),E919–E929. pressure levels in young nor- authors declare that the research was mass and improved glucose clear- Lee, M. H., Song, H. K., Ko, G. J., motensive men. J. Hypertens. 16, conductedintheabsenceofanycom- ance. Proc. Natl. Acad. Sci. U.S.A. Kang,Y.S.,Han,S.Y.,Han,K.H., 1475–1480. mercial or financial relationships that 105,6531–6536. et al. (2008).Angiotensin receptor Shanik,M.H.,Xu,Y.,Skrha,J.,Dankner, couldbeconstruedasapotentialcon- Jeunemaitre,X.(2008).Geneticsofthe blockersimproveinsulinresistance R., Zick, Y., and Roth, J. (2008). flictofinterest. humanreninangiotensinsystem.J intype2diabeticratsbymodulat- Insulin resistance and hyperinsu- Mol.Med.(Berl.)86,637–641. ing adipose tissue. Kidney Int. 74, linemia: is hyperinsulinemia the Received: 04 November 2012; accepted: Jeunemaitre, X., Gimenez-Roqueplo, 890–900. cart or the horse? Diabetes Care 02December2012;publishedonline:07 A. P., Celerier, J., and Corvol, Massiera, F., Bloch-Faure, M., Ceiler, 31(Suppl.2),S262–S268. January2013. P. (1999). Angiotensinogen vari- D., Murakami, K., Fukamizu, A., Takahashi,N.,Li,F.,Hua,K.,Deng,J., Citation: Fletcher SJ, Kalupahana NS, antsandhumanhypertension.Curr. Gasc, J. M., et al. (2001a). Adi- Wang, C. H., Bowers, R. R., et al. Soltani-Bejnood M, Kim JH, Saxton Hypertens.Rep.1,31–41. poseangiotensinogenisinvolvedin (2007). Increased energy expendi- AM, Wasserman DH, De Taeye B, Jones, B. H., Standridge, M. K., and adipose tissue growth and blood ture,dietaryfatwasting,andresis- Voy BH, Quignard-Boulange A and Moustaid,N.(1997).AngiotensinII pressure regulation. FASEB J. 15, tance to diet-induced obesity in Moustaid-Moussa N (2013)Transgenic increaseslipogenesisin3T3-L1and 2727–2729. mice lacking renin. Cell Metab. 6, mice overexpressing renin exhibit glu- humanadiposecells.Endocrinology Massiera, F., Seydoux, J., Geloen, 506–512. coseintoleranceanddiet-genotypeinter- 138,1512–1519. A., Quignard-Boulange, A., Tur- Truett,G.E.,Heeger,P.,Mynatt,R.L., actions. Front. Endocrin. 3:166. doi: Kalupahana, N. S., Massiera, F., ban, S., Saint-Marc, P., et al. Truett,A.A.,Walker,J.A.,andWar- 10.3389/fendo.2012.00166 Quignard-Boulange, A., Ailhaud, (2001b).Angiotensinogen-deficient man,M.L. (2000). Preparationof This article was submitted to Frontiers G.,Voy, B. H.,Wasserman, D. H., mice exhibit impairment of diet- PCR-quality mouse genomic DNA in Diabetes, a specialty of Frontiers in et al. (2012). Overproduction of induced weight gain with alter- withhotsodiumhydroxideandtris Endocrinology. angiotensinogen from adipose tis- ationinadiposetissuedevelopment (HotSHOT). Biotechniques 29, 52, Copyright©2013Fletcher,Kalupahana, sue induces adipose inflammation, and increased locomotor activity. 54. Soltani-Bejnood, Kim, Saxton,Wasser- glucose intolerance, and insulin Endocrinology142,5220–5225. VanHarmelen,V.,Ariapart,P.,Hoffst- man,DeTaeye,Voy,Quignard-Boulange resistance. Obesity (Silver Spring) Mullins, J. J., Peters, J., and Ganten, edt,J.,Lundkvist,I.,Bringman,S., andMoustaid-Moussa.Thisisanopen- 20,48–56. D.(1990).Fulminanthypertension andArner,P.(2000).Increasedadi- accessarticledistributedundertheterms Kalupahana, N. S., and Moustaid- in transgenic rats harbouring the pose angiotensinogen gene expres- of the Creative Commons Attribution Moussa, N. (2012a). The renin- mouse Ren-2 gene. Nature 344, sioninhumanobesity.Obes.Res.8, License,whichpermitsuse,distribution angiotensinsystem:alinkbetween 541–544. 337–341. andreproductioninotherforums,pro- obesity, inflammation and insulin Najjar, S. M. (2002). Regulation of Vermes, E., Ducharme, A., Bourassa, vided the original authors and source resistance.Obes.Rev.13,136–149. insulin action by CEACAM1. M.G.,Lessard,M.,White,M.,and are credited and subject to any copy- Kalupahana,NishanS.,andMoustaid- Trends Endocrinol. Metab. 13, Tardif,J.C.(2003).Enalaprilreduces rightnoticesconcerninganythird-party Moussa, N. (2012b). The adipose 240–245. theincidenceofdiabetesinpatients graphicsetc. www.frontiersin.org January2013|Volume3|Article166|9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.