ebook img

Transcriptomic dissection reveals wide spread differential expression in chickpea during early time PDF

37 Pages·2017·21.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transcriptomic dissection reveals wide spread differential expression in chickpea during early time

RESEARCHARTICLE Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack SumantiGupta¤a☯,AnirbanBhar¤b☯,MoniyaChatterjee☯,AmartyaGhosh,SampaDas* DivisionofPlantBiology,BoseInstitute,CentenaryCampus,P1/12,CITScheme,VII-M,Kankurgachi, Kolkata,WestBengal,India a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 ¤a Currentaddress:DepartmentofBotany,RabindraMahavidyalaya,Champadanga,Hooghly,Pin,West a1111111111 Bengal,India a1111111111 ¤b Currentaddress:PostGraduateDepartmentofBotany,RamakrishnaMissionVivekanandaCentenary College,Rahara,Kolkata,WestBengal,India *[email protected] Abstract OPENACCESS Citation:GuptaS,BharA,ChatterjeeM,GhoshA, Plants’reactiontoundergroundmicroorganismsiscomplexassessilenatureofplants DasS(2017)Transcriptomicdissectionreveals widespreaddifferentialexpressioninchickpea compelsthemtoprioritizetheirresponsestodiversemicroorganismsbothpathogenicand duringearlytimepointsofFusariumoxysporumf. symbiotic.Rootsofimportantcropsaredirectlyexposedtodiversemicroorganisms,but sp.ciceriRace1attack.PLoSONE12(5): investigationsinvolvingrootpathogensaresignificantlyless.Thus,morestudiesinvolving e0178164.https://doi.org/10.1371/journal. rootpathogensandtheirtargetcropsarenecessitatedtoenrichtheunderstandingofunder- pone.0178164 groundinteractions.Presentstudyreportedthemolecularcomplexitiesinchickpeaduring Editor:VijaiGupta,TallinnUniversityof Fusariumoxysporumf.sp.ciceriRace1(Foc1)infection.Transcriptomicdissectionsusing Technology,ESTONIA RNA-seqshowedsignificantlydifferentialexpressionofmoleculartranscriptsbetween Received:November5,2016 infectedandcontrolplantsofbothsusceptibleandresistantgenotypes.Radarplotanalyses Accepted:May9,2017 showedmaximumexpressionalundulationsafterinfectioninbothsusceptibleandresistant Published:May25,2017 plants.Geneontologyandfunctionalclusteringshowedlargenumberoftranscriptscontrol- Copyright:©2017Guptaetal.Thisisanopen lingbasicmetabolismofplants.Networkanalysesdemonstrateddefensecomponentslike accessarticledistributedunderthetermsofthe peptidylcis/transisomerase,MAPkinase,beta1,3glucanase,serinethreoninekinase, CreativeCommonsAttributionLicense,which patatinlikeprotein,lactolylglutathionelyase,coproporphyrinogenIIIoxidase,sulfotrans- permitsunrestricteduse,distribution,and ferases;reactiveoxygenspeciesregulatingcomponentslikerespiratoryburstoxidase, reproductioninanymedium,providedtheoriginal authorandsourcearecredited. superoxidedismutases,cytochromeb5reductase,glutathionereductase,thioredoxin reductase,ATPase;metabolismregulatingcomponents,myoinositolphosphate,carboxyl- DataAvailabilityStatement:Therawpairedend sequencedatawasdepositedtoNationalCentrefor atesynthase;transportrelatedgammatonoplastintrinsicprotein,andstructuralcomponent, BiotechnologyInformation’s(NCBI)ShortRead ubiquitinstoserveasimportantnodalsofdefensesignalingnetwork.Thesenodalmole- Archivedatabaseundertheaccessionnumberof culesprobablyservedashubcontrollersofdefensesignaling.Functionalcharacterization SRP041784andBioProjectIDPRJNA246444. ofthesehubmoleculeswouldnotonlyhelpindevelopingbetterunderstandingofchickpea- Funding:TheauthorsareindebtedtoDirector, Foc1interactionbutalsoplacethemaspromisingcandidatesforresistancemanagement BoseInstituteforpartiallysupportingthefundsto programsagainstvascularwiltoflegumes. performthepresentstudyandprovidingthe centralinstrumentationfacilities.SGandMCare thankfultoBoseInstitutefortheirfellowshipsas PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 1/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay ResearchAssociates.AB(09/015(0378)/2009- Introduction EMR-1)andAG(09/015(0481)/2015-EMR-1)are Legumesarewellknownfortheirnutritivevalueconsistingofeasilydigestibleproteins[1]. gratefultoCouncilofScientificandIndustrial Research,Indiafortheirfellowships.Therewasno Besides,theirabilitytoformnitrogenfixingnoduleswithGramnegativerhizobiafurtheradds additionalexternalfundingreceivedforthisstudy. totheirimportance.Butknowledgeonhowtheseplantsencounterwithharmfulpathogensis stilllimited.Substantialresearcheshavebeencarriedoutoninteractionsinvolvingmodel Competinginterests:Theauthorsdeclarethatthey havenocompetinginterests. legumeplantslikeMedicagoandLotusandsoilinhabitingpathogens[2,3],butreportsoncrop plantsthatarealsoexposedtodreadfulattacksbydiversemembersofsoilpathogensaresignif- icantlyinadequate.Advancementofbiotechnologicaltoolsandtheirapplicationshaveadded remarkablytothegenomesequencingandannotationprojectswithdraftgenomesequences beingavailableformanyimportantcroplegumeslikesoybean,pigeonpea,chickpeaetc. [4,5,6,7].However,withtheexceptionofsoybean,researchesonothercroplegumesaregradu- allyincreasing[8]. ChickpeatopstheIndianlistofimportantpulselegumes[9].But,vascularwiltdiseaseof chickpeaisknowntoaccountfor10–15%annualyieldloss,whichescalatestototallossunder specificedaphicandenvironmentalconditionswellsuitedforthereplicationandestablish- mentofFoc.Amongst8pathovars(0,1B/C.1–6),Race1hasreceivedprimescientificattention duetoitswidespreaddistribution,thuscausingmaximumdamage[10].Fusariumwiltwas knowntobeprimarilymanagedbyconventionalbreedingprograms.Butpathogenicvariabil- ityandmutabilityhaveledtothebreakdownofnaturalresistanceoverprolongedperiods[11]. Besides,longtermapplicationofchemicalfungicideshasalsoraisedserioussocialconcern regardinghealthandenvironmentalsafety[12].Hence,asafeandsustainablealternativeis stillonthelookoutformanagingFusariumwiltofchickpea. Previousreportsonchickpea-Foc1interactiondocumentedtranscriptomicalterationsdur- ingpathogenattack[13–16].Besides,biochemicalinvestigationsreportedinductionofseveral stressinducedmarkerisozymes[17].Geneticmappingandlinkageanalysesidentifiedchro- mosomelocilinkedtoFusariumresistanceinchickpeaaswellasotherlegumes[18–19].Even then,theknowledgeofsequentialeventsandinvolvementofresistantgene(s)inmediating thesignalingcascadeisstillobscure.Studiesconductedbythepresentgroupmadeattemptsto delineatethehostresponsesuponpathogenassaultinstepsandphasewisemanner.Initial studiesidentifiedthetemporalsequencesofpathogenprogressionandtheirexternalmanifes- tations[14].Followingstudiesfiguredouttheprimarymetabolismtobetheinitialtargetof thewoundinducingFoc1thatwasfoundtooverpowerthesusceptiblehost[15].Reactiveoxy- genspecieswereidentifiedastobetheinitialtriggeringfactorignitingtheentiredefensesig- nalingcascadewhichwasfoundtobewellcoordinatedwithinternalcellulartransportersand transcriptionfactors[16].Inaparallelattemptproteomicanalyseswereconductedtoidentify thedifferentialdefenseresponsiveproteinsmediatingtheentiresignalingsequencesatearly timepointsofpathogeninvasion[20].Withalltheresultstakentogetherthechickpea-Foc1 casestudyhasundoubtedlybroughtforthseveralsignificantresultsrelatingtotheunderstand- ingofthecomplexdisorderofvascularwiltbut,manyhubsofinplantasignalingnetworkyet remainsincomprehensiblethatnecessitatesmoretranscriptomicanalyticalresults.Although, largebodyofinformationindicatestowardssimultaneousparticipationofmanyintricatemet- aboliceventsbutlackoffullyannotatedhostgenomesequencefailstoplugthegapinthispar- ticulardefensenetwork.Moreover,widegenomicdiversificationacrossmodellegumesand croplegumesfailstocompletelytransfertheknowledgeofmetaboliceventsfrommodelplants tocropplants[21].Thus,interactionalcasestudiesofcroplegumesandpathogensdemand individualisticapproach. Theadventofnextgenerationsequencingtoolsandtechniqueshasmadeaparadigmshift inthefieldoffunctionalgenomicsasitgenerateslargedatasets.InpresentstudyRNA-seq PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 2/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay wasperformedatearlytimepoint(48hoursaspointedouttobecrucialforthecasestudy) uponFoc1invasionanddifferentialtranscriptomicdissectionwasperformed.Theanalyses revealedinductionaswellassuppressionofseveraldefenseresponsivetranscripts.Finally attemptsweremadetomapthedefenseresponsivecomponentsinaninter-connecteddefense regulatorynetworkandidentifytheregulatoryhubsthatpresumablycontroltheentiredefense signalingcascadeinchickpeaduringFoc1attack. Results Analysesofsequencequality,readassemblyandtranscriptannotation Ourpreviousstudieszeroedonthetimepointof48hthatshowedsignificanttranscriptomic andproteomicalterations[15,16,20](Fig1,S1Fig).Nextgenerationsequencinganalyseswas performedonsamplecollectedat48hpostinoculationwithFoc1.Pairedendsequencedatawas depositedtoNationalCentreforBiotechnologyInformation’s(NCBI)ShortReadArchivedata- baseundertheaccessionnumberofSRP041784andBioProjectIDPRJNA246444.Following adaptertrimming132.55million,89.6million,77.84million,89.86millionfilteredreadswere obtainedforinfectedJG62(representedbyJ4),uninfectedJG62(representedasJC),infected WR315(representedasW4),uninfectedWR315(representedasWC),respectively.Highqual- ity(>Q20)basesweremorethan96%forallthesampleswithlownonATGCcharacters (0.09%)forallthesamples(S1Table,S2Fig).Filteredreadswhenassembledintocontigsgener- ated79375forJ4,45341forJC,59828forW4and58650forWCnumberofcontigs(S2Table, S3Fig).Contigswerefurtherassembledintotranscriptsgenerating77770transcriptsforJ4, 51366transcriptsforJC,62713transcriptsforW4and53993transcriptsforWCrespectively (S3Table,S4Fig).Representativetranscripts(RT)afterclusteringcontained85915transcripts forJand75626transcriptsforW(S4Table).Lengthanddistributionoftranscriptsalongwith representativetranscriptareprovidedinFig2A.RTsofbothJandWwerefoundtobeATrich (60.33%forJand60.20%forW)(Fig2B).Amongstthetranscriptsgenerated,annotationswere providedto35597forJ4,31726forJC,31636forW4and35190forWC,respectively.50%iden- tityand40%querycoveragewasusedascutoffforannotatingthetranscripts(S5Table). Differentiallyexpressedtranscript Numberofsignificantdifferentialtranscripts(withQvalues)betweenJ4andJCwere2090 whilebetweenW4andWCwere881(S6TableandS7Table).Fig3demonstratestheoccur- renceofdifferentialtranscriptsbetweensamples.Outoftotal466differentiallycharacterized transcripts,320wereobtainedfromJ4,78ofJC,while34transcriptswerecommonforboth (Fig3A).IncaseofW4whencomparedtoWC,233weregeneratedfromW4,172forWC, while20transcriptswerecommonforboth(Fig3B).WhencomparisonwasmadebetweenJC andWC,155wasfoundfromWC,75fromJCand37wereincommon(Fig3C).Similarly, whilecomparingJ4andW4,124wereobtainedfromW4,225fromJ4and129werecommon forbothW4(Fig3D).Whilecomparingtotalupregulatedtranscripts,58wereupregulated betweenJCandJ4;and50wereupregulatedbetweenWCandW4.35werecommonlyupregu- latedforbothsamplesets(JCvsJ4andWCvsW4)(Fig3E,S8Table,S5Fig).Asfordownreg- ulatedonly4wereobtainedbetweenWCandW4,23betweenJCandJ4,and7werefoundto becommonlydownregulatedforbothsamplesets(JCvsJ4andWCvsW4)(Fig3F,S8Table, S5Fig).ComparisonbetweenallthefoursamplesJ4,JC,W4andWCshowed183transcripts appearedsolelyfromJ4,62fromJC,115fromW4and156fromWC.21transcriptswerecom- monforJ4andWC,8werecommonforJCandJ4,and13werecommonforJC,J4,andWC. 5transcriptswerecommonforWCandW4,3werecommonforWC,W4,andJC,11were commonforallthefoursamples.12transcriptswerecommonforJCandWC,1forJC,WC PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 3/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig1.SchematicrepresentationdescribingtherationalebehindtheworkplanandNGSanalysisworkflowforthewholetranscriptomic.Upper paneloftheFlowdiagramdepicts48hascrucialtimepointfordifferentialexpressionoftranscriptsinchickpeaafterFoc1infectionandlowerpanel describestheNGSworkflowanditsdownstreamanalyses. https://doi.org/10.1371/journal.pone.0178164.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 4/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig2.Graphicalpresentationofrepresentativetranscriptsofsusceptible(JG62)andresistant (WR315)chickpeaandtheirATGCdistribution.A.Graphrepresentsthebasepairdistributionof transcriptsofJG62(J4andJC)andWR315(W4andWC)withtheirrepresentativetranscripts.Piechart representsunigeneATGCclusterofsamplesB.susceptible(JG62)andC.resistant(WR315)chickpea genotypesrespectively. https://doi.org/10.1371/journal.pone.0178164.g002 andW4,3werecommonforJCandW4,and2werecommonforJ4,JCandW4,while113 werecommonforJ4andW4,respectively. Radarplotanalysisexplainsthedistributionoffoldchangeoftheentiretranscriptsasob- tainedfromthebasemeanvaluesofeachtranscript.Thebluelineexplainsthefoldchange valueoftranscriptsthatarefoundonlyinsusceptibleJG62plantswhereasredlinedemonstrates theexpressionvaluesoftranscriptsfoundexclusivelyinresistantWR315plants.Theregion whereredandbluelinesoverlapwithoneanotherexplainstranscriptsthatarefoundinboth JG62andWR315plants.Greenlineindependentlyexplainsthetranscriptsthatarefoundtobe inducedinJG62andWR315plantsonlyafterinfection.Allthetranscriptsundulatesignifi- cantlybutthetranscriptsthatarefoundtobeinducedonlyafterinfectionexhibitmaximum expressionalvalues.Thesurfacedistributionofthetranscriptsalsoexhibiteddefense,metabo- lism,signalingandROSregulationswithvariedexpressionalvalues(Fig4;S8Table,S9Table). Geneontologyandfunctionalclassification Clusteringoftotalannotatedtranscriptsbasedongeneontologyshowedvaryingdistribution oftranscriptsacrossbiologicalprocess,molecularfunctionandcellularcomponents(Fig5). PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 5/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig3.Venndiagramshowinginter-distributionoftranscripts.DistributionoftranscriptsbetweenA.JC (uninducedsusceptible)andJ4(inducedsusceptible)B.WC(uninducedresistant)andW4(induced PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 6/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay resistant)C.JCandWC,D.J4andW4,E.DistributionofupregulatedtranscriptsbetweenJUP(upregulated ininducedsusceptiblewhencomparedtouninducedsusceptiblei.ecomparingJ4andJC)andWUP (upregulatedininducedresistantwhencomparedtouninducedresistanti.ecomparingW4andWC)F. DistributionofdownregulatedtranscriptsbetweenJDown(downregulatedininducedsusceptiblewhen comparedtouninducedsusceptiblei.ecomparingJ4andJC)andWDown(downregulatedininduced resistantwhencomparedtouninducedresistanti.e.comparingW4andWC).G.Distributionoftranscripts betweenJC,J4,WC,W4. https://doi.org/10.1371/journal.pone.0178164.g003 Amongstseveralbiologicalprocesses,proteolysis,regulationofDNAdependentandindepen- denttranscription,carbohydratemetabolismshowedmaximumnumberoftranscriptsforall thefoursamples.Directdefenseresponsewasfoundtobecontrolledbycomparativelyless numberoftranscripts.Amongstthetranscriptsregulatingmolecularfunction,transcriptsnor- malizingATPbindingwerefoundtobethehighest.Othertranscriptsrelatedtobindingwere alsofoundinfairlylargenumbers.Presenceofrelativelymorenumberoftranscriptsrelatedto membrane,nucleusandcytoplasmwerealsofound(Fig5). Functionalcategorizationdemonstratesthatamongeightdistinctcategoriesthehighest numberoftranscriptsbelongstothemetabolismgroup.Signalinganddefenserelatedtran- scriptsaretheothertwomajorgroupsthatarefoundtobeinducedafterinfection.Protein synthesisanddegradationeventswerealsofoundtobeinduced[20].Besides,structuralcom- ponents,storageandtransportrelatedtranscriptswerealsoinduced(Fig6.S8Table). qRT-PCRanalysesofrepresentativegenes MostoftheselectedtranscriptsshowedupregulationinbothJG62andWR315plantsexcept SEO,PECandHDH.AmongtheupregulatedcomponentsofthetranscriptsEF1,MPKand PR1displayedhighestexpressionalinductionandallthethreetranscriptsshowgreaterinduc- tioninsusceptibleplantsascomparedtotheresistantplants.Besides,PR5Bexpressionwas foundtobelargelycomparableinbothJG62andWR315plants.IncaseofASCENDthe inductioninJG62ismorethanthatofWR315plants.Restofthepositivelyinducedtranscripts e.g.HSP,IFG,WRandENODtheexpressionlevelofWR315wasmorethanthatofJG62, whereas,othertranscriptsmarginallyvariedamongthemselves.Contrarily,PTR5inducedin JG62buttheexpressionwasdramaticallyreducedinWR315plants.Amongthedownregu- latedtranscriptsexceptSEO,expressionofothertranscripts(PEC,HDH)weresignificantly lowincaseofsusceptible(JG62)plantsthanthatofresistant(WR315)plants(Fig7). Networkanalysesofdifferentiallyexpressedfunctionalclasses NetworkanalyseswasperformedwithonlythosesetofTAIRproteinhomologuesthatshowed interactionswithatleastasingleneighborwhilerestoftheproteinsshowingnointerconnec- tionswithrelativeswereeliminated.Interactionmapshowedthelocationofseveraldefense responsivecomponentssuchasTOR(Serinethreonineproteinkinase),ROC(Peptidylprolyl- cistransisomerase),BGL2(Betaglucosidase),ATGLX(Lactolylglutathionelyase),ST2A(Sul- fotransferase),MPK6(MAPkinase),CSLD3(Cellulosesynthase),PGIP(Polygalactouronase inhibitingprotein)andLIN2(CoproporphirinogenIIIoxidase).StoragecomponentPLA2A (Patatinlikeprotein)andROSrelatedcomponentATP1(VtypeATPase),VHA-A(Vtype ATPase),ATCBR(Cytochromeb5reductase),RBOH(Respiratoryburstoxidase),CSD/MSD (Manganeseorcoppersuperoxidedismutase),RSR4(Reducedsugarresponse4),NTRC/B (NTRC/NADPH-dependentthioredoxinreductaseC/B)werealsofound(Table1,Fig8, S1File). LargenumberofmetaboliccomponentslikeMEE58(S-adenosyl-L-homocysteinehydro- lase),CYT1(Cytokinesisdefective1),GLT1(Glucosetransporter1),MTO3(Methionineover- PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 7/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig4.Radarplotrepresentingthedistributionofdifferentialexpressionoftranscripts.Upperpanelrepresentstotal distributionoftranscriptsbetweenJC,J4,WC,andW4.Lowerpanelrepresentsdistributionoftranscriptsaccordingtotheirbiological PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 8/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay functions.ThebluelineexplainsthefoldchangevalueoftranscriptsthatarefoundonlyinsusceptibleJG62plantswhereasredline demonstratestheexpressionvaluesoftranscriptsfoundexclusivelyinresistantWR315plants.Theregionwhereredandbluelines overlapwithoneanotherexplainstranscriptsthatarefoundinbothJG62andWR315plants.Greenlineindependentlyexplainsthe transcriptsthatarefoundtobeinducedinJG62andWR315plantsonlyafterinfection. https://doi.org/10.1371/journal.pone.0178164.g004 accumulator3),APR3(APSreductase3),C4H(Cinnamate4-hydroxylase),LOX1(Lipoxygen- ase1),PCK1(Phosphoenolpyruvatecarboxykinase),CWINV1(Cellwallinvertase1),ADH1 (Alcoholdehydrogenase),ACO1(ACCoxidase1),MLS(Malatesynthase),ASN1(Glutamine- dependentasparaginesynthase1),RNR1(Ribonucleotidereductase1),HOT5(Sensitiveto hottemperatures5),SHM1(Serinehydroxymethyltransferase1),FDH(Formatedehydroge- nase),P5CS1(Delta1-pyrroline-5-carboxylatesynthase1),LIP1(Lipase1),SDH1(Succinate dehydrogenase),RHM1(Rhamnosebiosynthesis1),AMY1(Alpha-amylase-like),SBE2.2 (Starchbranchingenzyme2.2),MTLPD2(Lipoamidedehydrogenase2),MIPS2(Myo-inosi- tol-1-phosphatesynthase2),IPP2(Isopentenylpyrophosphate:dimethylallylpyrophosphate isomerase2),GDH3(Glutamatedehydrogenase3),TIM(Glyceraldehydedehydrogenase phosphate),IVD(Isovaleryl-coa-dehydrogenase),PMDH1(Peroxisomalnad-malatedehydro- genase1),ADSS(Adenylosuccinatesynthase),GR(Glutathionereductase),SUS4(Sucrose synthase4)werefoundtointerconnectinthemetabolicregulatorypathway(Table1,Fig9, S1File).SignalregulatingmoleculessuchasCAM5(Calmodulinprotein5),CAM7(Calmodu- linprotein7),HSF1(Heatshockfactor1),HSP101(Heatshockprotein101),HSP70(Heat shockprotein70),GRF2(14-3-3Gboxbindingprotein),MYB5(MYBtranscriptionfactor), MYB108(MYBtranscriptionfactor),WRKY41(WRKYtranscriptionfactor),RAP2.3(Ethyl- eneresponsivetranscriptionfactor2b),DREB1A(CRT/DREbindingfactor4),NDPK2(Nu- cleosidediphosphatekinase),CSN5A(COP9Signalosome5A),ARAC3(GTPase)werefound tobelocatedinthenetwork(Table1,Fig10,S1File). ProteinsynthesisanddegradationrelatedcomponentsFKBP15-2(Peptidyl-prolylcis-trans isomerase),UBQ1(Ubiquitin1),UBQ10(Ubiquitin10),UBQ35(Ubiquitin35),PaB1(Protea- somesubunit),HD(Histonedeacetylase),RPT2A(Proteasomecomponent),T6D22.3(Elon- gationfactor),EMB2780(DNApolymerase),LBA1(Regulatorofnonsensetranscriptlike protein),RUB1(Ubiquitin),PBE1(Proteasomecomponents),ATHMG(FACTcomplexsub- unitSSRP1)weremappedintheinteractionpathway.Besidesseveralstructuralcomponents likeLHB1B1(Chlorophylla/bbindingprotein),LHCA2(Chlorophylla/bbindingprotein), DeltaTIP(DeltaTonoplanstintrinsicprotein),GammaTIP(GammaTonoplanstintrinsic Fig5.Geneontologybasedanalysesandfunctionalclusteringoftotaltranscripts.Geneontology studydisplayvaryingdistributionoftranscriptsacrossbiologicalprocess,molecularfunctionandcellular components. https://doi.org/10.1371/journal.pone.0178164.g005 PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 9/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig6.FunctionalclusteringoftotaltranscriptwithfragmentedpiechartusingChartToolsoftwarepackage.Individualpiefragmentsare distributedintogenepyramidshavingfourzones.A.representstranscriptsfoundinbothJG62andWR315onlyafterinfection;B.representstranscripts foundinbothuninducedJG62andWR315,C.representstranscriptsfoundonlyinWR315afterinfectionandD.representstranscriptsfoundonlyinJG62 afterinfection. https://doi.org/10.1371/journal.pone.0178164.g006 protein),ELIP1(Earlylightinducibleprotein),GCP2(Tubulingammachain),FLA12(Fasciclin likearabinogalactanprotein),IRX3(Cellulosesynthase),ATFH8(Forminlikeprotein),NFU4 (NifUlikeprotein),TUA6(Tubulinalphachain),SMC2(Structuralmaintenanceofchromo- some),F8L15.150(KRRmotifcontainingprotein1)werefound(Table1,Fig11,S1File). TransportcontrollingcomponentssuchasCHX20(K+/N+antiporter),SKD(Vacuolar sortingprotein),NRT(Nitratetransporter),ATGCN(ABCtransporterfamilyprotein),SUC2 (Sugartransporter)werefoundtointeractintheinteractionpathway(Table1,Fig12,S1File). Amongsttheseveralcomponentsmentionedabove,PLA2showedoverlappingroleinstor- ageanddefense.Besides,ATGLX1,ST2A,LIN2andCSLD3,servedasregulatorsofdirect defense,aswellasactedinregulatinghostmetabolicactivities.TOR,MIPSandLIP1showed PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 10/37

Description:
Previous reports on chickpea-Foc1 interaction documented transcriptomic alterations upon Foc1 invasion and differential transcriptomic dissection was conditions where the stomatal performance and changes are accountable.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.