ARTICLE Received27Sep 2012|Accepted 3Dec 2012 |Published 15 Jan 2013 DOI:10.1038/ncomms2354 OPEN Transgenerational gene silencing causes gain of virulence in a plant pathogen Dinah Qutob1, B. Patrick Chapman1 & Mark Gijzen1 Avirulence(Avr)genesofplant pathogensencodeeffector proteinsthattriggerimmunityin plantscarryingappropriateresistance(R)genes.ThePhytophthorasojaeAvr3agenedisplays allelicvariationinmessengerRNAtranscriptlevels.P.sojaestrainswithdetectableAvr3agene transcripts are avirulent on plants carrying the R-gene Rps3a, whereas strains lacking Avr3a mRNAescapedetectionbyRps3aandarevirulent.Hereweshownon-Mendelianinteractions betweennaturallyoccurringAvr3aallelesthatresultintransgenerationalgenesilencing,and weidentifysmallRNAmoleculesof25nucleotidesthatareabundantingene-silencedstrains but not in strains with Avr3a mRNA. This example of transgenerational gene silencing is exceptional because it is naturallyoccurring and results in gain of virulence in a pathogenic organism. 1AgricultureandAgri-FoodCanada,1391SandfordStreet,London,OntarioN5V4T3,Canada.Correspondenceandrequestsformaterialsshouldbe addressedtoM.G.(email:[email protected]). NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications 1 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2354 P lant pathogens secrete effector proteins to enable disease, (Supplementary Fig. S2). These results demonstrate heritable but evolution favors host plant immune systems to transgenerational gene silencing of Avr3a in crosses between recognize these factors as cues for activating rapid defence P. sojae strains ACR10 and P7076. responses that arrest the infection1. Effector-triggered immunity in plants is the consequence of signalling events that are DistinctiveprofileofsmallRNA(sRNA)insilencedstrains.To determined by resistance (R) gene products interacting, directly explore the cause of transgenerational silencing of Avr3a, we or indirectly, with pathogen avirulence (Avr) effectors. performeddeepsequencingofsRNAfromeachparentalP.sojae Phytophthorasojaecausesstemandrootrotofsoybeanandis a major disease problem that plagues this crop2. The P. sojae strain ACR10 and P7076, and from a sample of F2 cultures with the genotype Avr3aP7076/Avr3aP7076. Results from this analysis Avr3a gene encodes a predicted protein of 111 amino acids that show that the profile of sRNA coverage across the Avr3a region includes a signal peptide, a host-targeting motif and a carboxy- differsbetweenACR10andP7076(Fig.1b).ThesRNAsequences terminal effector domain, which are common features of oomycete Avr effectors3–6. Avr3a resides in a 10.8 kilobase (kb) matching to the Avr3a region are far more abundant in strain ACR10 compared with P7076 (Table 2). The most prevalent of DNA segment that displays copy number variation among P. sojae strains5,6. Four haplotypes of Avr3a are known and these sRNA molecules are 24–26 nucleotides in length (Fig. 1c). In strain ACR10, there is a nearly continuous coverage of sRNA gain of virulence on the R-gene Rps3a is caused by messenger sequences that align to a 3.7kb span of the Avr3a interval RNA transcript differences between strains. In crosses between P. sojae strains P6497 (Avr3aP6497/Avr3aP6497) and P7064 includingthe50and30intergenicsegmentsbutnotextendinginto (Avr3aP7064/Avr3aP7064), avirulence towards Rps3a plants flankinggenes.Incontrast,instrainP7076coverageofmatching sRNAislimitedtoa0.3-kbsegmentoccurringinthe50intergenic segregates as a dominant Mendelian trait conditioned by the presence of Avr3aP6497. Transcripts of Avr3aP6497 but not region. Sequencing of sRNA from homozygous Avr3aP7076/ Avr3aP7064 mRNA are detectable in each of the parental strains Avr3aP7076 F2 cultures resulted in a profile of coverage that is and their progeny5,6. nearly identical to that from strain ACR10 (Avr3aACR10/ Avr3aACR10) rather than that from P7076 (Avr3aP7076/ Sequencing of Avr3a alleles and analysis of mRNA transcripts in17differentP.sojaestrainsrevealedfourdifferenthaplotypes6, Avr3aP7076). The sRNA profiles were replicated from indepen- dentsamplesofACR10,P7076,F andF cultures,andextended but the inheritance behaviour of each of these haplotypes in 1 2 to include samples from additional P. sojae strains P6497 and segregating populations has not been investigated. The present ACR16(Table2;SupplementaryFig.S3).Theresultsconsistently study was intended to test the inheritance Avr3a in P. sojae show a pattern of extensive sRNA coverage of Avr3a occurs in strainswithhaplotypesthataredifferentfromstrainsP6497and gene-silenced strains. P7064. To our surprise, we discovered that genetic outcrosses between P. sojae strains ACR10 and P7076 resulted in transgenerational gene silencing of Avr3a and gain of virulence Discussion on soybean plants carrying the Rps3a gene. Previous studies have shown that transformation of organisms, including species of Phytophthora, with recombinant DNA or RNA molecules can cause internuclear or trangenerational gene Results silencing that resembles our observations of naturally occurring Transgenerational gene silencing of Avr3a. To determine the silencing of Avr3a (refs7,8). Moreover, results fromcomparative inheritance of other Avr3a alleles, we created crosses between genome sequencing of species within the Phytophthora infestans P. sojae strains P7076 (Avr3aP7076/Avr3aP7076) and ACR10 clade suggest a role for epigenetic mechanisms in the rapid (Avr3aACR10/Avr3aACR10).ThestrainP7076isavirulent,whereas evolution of Phytophthora species9. Thus, we propose that strainACR10isvirulentonRps3aplants,andmRNAtranscripts transgenerational gene silencing of Avr3a in P. sojae is the are detectable for Avr3aP7076 but not Avr3aACR10, as we have resultofepigeneticchangesthatmodulatetheexpressionstateof previouslyshown5,6(Fig.1a).Toselecthybridprogenyandfollow this gene, and that are transmitted to progeny in a non- segregation of Avr3a alleles we used co-dominant DNA markers Mendelian fashion. derived from cleaved amplified polymorphic (CAP) fragments, Given the emerging functions of sRNAs in controlling becauseAvr3aP7076andAvr3aACR10differinsequence5,6.Atotal epigenetic marks and gene expression states in numerous of 28 F hybrid (Avr3aP7076/Avr3aACR10) progeny were isolated, experimental systems, it is noteworthy that we found an 1 scoredforvirulenceonRps3aplantsandassessedforthepresence association between sRNAs and gene silencing at the Avr3a of Avr3a mRNA transcripts by reverse transcriptase polymerase locus. In plants, sRNA of 24–26 nucleotides are involved in chainreaction(RT–PCR)(Table1,Fig.2,SupplementaryFig.S1). directing chromatin changes including DNA methylation, All28F progenywerevirulentonRps3aplantsandwerelacking whereas shorter ones of 21–22 nucleotides participate in mRNA 1 Avr3a mRNA transcripts. This result was unexpected because degradation10. Heterochromatic silencing in yeast is initiated by heretofore avirulent alleles of Avr3a that accumulate mRNA an interaction of sRNA and RNA polymerase II, which guides transcriptsweredominanttovirulentallelesthatlacktranscripts, histone modifications that control chromatin structure and gene such as in crosses between P. sojae strains P6497 and P7064. To expression11. Thus, the evidence suggests a role for sRNA in further explore the segregation of Avr3a alleles, virulence and directing the transgenerational gene expression changes of the mRNA transcript accumulation in this cross, we generated three P. sojae Avr3a gene. different F populations from separate F individuals. In all, 139 Our observations of transgenerational gene silencing of Avr3a 2 1 F progeny were tested for segregation of Avr3a alleles and provide a remarkable example of pathogen adaptation to host 2 mRNAtranscriptsandscoredforvirulenceonRps3aplants.The immune surveillance. The interactions between pathogens and Avr3aP7076andAvr3aACR10allelessegregatednormallyineachF their hosts are often interpreted as an evolutionary race, where 2 population but remarkably all 139 F progeny lacked Avr3a pathogen virulence and host resistance are at the forefront12. 2 mRNA transcripts and were virulent on Rps3a plants (Table 1). Transgenerational gene silencing of an Avr effector locus A sampling of eight F individuals, derived from homozygous represents a novel method of host immune evasion that offers 3 Avr3aP7076/Avr3aP7076 F cultures, indicates that gene silencing the ability to spread quickly in pathogen populations, but yet is 2 is maintained and meiotically stable in these inbred lines potentially reversible as the sequence of the Avr gene itself 2 NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2354 5,000 Avr3a 4,000 Allele mRNA Rps3a Avr3aP6497 + A tnuo 3,000 c e c Avr3aACR10 – V ne uq 2,000 e S Avr3aP7076 + A 1,000 Avr3aP7064 – V 0 21 22 23 24 25 26 27 28 Length of small RNA (nt) 256 ACR10 Avr3aACR10/Avr3aACR10 16 1 s da 0 e 7r 0 256 P7076 1 / e 16 Avr3aP7076/Avr3aP7076 g a 1 re v o c fo h 0 tpeD 21566 FA2v rp3oaoPl7076/Avr3aP7076 1 0 Avr3a 10.8 kb Figure1|CharacteristicsofP.sojaeAvr3aallelesanddeepsequencingofsRNA.(a)AschematicillustrationofAvr3aallelesfromfourdifferentstrainsof P.sojae.ThesegmentofDNAharbouringAvr3aandfourotherpredictedgenesisshown.Predictedopenreadingframesareindicatedbyboldarrows. ShownforeachalleleisthecopynumberoftheDNAsegment,presence(þ)orabsence((cid:2))ofAvr3amRNAtranscriptsanddiseaseoutcomeonRps3a plantsasvirulent(V)oravirulent(A).(b)ProfilesofsRNAfromP.sojaestrainsACR10andP7076,andfromapoolofF culturesselectedfortheir 2 Avr3aP7076/Avr3aP7076genotype.Averagedepthofcoverageacrossthe10.8-kbgenomesegmentcontainingAvr3awasnormalizedtothetotalnumberof trimmedreadsforeachsample.(c)SizeofsRNAaligningtothe10.8-kbDNAsegment.ThetotalnumberofcountsofRNAsequencereadsandthesizein nucleotides(nt)isshownforP.sojaestrainACR10. Table1| Segregationof Avr3a alleles andvirulence phenotypes inF andF populations (ACR10 (cid:3) P7076) of Phytophthora 1 2 sojae. Population n Avr3aallelegenotype P Virulence mRNA Avr3aACR10 Avr3aACR10 Avr3aP7076 A V (þ) ((cid:2)) Avr3aACR10 Avr3aP7076 Avr3aP7076 F 28 0 28 0 1.0 0 28 0 28 1 F -1 51 16 26 9 0.38 0 51 0 51 2 F -2 44 14 16 14 0.19 0 44 0 44 2 F -3 44 10 22 12 0.91 0 44 0 44 2 Thenumberofprogeny(n)ineachpopulationandthePvaluefromaw2-testforMendeliansegregationofgenotypesisshown.Virulent(V)andavirulent(A)phenotypeswerescoredbyinoculationof plants,andthepresence(þ)orabsence((cid:2))ofmRNAtranscriptsofAvr3aasdeterminedbyRT–PCR. remains unchanged. We predict that other eukaryotic pathogens Methods of plants, humans and animals will employ similar mechanisms Phytophthorasojaestrainsandcrosses.TheoriginofP.sojaestrainsand to escape detection by host immune systems. methodsofculture,propagationandoosporeisolationhavebeendescribed5,6,13–15. NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications 3 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2354 ACR10 P7076 Avr3aACR10/Avr3aACR10 Avr3aP7076/Avr3aP7076 s n ia rts la tn e ra P rps3a Rps3a rps3a Rps3a F -1 F -2 F -3 1 1 1 Avr3aACR10/Avr3aP7076 Avr3aACR10/Avr3aP7076 Avr3aACR10/Avr3aP7076 1 F rps3a Rps3a rps3a Rps3a rps3a Rps3a F -1 progeny 1 Avr3aACR10/Avr3aACR10 Avr3aACR10/Avr3aP7076 Avr3aP7076/Avr3aP7076 rps3a Rps3a rps3a Rps3a rps3a Rps3a F -2 progeny 1 Avr3aACR10/Avr3aACR10 Avr3aACR10/Avr3aP7076 Avr3aP7076/Avr3aP7076 2 F rps3a Rps3a rps3a Rps3a rps3a Rps3a F -3 progeny 1 Avr3aACR10/Avr3aACR10 Avr3aACR10/Avr3aP7076 Avr3aP7076/Avr3aP7076 rps3a Rps3a rps3a Rps3a rps3a Rps3a Figure2|PhotographsofP.sojae-infectedsoybeanplantsshowingdiseaseoutcomes.VirulenceassaysofP.sojaecultureswereperformedon greenhouse-grownseedlingsofsoybeancultivarWilliams(rps3a)andtheisolineL83-570(Rps3a)byhypocotylinoculationwithP.sojaemycelia.Shown arediseaseoutcomes6daysafterinoculationofplantswiththeparentalstrains,theF hybridsusedtoconstructeachofthethreeF populations,orwith 1 2 representativeF individualsillustratingeachAvr3agenotypefromthethreeF populationstested.Potsare10cmindiameter. 2 2 P.sojaeisanoomyceteanddiploidmicroorganismthatreproducessexually thereforeoosporescandevelopfromself-fertilizationorfromout-crossingwhen throughthedevelopmentofoogonia(femalegametophyte)andantheridia(male differentstrainsoftheorganismaregrowntogether2.Toperformsexualcrossesof gametophyte).P.sojaeishomothallicandisnotknowntohavematingtypes, P.sojae,parentalstrainsareco-cultivatedandoosporesareisolatedfromculture 4 NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2354 Table2| Deep sequencingofsRNAfrom Phytophthora sojae.* Samplew Avr3agenotype Avr3amRNAz Virulenceon Totalnumberof MatchestoAvr3a Normalizedmatches Rps3a trimmedsRNA segmenty per106reads sequencereads Parentalstrains P7076(rep1) Avr3aP7076/Avr3aP7076 þ A 4,640,922 306 65 P7076(rep2) Avr3aP7076/Avr3aP7076 þ A 13,040,733 659 50 ACR10(rep1) Avr3aACR10/Avr3aACR10 (cid:2) V 3,338,276 1,715 513 ACR10(rep2) Avr3aACR10/Avr3aACR10 (cid:2) V 13,164,585 9,488 720 Progeny F1-2 Avr3aACR10/Avr3aP7076 (cid:2) V 48,505,836 10,603 218 F2-2-14 Avr3aACR10/Avr3aACR10 (cid:2) V 50,286,928 30,809 612 F2-2-26 Avr3aACR10/Avr3aP7076 (cid:2) V 45,921,916 17,812 387 F2-2-35 Avr3aP7076/Avr3aP7076 (cid:2) V 45,141,247 12,883 285 F2pool(rep1) Avr3aP7076/Avr3aP7076 (cid:2) V 14,712,321 4,411 299 F2pool(rep2) Avr3aP7076/Avr3aP7076 (cid:2) V 20,495,465 6,204 302 Otherstrains P6497 Avr3aP6497/Avr3aP6497 þ A 17,919,740 345 19 ACR16 Avr3aACR16/Avr3aACR16 (cid:2) V 20,450,286 3,338 163 *SamplesofsRNAwerepurifiedfrommyceliaculturesofP.sojaeforlibraryconstructionandsequencing,asdescribedinMethodssection. wSourceofallP.sojaestrainsandsequenceofAvr3aalleleshaspreviouslybeendescribed5,6. zPresence(þ)orabsence((cid:2))ofAvr3amRNA,asdeterminedbyRT–PCR. yMatchesofsRNAsequencesto10.8kbAvr3asegment,asshowninFig.1. A,avirulent;rep,replicate;V,virulent. homogenatesbyaseriesofpurificationsteps13–15.Purifiedoosporesarediluted andtheisolineL83-570(Rps3a),accordingtostandardmethods5,6.Soybeanseeds andplatedoutonwateragartogerminate.Individualgerminatingoosporesare (20–30seedsperpot)weresownin10cmpotsandgrownfor7daysbeforedisease pickedunderadissectingmicroscopeandtransferredtorichgrowthmedium. testing.Forinoculation,P.sojaeculturesweregrownfor5–7dayson0.9%(v/v)V8 SamplesofpurifiedDNAfromtheresultingculturesaretestedusingco-dominant agarplates.Inoculumwaspreparedbyexcising1cmsegmentsofagarcutfromthe DNAmarkerspolymorphicbetweentheparents,todeterminewhetherthe growingedgeofmyceliacoloniesandmaceratingtheculturesthrougha3-ml individualsresultfromself-fertilizationorfromout-crossingeventsbetweenthe syringeattachedtoan18-gaugeneedle.Soybeanplantswereinoculatedinthemid- parentalstrains.SuchmarkersdesignedtodistinguishAvr3aACR10andAvr3aP7076 sectionofeachhypocotylbymakingasmallincisionforinjectionofthemycelial alleles(describedbelow)wereusedtoidentifyF progenyincrossesbetweenstrain slurry.Inoculatedplantswerecoveredwithplasticbagstomaintainhumidityfor 1 ACR10andP7076.TheF populationsweregeneratedbyisolatingoosporesfrom 2days.Diseasesymptomswereallowedtodevelopforanadditional4daysbefore 2 self-fertilizedF individuals. phenotypeswerescored.Aminimumofthreeindependentreplicatesofthedisease 1 assaywereperformedforeachP.sojaeculturetested. PurificationofnucleicacidsandscoringofmarkersandtranscriptsforAvr3a. DeepsequencingofP.sojaesRNA.ToprofilesRNAmoleculesofP.sojae MyceliaculturesofP.sojaefornucleicacidisolationweregrownonvegetablejuice cultures,samplesofRNAwerepurifiedfrommyceliaculturesasdescribedabove. (V8)agarmediaoverlaidwithcellophane(BioRad).Aftergrowthindarknessfor 7daysat251C,mycelia-growncellophanediskswerepeeledoffthemedia,frozen ThesizeselectionofsRNA,attachmentofadaptormoleculesandlibrarycon- at (cid:2)801CandgroundtoafinepowderinliquidN usingamortarandpestle. structionwasperformedusingpreparedsuppliesandreagents(Illuminasmall 2 RNAv1.5),followinginstructionsprovidedbythemanufacturer.Sequencingwas GenomicDNAwaspurifiedusingconventionalphenol–chloroformextraction proceduresfollowedbyprecipitationwithisopropanol16.PurfiedDNApelletswere performedonaflowcellinstrument(IlluminaGAII).Aftertrimmingtoremove adaptorsequencesandlow-qualitysequences,thedepthofsRNAcoverageofthe washedwith70%(v/v)ethanol,driedandresuspendedinasolutionof10mMTris Avr3aregionwasdeterminedbyalignment,andnormalizedtothenumberofreads HCl,pH7.4,0.1mMEDTA.CAPmarkerswereusedtotracksegregationofthe Avr3aACR10andAvr3aP7076alleles.ForCAPsanalysis,PCRamplificationwas perlibrary.Averagedepthofcoverageacrossthe10.8-kbgenomesegmentcon- performedwith5ngofgenomicDNAastemplateinavolumeof25mlunderthe tainingAvr3awasdeterminedusinga50-basepairmovingintervalandvalues followingconditions:0.2mMdNTPs,1.5mMMgCl,0.4mMofeachprimer normalizedtothetotalnumberoftrimmedreadsforeachsample.Thenumberof (forwardprimer50-GCTGCTTCCTTCCTGGTTGC-230andreverseprimer50-GCT trimmedreadsobtainedforeachofthesequencedsRNAlibrariesisprovedin GCTGCCTTTTGCTTCTC-30),1.25UTaqDNApolymeraseand1(cid:3) PCRbuffer Table2. asrecommendedbythesupplier(Invitrogen,LifeTechnologies).Theamplification wascarriedoutina96-wellplate(GeneAmpPCRSystem9700,Applied References Biosystems)underthefollowingconditions:941Cfor2min;40cyclesof941Cfor 1. Jones,J.D.&Dangl,J.L.Theplantimmunesystem.Nature444,323–329(2006). 40s,581Cfor40s,721Cfor2min;followedbyanextensionstepof10minat 2. Erwin,D.C.&Ribeiro,O.K.PhytophthoraDiseasesWorldwide(APSPress,1997). 721C.ForrestrictionanalysisofthePCRfragments,10mloftheamplifiedproducts 3. Tyler,B.M.Enteringandbreaking:virulenceeffectorproteinsofoomycete wereincubatedovernightat371Cinavolumeof20mlusing3UofAluI(New plantpathogens.CellMicrobiol.11,13–20(2009). EnglandBiolabs).Digestionproductswereresolvedbyagarosegelelectrophoresis 4. Oliva,R.etal.Recentdevelopmentsineffectorbiologyoffilamentousplant andvisualizedbyethidiumbromidestainingaccordingtostandardmethods16.The Avr3aACR10sequenceincludesanAluIsite,whereastheAvr3aP7076sequencelacks pathogens.CellMicrobiol.12,705–715(2010). therestrictionsiteandisnotdigested5,6. 5. Qutob,D.etal.Copynumbervariationandtranscriptionalpolymorphismsof PhytophthorasojaeRXLReffectorgenesAvr1aandAvr3a.PLoSONEe5066(2009). TotalRNAwasextractedfromfrozen,pulverizedmyceliasamplesinasolution 6. Dong,S.etal.SequencevariantsofthePhytophthorasojaeRXLReffector ofphenol-guanidineisothiocyanate(TRIzol,Invitrogen)accordingtoinstructions providedbythemanufacturer.Approximately1mgtotalRNAwassubjectto Avr3a/5aredifferentiallyrecognizedbyRps3aandRps5insoybean.PLoSONE DNaseI(Invitrogen)treatmentbeforeRT–PCR,aspreviouslydescribed5,6.Cycling e20172(2011). conditionsfordetectingtranscriptsofAvr3aaswellasfortheP.sojaeactingene 7. vanWest,P.,Kamoun,S.,van’tKlooster,J.W.&Govers,F.Internucleargene (forwardprimer50-CGAAATTGTGCGCGACATCAAG-30 andreverseprimer silencinginPhytophthorainfestans.Mol.Cell.3,339–348(1999). 50-GGTACCGCCCGACAGCACGAT-30),usedasacontrol,weredescribedas 8. vanWest,P.etal.InternucleargenesilencinginPhytophthorainfestansis abovewiththeexceptionthat25cycleswereusedfortranscriptanalysis. establishedthroughchromatinremodelling.Microbiology154,1482–1490(2008). 9. Raffaele,S.etal.GenomeevolutionfollowinghostjumpsintheIrishpotato faminepathogenlineage.Science330,1540–1543(2010). Plantinoculationandvirulenceassays.VirulenceassaysofP.sojaecultures 10.Molnar,A.,Melnyk,C.&Baulcombe,D.C.Silencingsignalsinplants:along wereperformedongreenhouse-grownseedlingsofsoybeancultivarWilliams(rps) journeyforsmallRNAs.GenomeBiol.12,215(2011). NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications 5 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2354 11.Zaratiegui,M.etal.RNAipromotesheterochromaticsilencingthrough Szczyglowskiforcommentsonthemanuscript.ThisworkwasfundedbytheAgriculture replication-coupledreleaseofRNAPolII.Nature479,135–137(2011). andAgri-FoodCanadaCropGenomicsInitiative. 12.Woolhouse,M.E.,Webster,J.P.,Domingo,E.,Charlesworth,B.&Levin,B.R. Biologicalandbiomedicalimplicationsoftheco-evolutionofpathogensand Author contributions theirhosts.Nat.Genet.32,569–577(2002). D.Q.andM.G.conceivedanddesignedtheexperiments.D.Q.performedtheexperi- 13.MacGregor,T.etal.GeneticandphysicalmappingofAvr1ainPhytophthora ments.D.Q.,B.P.C.andM.G.analysedthedata.M.G.wrotethepaper. sojae.Genetics160,949–959(2002). 14.Tyler,B.M.,Forster,H.&Coffey,M.D.Inheritanceofavirulencefactors Additional information andrestrictionfragmentlengthpolymorphismmarkersinoutcrossesof theoomycetePhytophthorasojae.Mol.Plant-MicrobeInteract.8,515–523 SupplementaryInformationaccompaniesthispaperathttp://www.nature.com/ (1995). naturecommunications 15.Gijzen,M.&Qutob,D.inOomyceteGeneticsandGenomics:Diversity, Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. InteractionsandResearchTools(edsLamour,K.&Kamoun,S.)303–329 (Wiley-Blackwell,2009). Reprintsandpermissioninformationisavailableonlineathttp://npg.nature.com/ 16.Sambrook,J.,Fritsch,E.F.&Maniatis,T.MolecularCloning:ALaboratory reprintsandpermissions/ Manual(ColdSpringHarborPress,1989). Howtocitethisarticle:Qutob,D.etal.Transgenerationalgenesilencingcausesgainof virulenceinaplantpathogen.Nat.Commun.4:1349doi:10.1038/ncomms2354(2013). Acknowledgements WethankTheCentreforAppliedGenomics(Toronto)andtheBCCancerAgency This work is licensed under a Creative Commons Attribution- (Vancouver)forsRNAsequencing;AldonaGaidauskas-Scott,IrinaMutiu,KuflomKuflu NonCommercial-ShareAlike3.0UnportedLicense.Toviewacopyof andAlexMolnarforcontributionstothework;andBrettTylerandKrzysztof thislicense,visithttp://creativecommons.org/licenses/by-nc-sa/3.0/ 6 NATURECOMMUNICATIONS|4:1349|DOI:10.1038/ncomms2354|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved.