ebook img

Transfer rna dynamics and transfer-messenger rna accommodation in bacterial ribosomes at the ... PDF

161 Pages·2013·9.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transfer rna dynamics and transfer-messenger rna accommodation in bacterial ribosomes at the ...

Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Transfer rna dynamics and transfer-messenger rna accommodation in bacterial ribosomes at the single-molecule level May Daher Farhat Wayne State University, Follow this and additional works at:http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Farhat, May Daher, "Transfer rna dynamics and transfer-messenger rna accommodation in bacterial ribosomes at the single-molecule level" (2012).Wayne State University Dissertations.Paper 565. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. TRANSFER RNA DYNAMICS AND TRANSFER-MESSENGER RNA ACCOMMODATION IN BACTERIAL RIBOSOMES AT THE SINGLE-MOLECULE LEVEL by MAY DAHER DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements DOCTOR OF PHILOSOPHY 2012 MAJOR: CHEMISTRY (Biochemistry) Approved by: Advisor Date DEDICATION Dedicated to my family ii ACKNOWLEDGEMENTS The accomplishment of this work would have been impossible without the support of numerous people. First and foremost, I would like to express my deep and sincere gratitude to my advisor Dr. David Rueda for his guidance, support, and understanding. By working with him, I have learned diverse ways to approach research problems that have enabled me to grow as a researcher and be persistent on accomplishing my goals. I also would like to thank my committee members, Dr.Christine Chow for her help, guidance especially during my last year. I greatly appreciate her invaluable suggestions and constructive comments to complete my dissertation. Dr. Philip Cunningham for his support and his suggestions and critical comments. Dr. Claudio Verani for his suggestions and my previous committee members, Dr. SantaLucia and Dr. Matthew Allen. I am very thankful to all the past and current lab members. I really appreciate them for being helpful. I am very grateful to Dr. Elvin Aléman for training me for the single- molecule technique and other techniques in the lab. Dr. Amanda Solem for the useful scientific discussion with her. Dr. Alfonso Brenlla for writing Matlab scripts for me and proofreading my thesis. I would like to give very special thanks to Dr. Sharla Wood for proofreading most of my professional documents and her help to improve my English language as it is my second language. I am very thankful to Dr. Rajan Lammichhane, Dr. Rui Zhao, Dr. Zhuojun Guo, Gayan, Bishnu, Chandani, Hansini, Imali, Pramodha, Eric, Sanka and Todd Faner. I am very grateful to all the RNA club members for their comments on my research and for allowing me to use their lab equipments whenever iii needed. I would like to thank Gayani from Dr. Chow lab for her help in my footprinting and MALDI experiments, Dr. Tek Lamichhane for teaching me to purify ribosomes. Dr. Chandrika Canugovi from Dr. Bhagwat lab for teaching me the expression and purification of proteins. Shirin Fatme from Dr. Hendrickson lab for her help with my phenylation assay. Last but not least, I am very thankful to my husband, Bassem and my daughters Rawan, Maryan and Ayah for their love, support, inspiration, and understanding. I would never have achieved this much without them. I am also very thankful to my parents for their encouragement in successful completion of my degree. Thank you all. iv TABLE OF CONTENTS Dedication.......................................................................................................................ii Acknowelegments.........................................................................................................iii List of Figures ..............................................................................................................xii CHAPTER 1: Bacterial Ribosome Structure and Function ........................................1 1.1 Introduction of bacterial ribosome.....................................................................1 1.2 Structure and function of bacterial ribosomes..................................................2 1.2.1 Initiation of protein synthesis............................................................................5 1.2.2 Peptide elongation and translocation...............................................................6 1.2.3 Termination of translation and ribosome recycling...........................................8 1.3 Ribosome dynamics...........................................................................................10 1.3.1 Ribosome ratcheting mechanism...................................................................11 1.3.2 tRNA fluctuation inside ribosomes.................................................................12 1.3.3 L1 stalk motion during ribosomal ratcheting...................................................13 1.4 Ribosome rescue system..................................................................................13 1.4.1 Causes and effects of stalled ribosomes.......................................................13 1.4.2 Discovery, structure and function of transfer-messenger RNA (tmRNA).......16 1.4.3 SmpB is a cofactor of tmRNA........................................................................18 1.4.4 Trans-translation mechanism.........................................................................19 1.5 Dissertation summary........................................................................................22 v 1.5.1 Aim 1. Determination of the SmpB-tRNA-like domain conformation in solution and the effect of metal ions.....................................................................................23 1.5.2 Aim 2. Develop a single-molecule assay to monitor tmRNA accommodation into a stalled ribosome............................................................................................23 1.5.3 Aim 3. Study of tmRNA entrance and accommodation in the ribosome at the single-molecule level...............................................................................................24 CHAPTER 2: Methods..................................................................................................26 2.1 Fluorescence Spectroscopy..............................................................................26 2.2 Fluorescence resonance energy transfer........................................................28 2.3 Fluorescence anisotropy...................................................................................31 2.4 Steady-state FRET..............................................................................................33 2.5 Time-correlated single-photon counting (TCSPC)..........................................34 2.6 Single-molecule..................................................................................................35 2.6.1 Slide preparation for single-molecule experiments........................................37 2.6.2 Channel assembly..........................................................................................38 2.7 Single-molecule protein-induced fluorescence intensity...............................39 2.8 Oxygen scavenging system..............................................................................40 2.9 RNA-metal interaction........................................................................................41 2.10 Preparation of 70S ribosomes and mRNAs...................................................42 2.11 Fluorophore labeling........................................................................................44 CHAPTER 3: Fluorescence Characterization of the tRNA-like Domain of tmRNA in Complex with SmpB (61).............................................................................................46 3.1 Introduction to tmRNA-SmpB complex structure and function.....................46 vi 3.2 Materials and methods.......................................................................................48 3.2.1 RNA purification and fluorophore labeling......................................................48 3.2.2 SmpB expression and purification..................................................................49 3.2.3 Application of anisotropy in our system..........................................................50 3.2.3 Quantum yield calculation..............................................................................51 3.2.5 Steady State FRET applications....................................................................53 3.2.6 Time-resolved FRET (trFRET) measurements..............................................53 3.3 Results.................................................................................................................55 3.3.1 SmpB binds tmRNAΔ tightly and specifically.................................................55 3.3.2 Mg2+ but not Na+ ions inhibit SmpB binding...................................................58 3.3.3 SmpB does not induce global conformational changes in tmRNA∆...............60 3.3.4 Mg2+ ions compress the tmRNA∆ structure. ..................................................64 3.4 Conclusions........................................................................................................67 CHAPTER 4: tRNAs Dynamics in Ribosomes...........................................................71 4.1 Introduction.........................................................................................................71 4.2 Materials and Methods......................................................................................72 4.2.1 Preparation of 70S ribosomes and mRNAs...................................................72 4.2.2 Expression and purification of EF-Tu and EF-G............................................73 4.2.3 GTPase activity assay in the presence of 70S ribosome...............................74 4.2.4 tRNAs fluorophore labeling............................................................................75 4.2.5 Phenylalanyl tRNA synthetase (pheRS) expression and purification.............77 4.2.6 Characterization of tRNA species..................................................................79 4.2.7 Ternary complex formation............................................................................83 vii 4.2.8 Ribosome complexes.....................................................................................84 4.2.9 Antibiotics assays...........................................................................................84 4.2.10 Single-molecule PIFE measurements..........................................................85 4.3 Results.................................................................................................................87 4.3.1 Fluorescence is only observed when all the components are present...........87 4.3.2 Sm-PIFE reveals two populations distribution of the PRE complex inside ribosomes................................................................................................................87 4.3.3 EF-G in the presence of non-hydrolysable GTP favors the static population inside the ribosome.................................................................................................90 4.3.3 Mg2+ alters the dynamics of tRNA in the ribosome........................................91 4.3.6 Puromycin binding increases the fraction of static molecules........................92 4.3.5 Viomycin shifts the dynamic of tRNA toward static motion............................93 4.3.6 Paromomycin binding shifts the dynamic equilibrium of tRNA toward multistate motion.....................................................................................................94 4.3.7 Characterization of binding of deacylated tRNA to the ribosome...................95 4.4 Conclusions........................................................................................................95 4.4.1 Spontaneous fluctuation of PRE translocation complex is a multistep processes................................................................................................................95 4.4.2 Mg2+ may stabilize tRNA-ribosome interactions.............................................97 4.4.3 Evidence of the relation between ribosome ratcheting and fluorescence fluctuation................................................................................................................97 CHAPTER 5: Monitoring the Entrance of the tmRNA-SmpB Complex into Stalled Ribosomes Using Sm-FRET......................................................................................100 viii 5.1 Introduction.......................................................................................................100 5.2 Materials and methods.....................................................................................102 5.2.1 In vivo and in vitro transcription of tmRNA...................................................102 5.2.2 SmpB mutation............................................................................................105 5.2.3 Labeling of SmpB by Cy5 acceptor fluorophore...........................................107 5.2.4 Alanyl-tRNA synthetase (AlaRS) expression and purification......................108 5.2.5 The quaternary complex formation..............................................................110 5.2.6 Dipeptide reaction........................................................................................110 5.2.7 Single-molecule experiment.........................................................................111 5.3 Results...............................................................................................................111 5.3.1 Transfer-messenger RNA entrance into the stalled ribosome is confirmed by a thin layer chromatography TLC experiment..........................................................111 5.3.2 Sm-FRET analysis of the tmRNA delivery to the stalled ribosomes............112 5.3.2 Tetracycline blocks progression of tmRNA into accommodation.................114 5.3.4 Kirromycin interferes with the full accommodation of tmRNA in the A site..116 5.3.5 The presence of non-hydrolysable GTP (GDPNP) prevents the tmRNA progression into the full accommodation state......................................................116 5.3.6 Effect of the length of the reading frame of mRNA on the tmRNA accommodation.....................................................................................................117 5.3.7 SmpB binds the ribosome in the absence of tmRNA...................................118 5.4 Conclusions......................................................................................................120 CHAPTER 6: Conclusions and Future Directions...................................................122 References..................................................................................................................128 ix

Description:
Dr. Alfonso Brenlla for writing Matlab scripts for me and proofreading most of my professional documents and her help to improve my English .. 4.2.5 Phenylalanyl tRNA synthetase (pheRS) expression and purification. molecule spectroscopy (15-17) and cryo-electron microscopy (cryo-EM)
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.