RESEARCHARTICLE Transcriptomic dissection reveals wide spread differential expression in chickpea during early time points of Fusarium oxysporum f. sp. ciceri Race 1 attack SumantiGupta¤a☯,AnirbanBhar¤b☯,MoniyaChatterjee☯,AmartyaGhosh,SampaDas* DivisionofPlantBiology,BoseInstitute,CentenaryCampus,P1/12,CITScheme,VII-M,Kankurgachi, Kolkata,WestBengal,India a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. a1111111111 ¤a Currentaddress:DepartmentofBotany,RabindraMahavidyalaya,Champadanga,Hooghly,Pin,West a1111111111 Bengal,India a1111111111 ¤b Currentaddress:PostGraduateDepartmentofBotany,RamakrishnaMissionVivekanandaCentenary College,Rahara,Kolkata,WestBengal,India *[email protected] Abstract OPENACCESS Citation:GuptaS,BharA,ChatterjeeM,GhoshA, Plants’reactiontoundergroundmicroorganismsiscomplexassessilenatureofplants DasS(2017)Transcriptomicdissectionreveals widespreaddifferentialexpressioninchickpea compelsthemtoprioritizetheirresponsestodiversemicroorganismsbothpathogenicand duringearlytimepointsofFusariumoxysporumf. symbiotic.Rootsofimportantcropsaredirectlyexposedtodiversemicroorganisms,but sp.ciceriRace1attack.PLoSONE12(5): investigationsinvolvingrootpathogensaresignificantlyless.Thus,morestudiesinvolving e0178164.https://doi.org/10.1371/journal. rootpathogensandtheirtargetcropsarenecessitatedtoenrichtheunderstandingofunder- pone.0178164 groundinteractions.Presentstudyreportedthemolecularcomplexitiesinchickpeaduring Editor:VijaiGupta,TallinnUniversityof Fusariumoxysporumf.sp.ciceriRace1(Foc1)infection.Transcriptomicdissectionsusing Technology,ESTONIA RNA-seqshowedsignificantlydifferentialexpressionofmoleculartranscriptsbetween Received:November5,2016 infectedandcontrolplantsofbothsusceptibleandresistantgenotypes.Radarplotanalyses Accepted:May9,2017 showedmaximumexpressionalundulationsafterinfectioninbothsusceptibleandresistant Published:May25,2017 plants.Geneontologyandfunctionalclusteringshowedlargenumberoftranscriptscontrol- Copyright:©2017Guptaetal.Thisisanopen lingbasicmetabolismofplants.Networkanalysesdemonstrateddefensecomponentslike accessarticledistributedunderthetermsofthe peptidylcis/transisomerase,MAPkinase,beta1,3glucanase,serinethreoninekinase, CreativeCommonsAttributionLicense,which patatinlikeprotein,lactolylglutathionelyase,coproporphyrinogenIIIoxidase,sulfotrans- permitsunrestricteduse,distribution,and ferases;reactiveoxygenspeciesregulatingcomponentslikerespiratoryburstoxidase, reproductioninanymedium,providedtheoriginal authorandsourcearecredited. superoxidedismutases,cytochromeb5reductase,glutathionereductase,thioredoxin reductase,ATPase;metabolismregulatingcomponents,myoinositolphosphate,carboxyl- DataAvailabilityStatement:Therawpairedend sequencedatawasdepositedtoNationalCentrefor atesynthase;transportrelatedgammatonoplastintrinsicprotein,andstructuralcomponent, BiotechnologyInformation’s(NCBI)ShortRead ubiquitinstoserveasimportantnodalsofdefensesignalingnetwork.Thesenodalmole- Archivedatabaseundertheaccessionnumberof culesprobablyservedashubcontrollersofdefensesignaling.Functionalcharacterization SRP041784andBioProjectIDPRJNA246444. ofthesehubmoleculeswouldnotonlyhelpindevelopingbetterunderstandingofchickpea- Funding:TheauthorsareindebtedtoDirector, Foc1interactionbutalsoplacethemaspromisingcandidatesforresistancemanagement BoseInstituteforpartiallysupportingthefundsto programsagainstvascularwiltoflegumes. performthepresentstudyandprovidingthe centralinstrumentationfacilities.SGandMCare thankfultoBoseInstitutefortheirfellowshipsas PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 1/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay ResearchAssociates.AB(09/015(0378)/2009- Introduction EMR-1)andAG(09/015(0481)/2015-EMR-1)are Legumesarewellknownfortheirnutritivevalueconsistingofeasilydigestibleproteins[1]. gratefultoCouncilofScientificandIndustrial Research,Indiafortheirfellowships.Therewasno Besides,theirabilitytoformnitrogenfixingnoduleswithGramnegativerhizobiafurtheradds additionalexternalfundingreceivedforthisstudy. totheirimportance.Butknowledgeonhowtheseplantsencounterwithharmfulpathogensis stilllimited.Substantialresearcheshavebeencarriedoutoninteractionsinvolvingmodel Competinginterests:Theauthorsdeclarethatthey havenocompetinginterests. legumeplantslikeMedicagoandLotusandsoilinhabitingpathogens[2,3],butreportsoncrop plantsthatarealsoexposedtodreadfulattacksbydiversemembersofsoilpathogensaresignif- icantlyinadequate.Advancementofbiotechnologicaltoolsandtheirapplicationshaveadded remarkablytothegenomesequencingandannotationprojectswithdraftgenomesequences beingavailableformanyimportantcroplegumeslikesoybean,pigeonpea,chickpeaetc. [4,5,6,7].However,withtheexceptionofsoybean,researchesonothercroplegumesaregradu- allyincreasing[8]. ChickpeatopstheIndianlistofimportantpulselegumes[9].But,vascularwiltdiseaseof chickpeaisknowntoaccountfor10–15%annualyieldloss,whichescalatestototallossunder specificedaphicandenvironmentalconditionswellsuitedforthereplicationandestablish- mentofFoc.Amongst8pathovars(0,1B/C.1–6),Race1hasreceivedprimescientificattention duetoitswidespreaddistribution,thuscausingmaximumdamage[10].Fusariumwiltwas knowntobeprimarilymanagedbyconventionalbreedingprograms.Butpathogenicvariabil- ityandmutabilityhaveledtothebreakdownofnaturalresistanceoverprolongedperiods[11]. Besides,longtermapplicationofchemicalfungicideshasalsoraisedserioussocialconcern regardinghealthandenvironmentalsafety[12].Hence,asafeandsustainablealternativeis stillonthelookoutformanagingFusariumwiltofchickpea. Previousreportsonchickpea-Foc1interactiondocumentedtranscriptomicalterationsdur- ingpathogenattack[13–16].Besides,biochemicalinvestigationsreportedinductionofseveral stressinducedmarkerisozymes[17].Geneticmappingandlinkageanalysesidentifiedchro- mosomelocilinkedtoFusariumresistanceinchickpeaaswellasotherlegumes[18–19].Even then,theknowledgeofsequentialeventsandinvolvementofresistantgene(s)inmediating thesignalingcascadeisstillobscure.Studiesconductedbythepresentgroupmadeattemptsto delineatethehostresponsesuponpathogenassaultinstepsandphasewisemanner.Initial studiesidentifiedthetemporalsequencesofpathogenprogressionandtheirexternalmanifes- tations[14].Followingstudiesfiguredouttheprimarymetabolismtobetheinitialtargetof thewoundinducingFoc1thatwasfoundtooverpowerthesusceptiblehost[15].Reactiveoxy- genspecieswereidentifiedastobetheinitialtriggeringfactorignitingtheentiredefensesig- nalingcascadewhichwasfoundtobewellcoordinatedwithinternalcellulartransportersand transcriptionfactors[16].Inaparallelattemptproteomicanalyseswereconductedtoidentify thedifferentialdefenseresponsiveproteinsmediatingtheentiresignalingsequencesatearly timepointsofpathogeninvasion[20].Withalltheresultstakentogetherthechickpea-Foc1 casestudyhasundoubtedlybroughtforthseveralsignificantresultsrelatingtotheunderstand- ingofthecomplexdisorderofvascularwiltbut,manyhubsofinplantasignalingnetworkyet remainsincomprehensiblethatnecessitatesmoretranscriptomicanalyticalresults.Although, largebodyofinformationindicatestowardssimultaneousparticipationofmanyintricatemet- aboliceventsbutlackoffullyannotatedhostgenomesequencefailstoplugthegapinthispar- ticulardefensenetwork.Moreover,widegenomicdiversificationacrossmodellegumesand croplegumesfailstocompletelytransfertheknowledgeofmetaboliceventsfrommodelplants tocropplants[21].Thus,interactionalcasestudiesofcroplegumesandpathogensdemand individualisticapproach. Theadventofnextgenerationsequencingtoolsandtechniqueshasmadeaparadigmshift inthefieldoffunctionalgenomicsasitgenerateslargedatasets.InpresentstudyRNA-seq PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 2/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay wasperformedatearlytimepoint(48hoursaspointedouttobecrucialforthecasestudy) uponFoc1invasionanddifferentialtranscriptomicdissectionwasperformed.Theanalyses revealedinductionaswellassuppressionofseveraldefenseresponsivetranscripts.Finally attemptsweremadetomapthedefenseresponsivecomponentsinaninter-connecteddefense regulatorynetworkandidentifytheregulatoryhubsthatpresumablycontroltheentiredefense signalingcascadeinchickpeaduringFoc1attack. Results Analysesofsequencequality,readassemblyandtranscriptannotation Ourpreviousstudieszeroedonthetimepointof48hthatshowedsignificanttranscriptomic andproteomicalterations[15,16,20](Fig1,S1Fig).Nextgenerationsequencinganalyseswas performedonsamplecollectedat48hpostinoculationwithFoc1.Pairedendsequencedatawas depositedtoNationalCentreforBiotechnologyInformation’s(NCBI)ShortReadArchivedata- baseundertheaccessionnumberofSRP041784andBioProjectIDPRJNA246444.Following adaptertrimming132.55million,89.6million,77.84million,89.86millionfilteredreadswere obtainedforinfectedJG62(representedbyJ4),uninfectedJG62(representedasJC),infected WR315(representedasW4),uninfectedWR315(representedasWC),respectively.Highqual- ity(>Q20)basesweremorethan96%forallthesampleswithlownonATGCcharacters (0.09%)forallthesamples(S1Table,S2Fig).Filteredreadswhenassembledintocontigsgener- ated79375forJ4,45341forJC,59828forW4and58650forWCnumberofcontigs(S2Table, S3Fig).Contigswerefurtherassembledintotranscriptsgenerating77770transcriptsforJ4, 51366transcriptsforJC,62713transcriptsforW4and53993transcriptsforWCrespectively (S3Table,S4Fig).Representativetranscripts(RT)afterclusteringcontained85915transcripts forJand75626transcriptsforW(S4Table).Lengthanddistributionoftranscriptsalongwith representativetranscriptareprovidedinFig2A.RTsofbothJandWwerefoundtobeATrich (60.33%forJand60.20%forW)(Fig2B).Amongstthetranscriptsgenerated,annotationswere providedto35597forJ4,31726forJC,31636forW4and35190forWC,respectively.50%iden- tityand40%querycoveragewasusedascutoffforannotatingthetranscripts(S5Table). Differentiallyexpressedtranscript Numberofsignificantdifferentialtranscripts(withQvalues)betweenJ4andJCwere2090 whilebetweenW4andWCwere881(S6TableandS7Table).Fig3demonstratestheoccur- renceofdifferentialtranscriptsbetweensamples.Outoftotal466differentiallycharacterized transcripts,320wereobtainedfromJ4,78ofJC,while34transcriptswerecommonforboth (Fig3A).IncaseofW4whencomparedtoWC,233weregeneratedfromW4,172forWC, while20transcriptswerecommonforboth(Fig3B).WhencomparisonwasmadebetweenJC andWC,155wasfoundfromWC,75fromJCand37wereincommon(Fig3C).Similarly, whilecomparingJ4andW4,124wereobtainedfromW4,225fromJ4and129werecommon forbothW4(Fig3D).Whilecomparingtotalupregulatedtranscripts,58wereupregulated betweenJCandJ4;and50wereupregulatedbetweenWCandW4.35werecommonlyupregu- latedforbothsamplesets(JCvsJ4andWCvsW4)(Fig3E,S8Table,S5Fig).Asfordownreg- ulatedonly4wereobtainedbetweenWCandW4,23betweenJCandJ4,and7werefoundto becommonlydownregulatedforbothsamplesets(JCvsJ4andWCvsW4)(Fig3F,S8Table, S5Fig).ComparisonbetweenallthefoursamplesJ4,JC,W4andWCshowed183transcripts appearedsolelyfromJ4,62fromJC,115fromW4and156fromWC.21transcriptswerecom- monforJ4andWC,8werecommonforJCandJ4,and13werecommonforJC,J4,andWC. 5transcriptswerecommonforWCandW4,3werecommonforWC,W4,andJC,11were commonforallthefoursamples.12transcriptswerecommonforJCandWC,1forJC,WC PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 3/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig1.SchematicrepresentationdescribingtherationalebehindtheworkplanandNGSanalysisworkflowforthewholetranscriptomic.Upper paneloftheFlowdiagramdepicts48hascrucialtimepointfordifferentialexpressionoftranscriptsinchickpeaafterFoc1infectionandlowerpanel describestheNGSworkflowanditsdownstreamanalyses. https://doi.org/10.1371/journal.pone.0178164.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 4/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig2.Graphicalpresentationofrepresentativetranscriptsofsusceptible(JG62)andresistant (WR315)chickpeaandtheirATGCdistribution.A.Graphrepresentsthebasepairdistributionof transcriptsofJG62(J4andJC)andWR315(W4andWC)withtheirrepresentativetranscripts.Piechart representsunigeneATGCclusterofsamplesB.susceptible(JG62)andC.resistant(WR315)chickpea genotypesrespectively. https://doi.org/10.1371/journal.pone.0178164.g002 andW4,3werecommonforJCandW4,and2werecommonforJ4,JCandW4,while113 werecommonforJ4andW4,respectively. Radarplotanalysisexplainsthedistributionoffoldchangeoftheentiretranscriptsasob- tainedfromthebasemeanvaluesofeachtranscript.Thebluelineexplainsthefoldchange valueoftranscriptsthatarefoundonlyinsusceptibleJG62plantswhereasredlinedemonstrates theexpressionvaluesoftranscriptsfoundexclusivelyinresistantWR315plants.Theregion whereredandbluelinesoverlapwithoneanotherexplainstranscriptsthatarefoundinboth JG62andWR315plants.Greenlineindependentlyexplainsthetranscriptsthatarefoundtobe inducedinJG62andWR315plantsonlyafterinfection.Allthetranscriptsundulatesignifi- cantlybutthetranscriptsthatarefoundtobeinducedonlyafterinfectionexhibitmaximum expressionalvalues.Thesurfacedistributionofthetranscriptsalsoexhibiteddefense,metabo- lism,signalingandROSregulationswithvariedexpressionalvalues(Fig4;S8Table,S9Table). Geneontologyandfunctionalclassification Clusteringoftotalannotatedtranscriptsbasedongeneontologyshowedvaryingdistribution oftranscriptsacrossbiologicalprocess,molecularfunctionandcellularcomponents(Fig5). PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 5/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig3.Venndiagramshowinginter-distributionoftranscripts.DistributionoftranscriptsbetweenA.JC (uninducedsusceptible)andJ4(inducedsusceptible)B.WC(uninducedresistant)andW4(induced PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 6/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay resistant)C.JCandWC,D.J4andW4,E.DistributionofupregulatedtranscriptsbetweenJUP(upregulated ininducedsusceptiblewhencomparedtouninducedsusceptiblei.ecomparingJ4andJC)andWUP (upregulatedininducedresistantwhencomparedtouninducedresistanti.ecomparingW4andWC)F. DistributionofdownregulatedtranscriptsbetweenJDown(downregulatedininducedsusceptiblewhen comparedtouninducedsusceptiblei.ecomparingJ4andJC)andWDown(downregulatedininduced resistantwhencomparedtouninducedresistanti.e.comparingW4andWC).G.Distributionoftranscripts betweenJC,J4,WC,W4. https://doi.org/10.1371/journal.pone.0178164.g003 Amongstseveralbiologicalprocesses,proteolysis,regulationofDNAdependentandindepen- denttranscription,carbohydratemetabolismshowedmaximumnumberoftranscriptsforall thefoursamples.Directdefenseresponsewasfoundtobecontrolledbycomparativelyless numberoftranscripts.Amongstthetranscriptsregulatingmolecularfunction,transcriptsnor- malizingATPbindingwerefoundtobethehighest.Othertranscriptsrelatedtobindingwere alsofoundinfairlylargenumbers.Presenceofrelativelymorenumberoftranscriptsrelatedto membrane,nucleusandcytoplasmwerealsofound(Fig5). Functionalcategorizationdemonstratesthatamongeightdistinctcategoriesthehighest numberoftranscriptsbelongstothemetabolismgroup.Signalinganddefenserelatedtran- scriptsaretheothertwomajorgroupsthatarefoundtobeinducedafterinfection.Protein synthesisanddegradationeventswerealsofoundtobeinduced[20].Besides,structuralcom- ponents,storageandtransportrelatedtranscriptswerealsoinduced(Fig6.S8Table). qRT-PCRanalysesofrepresentativegenes MostoftheselectedtranscriptsshowedupregulationinbothJG62andWR315plantsexcept SEO,PECandHDH.AmongtheupregulatedcomponentsofthetranscriptsEF1,MPKand PR1displayedhighestexpressionalinductionandallthethreetranscriptsshowgreaterinduc- tioninsusceptibleplantsascomparedtotheresistantplants.Besides,PR5Bexpressionwas foundtobelargelycomparableinbothJG62andWR315plants.IncaseofASCENDthe inductioninJG62ismorethanthatofWR315plants.Restofthepositivelyinducedtranscripts e.g.HSP,IFG,WRandENODtheexpressionlevelofWR315wasmorethanthatofJG62, whereas,othertranscriptsmarginallyvariedamongthemselves.Contrarily,PTR5inducedin JG62buttheexpressionwasdramaticallyreducedinWR315plants.Amongthedownregu- latedtranscriptsexceptSEO,expressionofothertranscripts(PEC,HDH)weresignificantly lowincaseofsusceptible(JG62)plantsthanthatofresistant(WR315)plants(Fig7). Networkanalysesofdifferentiallyexpressedfunctionalclasses NetworkanalyseswasperformedwithonlythosesetofTAIRproteinhomologuesthatshowed interactionswithatleastasingleneighborwhilerestoftheproteinsshowingnointerconnec- tionswithrelativeswereeliminated.Interactionmapshowedthelocationofseveraldefense responsivecomponentssuchasTOR(Serinethreonineproteinkinase),ROC(Peptidylprolyl- cistransisomerase),BGL2(Betaglucosidase),ATGLX(Lactolylglutathionelyase),ST2A(Sul- fotransferase),MPK6(MAPkinase),CSLD3(Cellulosesynthase),PGIP(Polygalactouronase inhibitingprotein)andLIN2(CoproporphirinogenIIIoxidase).StoragecomponentPLA2A (Patatinlikeprotein)andROSrelatedcomponentATP1(VtypeATPase),VHA-A(Vtype ATPase),ATCBR(Cytochromeb5reductase),RBOH(Respiratoryburstoxidase),CSD/MSD (Manganeseorcoppersuperoxidedismutase),RSR4(Reducedsugarresponse4),NTRC/B (NTRC/NADPH-dependentthioredoxinreductaseC/B)werealsofound(Table1,Fig8, S1File). LargenumberofmetaboliccomponentslikeMEE58(S-adenosyl-L-homocysteinehydro- lase),CYT1(Cytokinesisdefective1),GLT1(Glucosetransporter1),MTO3(Methionineover- PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 7/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig4.Radarplotrepresentingthedistributionofdifferentialexpressionoftranscripts.Upperpanelrepresentstotal distributionoftranscriptsbetweenJC,J4,WC,andW4.Lowerpanelrepresentsdistributionoftranscriptsaccordingtotheirbiological PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 8/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay functions.ThebluelineexplainsthefoldchangevalueoftranscriptsthatarefoundonlyinsusceptibleJG62plantswhereasredline demonstratestheexpressionvaluesoftranscriptsfoundexclusivelyinresistantWR315plants.Theregionwhereredandbluelines overlapwithoneanotherexplainstranscriptsthatarefoundinbothJG62andWR315plants.Greenlineindependentlyexplainsthe transcriptsthatarefoundtobeinducedinJG62andWR315plantsonlyafterinfection. https://doi.org/10.1371/journal.pone.0178164.g004 accumulator3),APR3(APSreductase3),C4H(Cinnamate4-hydroxylase),LOX1(Lipoxygen- ase1),PCK1(Phosphoenolpyruvatecarboxykinase),CWINV1(Cellwallinvertase1),ADH1 (Alcoholdehydrogenase),ACO1(ACCoxidase1),MLS(Malatesynthase),ASN1(Glutamine- dependentasparaginesynthase1),RNR1(Ribonucleotidereductase1),HOT5(Sensitiveto hottemperatures5),SHM1(Serinehydroxymethyltransferase1),FDH(Formatedehydroge- nase),P5CS1(Delta1-pyrroline-5-carboxylatesynthase1),LIP1(Lipase1),SDH1(Succinate dehydrogenase),RHM1(Rhamnosebiosynthesis1),AMY1(Alpha-amylase-like),SBE2.2 (Starchbranchingenzyme2.2),MTLPD2(Lipoamidedehydrogenase2),MIPS2(Myo-inosi- tol-1-phosphatesynthase2),IPP2(Isopentenylpyrophosphate:dimethylallylpyrophosphate isomerase2),GDH3(Glutamatedehydrogenase3),TIM(Glyceraldehydedehydrogenase phosphate),IVD(Isovaleryl-coa-dehydrogenase),PMDH1(Peroxisomalnad-malatedehydro- genase1),ADSS(Adenylosuccinatesynthase),GR(Glutathionereductase),SUS4(Sucrose synthase4)werefoundtointerconnectinthemetabolicregulatorypathway(Table1,Fig9, S1File).SignalregulatingmoleculessuchasCAM5(Calmodulinprotein5),CAM7(Calmodu- linprotein7),HSF1(Heatshockfactor1),HSP101(Heatshockprotein101),HSP70(Heat shockprotein70),GRF2(14-3-3Gboxbindingprotein),MYB5(MYBtranscriptionfactor), MYB108(MYBtranscriptionfactor),WRKY41(WRKYtranscriptionfactor),RAP2.3(Ethyl- eneresponsivetranscriptionfactor2b),DREB1A(CRT/DREbindingfactor4),NDPK2(Nu- cleosidediphosphatekinase),CSN5A(COP9Signalosome5A),ARAC3(GTPase)werefound tobelocatedinthenetwork(Table1,Fig10,S1File). ProteinsynthesisanddegradationrelatedcomponentsFKBP15-2(Peptidyl-prolylcis-trans isomerase),UBQ1(Ubiquitin1),UBQ10(Ubiquitin10),UBQ35(Ubiquitin35),PaB1(Protea- somesubunit),HD(Histonedeacetylase),RPT2A(Proteasomecomponent),T6D22.3(Elon- gationfactor),EMB2780(DNApolymerase),LBA1(Regulatorofnonsensetranscriptlike protein),RUB1(Ubiquitin),PBE1(Proteasomecomponents),ATHMG(FACTcomplexsub- unitSSRP1)weremappedintheinteractionpathway.Besidesseveralstructuralcomponents likeLHB1B1(Chlorophylla/bbindingprotein),LHCA2(Chlorophylla/bbindingprotein), DeltaTIP(DeltaTonoplanstintrinsicprotein),GammaTIP(GammaTonoplanstintrinsic Fig5.Geneontologybasedanalysesandfunctionalclusteringoftotaltranscripts.Geneontology studydisplayvaryingdistributionoftranscriptsacrossbiologicalprocess,molecularfunctionandcellular components. https://doi.org/10.1371/journal.pone.0178164.g005 PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 9/37 Differentialhosttranscriptprofilingduringchickpea-Foc1interplay Fig6.FunctionalclusteringoftotaltranscriptwithfragmentedpiechartusingChartToolsoftwarepackage.Individualpiefragmentsare distributedintogenepyramidshavingfourzones.A.representstranscriptsfoundinbothJG62andWR315onlyafterinfection;B.representstranscripts foundinbothuninducedJG62andWR315,C.representstranscriptsfoundonlyinWR315afterinfectionandD.representstranscriptsfoundonlyinJG62 afterinfection. https://doi.org/10.1371/journal.pone.0178164.g006 protein),ELIP1(Earlylightinducibleprotein),GCP2(Tubulingammachain),FLA12(Fasciclin likearabinogalactanprotein),IRX3(Cellulosesynthase),ATFH8(Forminlikeprotein),NFU4 (NifUlikeprotein),TUA6(Tubulinalphachain),SMC2(Structuralmaintenanceofchromo- some),F8L15.150(KRRmotifcontainingprotein1)werefound(Table1,Fig11,S1File). TransportcontrollingcomponentssuchasCHX20(K+/N+antiporter),SKD(Vacuolar sortingprotein),NRT(Nitratetransporter),ATGCN(ABCtransporterfamilyprotein),SUC2 (Sugartransporter)werefoundtointeractintheinteractionpathway(Table1,Fig12,S1File). Amongsttheseveralcomponentsmentionedabove,PLA2showedoverlappingroleinstor- ageanddefense.Besides,ATGLX1,ST2A,LIN2andCSLD3,servedasregulatorsofdirect defense,aswellasactedinregulatinghostmetabolicactivities.TOR,MIPSandLIP1showed PLOSONE|https://doi.org/10.1371/journal.pone.0178164 May25,2017 10/37
Description: