toxins Article Transcriptomic Analysis of Pseudoscorpion Venom Reveals a Unique Cocktail Dominated by Enzymes and Protease Inhibitors CarlosE.Santibáñez-López1,2,* ID,AndrewZ.Ontano1,MarkS.Harvey3and PrashantP.Sharma1 ID 1 DepartmentofIntegrativeBiology,UniversityofWisconsin-Madison,430LincolnDrive,Madison, WI53706,USA;[email protected](A.Z.O.);[email protected](P.P.S.) 2 PosgradoenCienciasBiológicas,UniversidadNacionalAutónomadeMéxico,Av.Universidad3000, Coyoacán,CiudaddeMéxicoC.P.04510,Mexico 3 DepartmentofTerrestrialZoology,WesternAustralianMuseum,LockedBag49,WelshpoolDC, WesternAustralia6986,Australia;[email protected] * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:18April2018;Accepted:16May2018;Published:18May2018 Abstract: Transcriptomicandgenomicanalyseshaveilluminatedthediversityofvenomsinthree of the four venomous arachnid orders (scorpions, spiders, and ticks). To date, no venom gland transcriptome analysis has been available for pseudoscorpions, the fourth venomous arachnid lineage. To redress this gap, we sequenced an mRNA library generated from the venom glands of the species Synsphyronus apimelus (Garypidae). High-throughput sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 238,331 transcripts. From those, weannotated131transcripts,whichcodeforputativepeptides/proteinswithsimilarsequencesto previouslyreportedvenomcomponentsavailablefromdifferentarachnidspeciesinproteindatabases. Transcriptsputativelycodingforenzymesshowedtherichestdiversity,followedbyothervenom componentssuchaspeptidaseinhibitors,cysteine-richpeptides,andthyroglobulin1-likepeptides. Only11transcriptswerefoundthatcodeforputativelylowmolecularmassspidertoxins. Thisstudy constitutesthefirstreportofthediversityofcomponentswithinpseudoscorpionvenom. Keywords: Arachnida;enzymes;kunitz-typeinhibitors KeyContribution: Thefirstreportofpseudoscorpionvenomcomponentsandtheirimportancein venomevolutionwithinarachnids. 1. Introduction Pseudoscorpions,commonlyknownasfalsescorpionsorbookscorpions,aresmallarachnids (0.5mmto5mm)thataresimilartoscorpionsinthattheybearapairofchelatepedipalps(pincers), butlackthecharacteristicstinger-bearingmetasoma(tail)[1].Theseanimalsliveinalmostallterrestrial habitats,commonlyinleaflitterorsoil,butalsoincavesorlittoralhabitats[2]. Likemanyarachnid orders,pseudoscorpionsappearedinthefossilrecordoftheDevonian,withtheoldestcrowngroup fossilsdatingbackto390Ma[3]. Theirphylogeneticpositionremainscontroversial. Earlystudies (e.g., [4–6]) suggested pseudoscorpions were a sister group to either mites [5] or solifugids [6]. Comparatively recent phylogenomic analyses have revealed an array of unstable placements for this order: as a problematic long-branch taxon at the base of Arachnida, as the sister group to Arachnopulmonata(Scorpiones+Tetrapulmonata),orasthesistergrouptoscorpions[7–9]. Toxins2018,10,207;doi:10.3390/toxins10050207 www.mdpi.com/journal/toxins Toxins2018,10,207 2of12 A large clade of pseudoscorpions (Iocheirata) possess one or two venom glands within the pedipToaxlipnsa 2l01fi8,n 1g0,e xr FsO(Ru PsEeEdR RtoEViImEWm obilize their prey); venom glands are missing in the les2s ofd 12iv erse superfamilies Feaelloidea and Chthonioidea [2,10]. They therefore represent one of the four A large clade of pseudoscorpions (Iocheirata) possess one or two venom glands within the venomousarachnidorders(togetherwithAcari[ticks],Araneae[spiders],andScorpiones[scorpions]). pedipalpal fingers (used to immobilize their prey); venom glands are missing in the less diverse Surpsruispienrgfalym,ilaiensd Fienaeclloonidtreaa stantdo tChhethroenmioaidineian g[2,v10e]n. oTmhoeyu sthaerraecfohrnei dregprreosuepnts ,otnhee ocfo mthpe ofsoiutiro n of pseuvdeonsocmoropuiso narvaecnhnoimd roermdearisn s(tuognektnheorw nw.itSha nAtcoasrie t[atilc.k[s1],1 ]Asrtaundeiaeed t[shpeideefrfse]c, taonfdt heSccorrupdioenevse nom from[sPcaorraptieomnns]o).i dSesureplornisginatgulys, oannad raint cceornetbrarastl ctoor ttehxe. Trehmeairinfiinngd ivnegnsowmeorues suargagchenstiidv egorofutphse, ptrhees ence of secleocmtipvoesitcioomn opfo pusneuddso(sec.ogr.p,ionne uverontoomx irnesm)aaincst iunngkninowLn-g. lSuanatonsd etG aAl. B[1A1] dstyundaiemd itchse, ebffuetctn oof tshpe ecific compcoruudned vsewnoemre frroempo Prtaeradt.emnoides elongatus on a rat cerebral cortex. Their findings were suggestive of tWhei tphrethseenacde voef nsetloecfthivieg hco-tmhproouugnhdps u(et.gs.e, qnueuenroctionxgin,ss)t uadctiiensg oinn Lt-hgelud aivnedr GsiAtyBoAf dpyenpatmidiiccs,c boumt pnoon ents specific compounds were reported. inscorpionandspidervenomhavebecomeabundant. Throughthisapproach,scorpionandspider With the advent of high-throughput sequencing, studies on the diversity of peptidic components venoms(seeReferences[12,13])havebeendiscoveredtocontainmanytoxinsthatmodulatethegating in scorpion and spider venom have become abundant. Through this approach, scorpion and spider ofionchannels,andalsoothercomponentssuchasenzymeswithphospholipaseandhyaluronidase venoms (see References [12,13]) have been discovered to contain many toxins that modulate the activgitaiteisng(e .ogf .,io[1n4 –ch1a8n])n.ePlsa, raanllde lailnsqo uoitrhieesr vcoiamtpraonnesncrtsi pstuocmh icasa nenazlyysmiseso fwtihthe spahliovsaprhyolgiplaasned sanodf ticks havehryeavleuarolendidtahsaet atchtievsietieasn (iem.ga.,l s[1b4e–a1r8]a).g Praeraatlldeli vineqrsuiitryieos fveian ztryamnsecsriapntodmpicr oatneaalsyesiisn ohfi bthiteo srasl,ivbaurtya low divergsliatnydos fotfo txicinkss h[1a9v–e2 r1e]v.eAalesda tfiharst tthsteespe atoniwmaarlds bdeiasrc oav gerreiantg dtihveersditiyv eorfs ietnyzoymf vese naonmd pcroomtepasoen ents ofPsienuhdiboitsocrosr, pbiuotn ae lso,ww deipvererssietyn tofh teorxeiinns t[h1e9–fi2r1s].t Atrsa an sfcirrsitp sttoemp etoawnaardly dsiisscoofvethriengv ethneo mdivgelrasintyd sofo fthe WestveernnoAmu csotmraplioannenstps eocfi ePsseSuydnosspchoyrproionnuess,a wpiem perluesse(nGt ahreyrepinid tahee; fFirisgt utrraen1sc).ripIntomaded aintiaolyns,isw oef tsheele cted venom glands of the Western Australian species Synsphyronus apimelus (Garypidae; Figure 1). In transcriptscodingforputativevenompeptidesandsearchedfororthologoussequencesintwoexisting addition, we selected transcripts coding for putative venom peptides and searched for orthologous pseudoscorpionlibraries(exemplarsofthefamilyChernetidae)toassessevolutionaryconservationof sequences in two existing pseudoscorpion libraries (exemplars of the family Chernetidae) to assess venomcompositionwithintheorder. evolutionary conservation of venom composition within the order. FigurFeig1u.r(ea 1). H(aa) bHitaabtitoaft Sofy Snysnpshpyhryornounussa appimimeelluuss iinn tthhee SStitrilrilning gRaRnagneg NeaNtioantiaoln PaalrPk,a Wrke,sWterens tAerunstrAaulias tralia (phot(pohboytoA b.yZ A.O.Z.)..O(.b). )(bL)i vLeivhea hbaibtuitsuso offa adduulltt SSyynnsspphhyyrroonnuus sapaipmimeluelsu (sph(pohtoogtroagprha bpyh Gb.y GGir.ibGeitr, iMbeCtZ,M CZ Database at https://mczbase.mcz.harvard.edu). (c) Schematic drawings showing the position of the Databaseathttps://mczbase.mcz.harvard.edu).(c)Schematicdrawingsshowingthepositionofthe venom glands in the pedipalpal chela of selected families of Iocheirata (the venomous venomglandsinthepedipalpalchelaofselectedfamiliesofIocheirata(thevenomouspseudoscorpions), pseudoscorpions), after References [22,23]. afterReferences[22,23]. Toxins2018,10,207 3of12 Toxins 2018, 10, x FOR PEER REVIEW 3 of 12 22..R Reessuullttss TThheee exxttrraaccttiioonno offR RNNAAf frroommt thheep peeddiippaallppaall cchheellaaee ooff SS.. aappiimmeelluuss yyiieellddeedd 33..336677 µµgg ooff ttoottaall RRNNAA.. AAftfeterrs seeqquueenncciningg,,a asssseemmbbllyy,,a annddc cleleaanniningg,,3 388,5,59933,9,91199r reeaaddssw weerreeo obbtatainineeddc coorrrreessppoonnddininggt too2 23388,3,33311 trtraannssccrirpiptst,s,1 5125,27,07505g egneense,sa,n adn5d3 ,5438,348p3e ppteidpetisd,ews,i twhaitnh Nan50 No5f05 9o9f b5p9.9F bropm. Ftrhoemtr tahnes ctrriapntss,cr3i7p,1ts4,8 3w7,e1r4e8 idweenrtei fiidedenmtifaietcdh minagtcahninnogt aatnendotgaetnedes gleisnteesd liisntedda itnab daasteasb.aRseesm. Raerkmaabrlky,abolnyl,y o5n4lyw 5e4r we iedree nidtiefinetdifiaesd masa tmchaitncghianrga cahrancihdnsiedq sueeqnuceensc.eTs.h Tishlios wlownu nmubmebrepr apratlrytlyre rfleeflcetcsttsh tehela lcakcko fofa nannnootatatetdeds eseqquueenncceessi nin ddaattaabbaasseess ffoorra arraacchhnnididss,,a anndde essppeecciaialllylys soof oforrp pseseuuddoossccoorprpioionnss[ 2[244].].I nIna adddditiitoionn,,3 333,8,84411a annnnootatatetedd ggeenneessw weerreec clalassssifiifeieddb baasseeddo onnt htheeG GeenneeO Onntotolologgyyc caateteggoorrieiess( G(GOO-t-eterrmmss))[ 2[255,2,266];];t htheem moosstta abbuunnddaanntt ggeenneessw weerreet hthoosseew witithhm mooleleccuulalarrf fuunnccttiioonn( (FFiigguurreeS S11)).. FFiinnaallllyy,,w weed deetteecctteedd1 13311s seeqquueenncceess( (8866g geenneess)) wwhhicichhp puuttaattiivveellyy ccooddee ffoorr vveennoomm ccoommppoonneennttss bbaasseedd oonn sesqequuenencec esismimilailraitryit yfrofrmom UnUiPnirPort,o Pt,FPAFMAM, o,r oarvaavilaaiblalbe lleitleirteartuatruer (eF(iFgiugruer 2ea2)a. ). FFigiguurree2 .2(. a()aD) iDstirsitbruibtiuotnioonf tohfe tahnen oatnanteodtattreadn stcrraipntsscrfripomts tfhroemve nthoem vgelnanodmt rgalnasncdri ptrtoanmsecroifpSto.ampeim oelfu Ss. aacpciomrdeliunsg actocoprdrointegi ntof apmroitleieins faanmdilsiuesb afanmd isluiebsf.am(bi)liOesr.t (hbo)l Oogrthhiotloragt hioit (rOatHioR ()OaHnaRl)y asnisalsyhsoisw sihnogwthineg mtheed imaned(wianh i(twelhinitee) l,ianne)d, aqnuda rqtiuleasrtfiolerst fhorre ethprseeeu pdsoesucdoorspcioornpsiopne csipese.ci(ecs).C (co)m Cpoamraptaivraetidvies tdriibsturtiibountioofn thoef tahnen aontantoedtatteradn tsrcarnipsctsrifprotsm frtohme ttrhaen stcrrainpstcormipetsomofeSs. oafp iSm. ealpuism,Helu.ks,r aHep. eklrinaei,paelnindi,H aenspde rHoceshpeerrnoecshseprn.es sp. Toxins2018,10,207 4of12 2.1. TranscriptomicAnalysis 2.1.1. ICK-LikeSpiderVenomPeptides Toxins,generallythemostwidelystudiedvenomfractioninallanimals,areproteinsclassified accordingtotheirchemicalclass,biologicalorigin,ortargetorgan/ionchannel[27]. Arachnidvenoms arerichintoxinsthatmodulatetheopeningofdifferentionchannelsinarthropods(mainlyinsects) and mammals. While high molecular mass toxins are more diverse in spider and tick venoms, lowmolecularmasstoxinsarefarmorediverseinscorpionvenom. Here,weonlyfoundtranscripts potentiallycodingforlowmolecularmasstoxinsinthepseudoscorpion. However,thesewerepoorly representedintermsofsequencediversity,comprisingonly11transcripts(outof131,8%;Figure2a). Within these transcripts, we discovered three sequences with 62–72% identity to the precursor of U8-agatoxin-likededucedfromthegenomeofthespiderParasteatodatepidariorum,sevensequences with 56–82% identity to the precursor of U8-agatoxin-like deduced from the genomic analysis of the scorpion Centruroides sculpturatus, and one sequence with 30% identity to the precursor of the U33-theraphotoxin-Cg1bdeducedfromcDNAclonedfromthetarantulaChilobrachysjingzhao. 2.1.2. ProteaseInhibitors Proteaseinhibitors,proteinscapableofinhibitingtheactivityofproteolyticenzymes,mayplayan importantroleintheprotectionoftoxinsfromunwanteddegradation[28,29]. Kunitz-typeinhibitors are frequently found in arthropod venoms. In the scorpion and spider venoms, these peptides havedualfunctions(seealsoReference[30])asproteaseinhibitorsandpotassiumchannelblockers (e.g.,[31]). However,inticks,mites,andinsects,thesepeptidesonlyactasserineproteaseinhibitors. InS.apimelus,wediscoveredeightsequences(6%ofthetotaltranscripts,Figure2a)withdifferent percentagesofsimilarity(rangingfrom46to64%)tofivedifferentprecursorsofKunitz-typeserine proteasesreportedfromthreespiders,onescorpion,andoneinsect. 2.1.3. Enzymes The most common enzymes in arachnid venom (i.e., mites, ticks, scorpions, and spiders) are hyaluronidases,metalloproteases,phospholipases,andserineproteases. Here,wereport62sequences (48%ofthetotaltranscripts)codingputativelyforthefollowingenzymes: (a)onesequencewith34% identitytotheprecursorofahyaluronidasededucedfromcDNAclonedfromthevenomofthespider Cupienniussalei;(b)17sequenceswithdifferentpercentagesofsimilarity(rangingfrom42to73%)tosix differentprecursorsofAstacin-likemetalloproteasesreportedfromthreespider,onescorpion,andone tickspecies;(c)sevensequenceswithidentitiesrangingfrom46to60%totwodifferentprecursorsof Astacin-likemetallopeptidasesdeducedfromcDNAclonedfromthevenomglandofTityusserrulatus; (d)twosequencesoftwodifferentprecursorsofmetalloproteinasesreportedfromonespiderandone insect;(e)23sequenceswithidentitiestofourtypesofphospholipases(A2,D1,D2,andD3)reported fromthevenomofthreespidersandtwoscorpions;and(f)10sequenceswithidentitiestosixdifferent precursorsofserineproteasesreportedfromthevenomofonetickandtwoscorpions. 2.1.4. SingleDomainvonWillebrandFactorTypeCPeptides(La1-LikePeptides) La1-likepeptideshavebeenfoundinscorpionvenom,andrecentlyinspidervenom,buttheir functionremainsunclear[32–34]. InS.apimelus,wefoundtwosequenceswith40–46%identityto thetoxin-likeprotein14isolatedanddeducedfromcDNAclonedfromthevenomofthescorpion Urodacusyaschenkoi(Figure3). Toxins2018,10,207 5of12 Toxins 2018, 10, x FOR PEER REVIEW 5 of 12 Figure 3. Multiple sequence alignment (MSA) of the peptide components with similarity to the single Figure3.Multiplesequencealignment(MSA)ofthepeptidecomponentswithsimilaritytothesingle domain von Willebrand factor type C peptides (La1-like peptides) found in the transcriptome analysis domainvonWillebrandfactortypeCpeptides(La1-likepeptides)foundinthetranscriptomeanalysis oofft thheev veennoommg gllaannddo offS S..a appimimeeluluss,,H H..k krraaeeppeelilnini,i,a annddH Heessppeerroocchheerrnneesss spp.. UUnniiPPrrootto orrG GeennBBaannkkn nuummbbeerrss pprreecceeddeet thheep peeppttiiddeen naammeess.. PPeerrcceennttaaggee ooff iiddeennttiittyy bbeettwweeeenn tthhee MMSSAA aarree hhiigghhlliigghhtteedd iinn ggrreeeenn.. BBeellooww,, hhiissttooggrraammsso offt thheec coonnsseerrvvaattioionna annddc coonnsseennssuusso offt htheeM MSSAA.. 2.1.5. Defensins 2.1.5. Defensins Defensins are peptides widely distributed throughout vertebrates, invertebrates, plants, and Defensinsarepeptideswidelydistributedthroughoutvertebrates,invertebrates,plants,andfungi, fungi, whose functions are determined by the displayed inter-cysteine loops or the residues in the whosefunctionsaredeterminedbythedisplayedinter-cysteineloopsortheresiduesinthecore[35]. core [35]. For example, arthropod defensins have antimicrobial activity [36]. However, recent studies For example, arthropod defensins have antimicrobial activity [36]. However, recent studies have have suggested that scorpion defensins share a common ancestor with scorpion ion channel toxins suggestedthatscorpiondefensinsshareacommonancestorwithscorpionionchanneltoxins[37,38]. [37,38]. We discovered 13 sequences with identities corresponding to four different precursors of Wediscovered13sequenceswithidentitiescorrespondingtofourdifferentprecursorsofdefensins defensins reported from two ticks, one scorpion, and one spider. reportedfromtwoticks,onescorpion,andonespider. 22..11..66.. OOtthheerr CCoommppoonneennttss OOtthheerr ttrraannssccrriippttss ppootteennttiiaallllyy ccooddiinngg ffoorr vveennoomm pprrootteeiinnss,, iinncclluuddiinngg iinnssuulliinn--lliikkee ggrroowwtthh ffaaccttoorr bbiinnddiinngg pprrootteeiinn,, ccyysstteeiinnee--rriicchh sseeccrreettoorryy pprrootteeiinnss,, aanndd ppeeppttiiddaassee iinnhhiibbiittoorrss ((nnoott ccoovveerreedd iinn tthhee ccaatteeggoorrieiessa abboovvee))r erpeprerseesnetn2t 62%6%o fotfh ethter atnrascnrsicprtispatsn naontnaotetadteind tihni sthtrias ntsrcarnispctroimpteomanea laynsaisly(Fsiisg u(Freig2uar)e. A2am).o Angmtohnegse t,hwesee,f owuen dfo1u5ndw i1t5h wseiqthu esneqceuesnimcei lsairmitiylatroittyh etop trheec uprrseocruorsfotrh eofU t2h4e cUte2n4i tcotexninitoPxni1n lPikne1 tlhikaet ftrhoamt fCr.osmcu Clp.t uscruatluptsuarnatdusP .atnepdi dPa.d oterpiuidma.dForoiuurms. eFqouuern cseesquheandcseism hilaadri tsyimtoilaarviteyn otom at ovxeinnopme pttoixdien dpeedputicdeed fdroedmuccDedN Afrocmlo nceDdNfrAom ctlhoenevde nformomo ftthhee svceonrpomio noHf emthies cosrcpoirupsiloenpt uHruems.iAscdordpiituios nlaelplytu,rwues. rAepdodritteiodntahlrleye, wseeq rueepnocretsedw tihthrelee ssseqthuaennc4e5s% wiidtehn lteistys tthoaan p4u5%tat iidveensteictyre ttoe da psaultivatairvye pserocrteeitnedd seadluivcaerdy fproromteciDn NdeAduclcoende fdrofrmom cDthNeAti cclkoInxeodd efsroscmap tuhlea rtiisc.kL Iaxsotdlye,s wsceapfouulanrids.n Linasetlsye,q wueen fcoeusnwd inthinied esneqtiutieenscteos twwiothp iedpetnidtiatsieesi ntoh itbwitoo prserpetpidoarsteed infhroibmitoCr.ss crueplpotrutreadtu fsroamnd CS. tsecguoldpytpuhrautsums aimndos aSrtuegmo.dyphus mimosarum. 22..22.. CCoommppaarraattiivvee AAnnaallyyssiiss ooff tthhee RReeppeerrttooiirreeo offV Veennoomm--SSppeeccifiifcicT Trarnanscsrcirpiptstsi ninS S..a papimimeleuluss TThhee oorrtthhoolloogg hhiitt rraattiioo ((OOHHRR)) pprroovviiddeess aa pprrooxxyyf foorrt thheec coommpplleetteenneessss ooff aa ttrraannssccrriippttoommee iinn tteerrmmss ooff aasssseemmbbllyy ccoovveerraaggee,, wwiitthh vvaalluueess aabboovvee oonnee ssuuggggeesstitningg ininsesretritoionns sini nthteh equqeureyr ysesqeuqeunecnec reelraetliavteiv teo ttoheth reefreerfeenrecnec eBLBALSATS Thiht.i tG. eGneenraelrlayl,l ym, mosot stofo fththe etrtarannscsrcirpiptst shhaadd aa llooww OOHHRR vvaalluuee ((FFiigguurree 22bb)),, ssuuggggeessttiinngg tthhaatt mmaannyy ooff ththeessee trtarannssccrirpiptsts coconntataininr erlealatitviveelylyp poooorlrylyc oconnsesrevrvededa nandd//oorr uunnkknnoowwnn rreeggioionnss..A Altleternrnaatitviveleyl,yt,h tehleo wlowO HORHvRa lvuaelsuceosu clodurledfl erectflleocwt lsoewqu seenqcueecnocvee rcaogveersategme mstienmgmfrionmg afrloamrg ea glaenrgoem gee(ntoomdaet e(t,oth deastiez,e tohfe astiyzep iocaf lap tsyepuidcoasl cposrepuiodnosgceonropmioeni sguennokmnoew isn u[2n4k])n.oAwllnv [e2n4o]m). Acallt evgeonroiems rceaptoergtoerdiehse rreefproormtetdh ehteraren scfrroipmto mtheeo ftrSa.naspcirmipeltuosmwee roeff oSu. nadpiinmtehlueso twheerretw fooutrnadn scinri ptthoem eosthsetur dtiwedo (tFriagnusrceri2pct)o.mTehse sntuudmiebde r(Foifgugreen e2sc)c. oTdhien gnufomrbpeur toaft igveenlyesv ceondoimngp froort epiuntsatwivaeslys lvigehntolymh pigrohteerinins wthaes slightly higher in the transcriptome of Haplochernes kraepelini (96 genes) but lower in the transcriptome of Hesperochernes sp. (73 genes). In all transcriptomes, enzymes were the most abundant proteins along with other venom components, such as the cysteine-rich secretory proteins Toxins2018,10,207 6of12 transcriptomeofHaplocherneskraepelini(96genes)butlowerinthetranscriptomeofHesperochernes Tspox.in(s7 2301g8,e 1n0e, sx )F.OIRn PaElElRt rRaEnVsIcErWip tomes, enzymes were the most abundant proteins along with o6 tohf e12r venomcomponents,suchasthecysteine-richsecretoryproteinsandproteaseinhibitors(Figure2c). aTnradn pscrroitpetassec oindhinibgithoyras l(uFriognuirdea 2sce)s. wTrearnesncroitpftos uconddining thhyealliubrroanryidoafseHse wspeerreo cnhoert nfeosusnpd. iOn nthteh elibortahreyr ohfa nHde,spKeuroncihtezr-ntyesp espin. hOinb ittohres owtheerer phoanodrl,y Kruepnritezs-etnytpeed i(n5htiobit1o0rsg ewneerse). pHooorwlye vreerp,rtehseesnetetdra n(5s ctroi p1t0s gcoernreess)p. oHnodwtoevseerv, etrhaelsper tercaunrsscorrispotsf cporrorteesapsoenindh tiob isteovrserraelp porrteecdurfsroomrs odfi fpferroetnetaasert ihnrhoipboitdosrs(i nrecpluodrtinedg finrosmec tdsiaffnedreanrta acrhtnhirdosp).ods (including insects and arachnids). LLooww mmoolleeccuullaarr mmaassss ssppiiddeerr ttooxxiinnss wweerree ppoooorrllyy rreepprreesseenntteedd ((iinn tteerrmmss ooff ddiivveerrssiittyy)) iinn tthhee tthhrreeee ttrraannssccrriippttoommee lliibbrraarriieess.. OOuurrp phhyylologgeenneetitcica nanalaylysesseso foUf U8-8a-gaagtaotxoinxi-nli-kleikpee ppetipdteidse(Ms (LMaLn danBdI; BFIi;g Fuirgeu4rae) 4sha)o wshtohwe pthrees penrecseeonfcteh roefe thorrteheo ogrrtohuopgsr,ocuopnss,i sctoinngsiostfisnegq uoef nsceeqsufernocmest hfreotmhr etheep stheuredeo pscsoerupdioonscsoprepciioens. sFproemcietsh. eFsreo,mon tehepssee,u odnoes pcoserpuidoonscoortrhpoiognro ourpthwogarsoruepco wvearse rdecwoivtheraedU w8-iatgha at oUx8in-a-gliakteohxoinm-loikloeg hpoempotildoeg, poreipgtiindael,l yorreigpionratelldy frreopmorthteedg fernoomm itchaen gaelynsoimsoicf Pa.nteaplyidsairsi oorfu mP. wteipthidlaorwiornuomd awlistuhp lpoowrt n(gordeaeln sculapdpeoirnt (Fgigreuerne 4cbla)d. Te hine oFtihgeurrtew 4obg).r oTuhpes owtheerre ptwseou dgroosucoprsp iwoner-esp pesceifiucd(oosrcaonrgpeioann-dspgercaiyficc l(aodreasnigneF aignudr egr4aby). cFliandaellsy ,infi vFeigtruarne sc4rbi)p. tsFifnroalmly,S .fiavpei mtrealunssc(rriepptrse sferonmtin gS. oanpeimgeelnues a(rnedprfievseenitsionfgo romnse) cgleunset earendd wfiivthe itshoefoUr8m-asg) actlouxsitner-leidk ewpietph titdhee fUro8m-agCa.tsocxuilnp-tluikraet upseapntiddea nforothme rCs.e qscuuelnptcuerraetupso ratnedd farnoomthHere msiesqcuorepnicues rleepptourrtuesd. fNrooms pHeecmifiisccotrrpainussc lreippttusrfurso. mNoa nspyeocfifitch etrapnssecurdipotssc forropmio annlyib orfa trhiees pcsleuusdteorsecdorwpiitohn pliebprtairdieess crelupsotretreedd fwroimth tpicekptvideneos mrep(loigrthetdb flruoemcl atidcke ivnenFoigmu r(eli4gbh)t. blue clade in Figure 4b). Figure 4. (a) Evolutionary tree of the U8-agatoxin-like peptides from a Bayesian analysis of 34 Figure4.(a)EvolutionarytreeoftheU8-agatoxin-likepeptidesfromaBayesiananalysisof34sequences sequences reported from insects, and arachnids (including the sequences reported here). Posterior reportedfrominsects,andarachnids(includingthesequencesreportedhere).Posteriorprobabilities probabilities are indicated below nodes. (b) Multiple sequence alignment of the mature peptide areindicatedbelownodes.(b)Multiplesequencealignmentofthematurepeptidepredictedfromthe predicted from the sequences used in the phylogenetic analysis. Those in blank had no mature peptide sequencesusedinthephylogeneticanalysis.Thoseinblankhadnomaturepeptidepredictedandwere predicted and were represented only by the flanking region(s). Cysteine positions highlighted in representedonlybytheflankingregion(s).Cysteinepositionshighlightedinyellow.Fourorthogroup yellow. Four orthogroup sequences from the three pseudoscorpion species are highlighted in colors sequencesfromthethreepseudoscorpionspeciesarehighlightedincolors(seetext). (see text). Ourresultssuggestpseudoscorpionvenomcontainssimilaractivepeptidestothosereported Our results suggest pseudoscorpion venom contains similar active peptides to those reported fromspiders,ticks,andscorpions.Totracetheevolutionaryoriginofthediversityofthesecomponents from spiders, ticks, and scorpions. To trace the evolutionary origin of the diversity of these acrossarachnids,wemapped(usingparsimony)eightcategoriesofpeptideswithknownfunctionin components across arachnids, we mapped (using parsimony) eight categories of peptides with thevenomofspiders,scorpions,andticksinthelatestarachnidphylogeny[9](Figure5a–c). Enzymes known function in the venom of spiders, scorpions, and ticks in the latest arachnid phylogeny [9] (suchashyaluronidasesandphospholipases),defensins,proteaseinhibitors,lowmolecularspider (Figure 5a–c). Enzymes (such as hyaluronidases and phospholipases), defensins, protease inhibitors, toxins (see below), and other venom components were shared by the four venomous arachnids. low molecular spider toxins (see below), and other venom components were shared by the four Within Pseudoscorpiones, all peptide categories were shared by the three libraries, except for the venomous arachnids. Within Pseudoscorpiones, all peptide categories were shared by the three hyaluronidases(missinginthelibraryofHesperochernessp.,Figure5d). libraries, except for the hyaluronidases (missing in the library of Hesperochernes sp., Figure 5d). Toxins2018,10,207 7of12 Toxins 2018, 10, x FOR PEER REVIEW 7 of 12 FFiigguurree 55.. ((aa)) EEvvoolluuttiioonnaarryyh hyyppooththeesesseso fotfh tehoer oigriingsinosf ovfe nvoemnocmom copmonpeonntsenwtist hwinithAirna cAhrnaicdhan.i(daa–.c )(aT–rece) Ttorpeeo ltoogpioelsocgoiems pciolemdpfirloemd fproumbl ipshuebdlisshoeudrc seosu[r7c,9e]s m[7a,9p]p minagpepaicnhg veeancohm vecnoommp ocnomenptobnyecnot lboyr. cBolalonrk. Bsqlaunakr essqinudairceast eiinndfeicrareted sinecfeornrdeadr yselocsosneds.a(rdy) Plohsysleosg. e(nde)t icPrheylalotigoennsehtiipcs roefltahtieotnhsrheiepps seouf dtohsec orthprioeen pspseeucideoss(ccoormpipoinle sdpfercoimes R(ceofmerepnilceeds f[r1o,2m]) Rweiftehrethnecerse p[1o,r2t]e) dweinthz ythmee recaptoergtoedri eesn.zyme categories. 3. Discussion 3. Discussion Our high-quality pedipalpal transcriptome of S. apimelus, supported also by the analyses of two Ourhigh-qualitypedipalpaltranscriptomeofS.apimelus,supportedalsobytheanalysesoftwo transcriptomes of other species, revealed for the first time the composition of pseudoscorpion venom. transcriptomesofotherspecies,revealedforthefirsttimethecompositionofpseudoscorpionvenom. We found evidence for several components shared by the four venomous arachnid lineages, such as Wefoundevidenceforseveralcomponentssharedbythefourvenomousarachnidlineages,suchas phospholipases, protease, and peptidase inhibitors. The presence of known peptidic toxins, such as phospholipases,protease,andpeptidaseinhibitors. Thepresenceofknownpeptidictoxins,suchas those found in scorpion and spider venoms, were lowly represented. Our phylogenetic analyses of thosefoundinscorpionandspidervenoms,werelowlyrepresented. Ourphylogeneticanalysesof the low molecular mass spider toxins showed the presence of two different components unique to thelowmolecularmassspidertoxinsshowedthepresenceoftwodifferentcomponentsuniqueto pseudoscorpions, and two components similar to the U8-agatoxin-like peptides from P. tepidadorium pseudoscorpions,andtwocomponentssimilartotheU8-agatoxin-likepeptidesfromP.tepidadorium (spider) and from C. sculpturatus (scorpion). The function of the U8-agatoxin peptide (cloned from (spider)andfromC.sculpturatus(scorpion). ThefunctionoftheU8-agatoxinpeptide(clonedfromthe the spider Agelena orientalis) remains unknown [39]. However, its similarity to other agatoxins, a spiderAgelenaorientalis)remainsunknown[39]. However,itssimilaritytootheragatoxins,afamilyof family of peptides including low mass molecular toxins with affinity to the sodium or calcium ion peptidesincludinglowmassmoleculartoxinswithaffinitytothesodiumorcalciumionchannels[40], channels [40], suggest they might share similar functions. The only previous study on the effects of suggest they might share similar functions. The only previous study on the effects of the crude the crude venom of pseudoscorpion suggested the presence of putative neurotoxins of peptidic and venomofpseudoscorpionsuggestedthepresenceofputativeneurotoxinsofpeptidicandnonpeptidic nonpeptidic nature [11]. Whether the three groups found in pseudoscorpion venom are the culprit nature[11]. Whetherthethreegroupsfoundinpseudoscorpionvenomaretheculpritforneurotoxicity for neurotoxicity in rat brain is uncertain, because studies in spider venom have also shown the presence of polyamines targeting ionotropic glutamate receptors (e.g., [41,42]). Toxins2018,10,207 8of12 inratbrainisuncertain,becausestudiesinspidervenomhavealsoshownthepresenceofpolyamines targetingionotropicglutamatereceptors(e.g.,[41,42]). Thecompositionoftranscripts/genesinpseudoscorpionvenomshedslightonthediversification ofarachnidvenom,bothatthelevelofmorphologicalsitesofsynthesisandmoleculardiversity.Spiders andtickshavetheirvenomglandslocatedanteriorly,injectingvenomthroughthechelicerae(spiders) orsalivaryglands[19,43]. Scorpionsontheotherhand,possessvenomglandslocatedinthetelson (theposterior-mostpartofthetail).Pseudoscorpionsinjectvenomthroughthetipsofthepedipalpal chela,withtheirvenomglandslocatedinthepedipalpalfingersorsometimesextendingintothebase ofthechelalhand(Figure1c). Theevolutionofvenomglandswithinthefourvenomousarachnid ordersisthusmostlikelytheresultofmultipleindependentevolutionarygains. Thehomologyof thevenomglandsacrossthearachnidsremainslargelyunexploredandmayconstituteanopportune targetforcross-disciplinarystudiesofvenomsynthesis,evolution,anddevelopmentalgenetics. ResolvingthephylogeneticpositionofPseudoscorpioneswouldgreatlyrefinetheevolutionary contextforarachnidvenom. Theoriginofthevenompeptidefractionhasbeensuggestedtobethe recruitmentofhousekeepinggenesintovenom,followedbydiversificationandneofunctionalization (e.g., [44]). Following this reasoning, the phylogenetic position of Pseudoscorpiones is crucial to establishing the evolutionary relationship among venom components. Currently, the alternative phylogeneticpositionsofpseudoscorpionsas(a)somehowrelatedtotheacarineorders(mitesand ticks)or(b)morecloselyrelatedtospidersandscorpions(Figure5c),couldbecompatiblewithmultiple scenarios. First,themostrecentcommonancestor(MRCA)ofticksandpseudoscorpionsmayhave hadthesecomponents,withseparategainsatthebaseofArachnopulmonataandsecondarylossesin non-venomousarachnopulmonateorders(Figure5a). Alternatively,thesimilaritiesofpseudoscorpion and arachnopulmonate venom composition may be consistent with their closer phylogenetic relationshipandasharedoriginofvenomsatthebaseofPseudoscorpiones+Arachnopulmonata, a relationship supported in some phylogenomic analyses (Figure 5c). We also cannot rule out scenarios of multiple, independent gains of venom components in ticks, pseudoscorpions, and arachnopulmonates (Figure 5b). A more nuanced understanding of venom evolution within Arachnida is dependent upon resolving the phylogenetic position of Pseudoscorpiones and the constituentlineagesofAcari,themitesandticks. 4. MaterialsandMethods PseudoscorpionspecimenswerehandcollectedunderstonesinStirlingRangeNationalPark, WesternAustralia(34◦23(cid:48)24”S,118◦03(cid:48)17”E;629melevation)on18August2017byA.Z.O.,M.S.H., andP.P.S.(Figure1). Thepedipalpalchelaefrom46adultfemaleandmalespecimensweredissected andtransferredto1.5mLmicrocentrifugetubes. TotalRNAwasextractedusingtheTrizolreagent (AmbionLifeTechnologies,Waltham,MA,USA).LibrarypreparationandstrandedmRNAsequencing followedprotocolsfromtheBiotechnologyCenterattheUniversityofWisconsin-Madison. Samples wererunusinganIlluminaHiSeq2500HighThroughputplatformwithpaired-endreadsof125bp. RawsequencereadscanbefoundintheSRAdatabaseundertheaccessionnumberSRR7062201and theBioProjectPRJNA453454. AdaptorswereremovedusingTrimmomaticv. 0.36[45]andthequality ofcleanedrawreadswasassessedwithFastQCv. 0.11.5.[46]. Readswereassembledintocontigs inadenovofashionwithTrinityv. 2.5[47]. Thequalityoftheassemblyandbasicstatisticsforthe transcripts,genes,andisoformswereobtainedusingtheTrinityStats.plscript. Assembledcontigswere usedasqueriestosearchtheUniProtdatabasewiththeblastxandblastpalgorithms;proteindomains wereidentifiedwithHMMER;andcontigswereanalyzedusingTrinotate[47]. Additionally,toaddress thecoverageofourtranscripts,wecalculatedtheorthologhitratio(OHR,[48–50]). Selectedtranscriptswithsequencesimilaritytovenomcomponents(e.g.,fromticks,scorpions, spiders,orotherarthropods)wereusedasqueriestosearchUniProtandGenBank. Fromthesenew searches,matchingsequenceswithlowerexpected(e)values,higherquerycovervalues,orhigher percentages of identity were selected as definitive matches. To contrast the venom components Toxins2018,10,207 9of12 foundinS.apimelustootherpseudoscorpionlibraries(previouslypublished),weassembleddenovo the libraries of Haplochernes kraepelini and Hesperochernes sp. from raw reads downloaded from NBCI(accessionnumbersSRR1767661andSRR1514877,respectively)followingthesameprocedure as above. We calculated the OHR for their transcripts and used the selected venom transcripts fromthelibraryofS.apimelusasqueriestosearchfororthologsintheothertwolibraries, usinga phylogeneticallyinformedorthologycriterion,asimplementedinUPhO[51]. Thesignalpeptidesand propeptidesoftheseselectedtranscriptsweredeterminedwithSpiderPfromtheArachnoserver[52]. Multiplesequencealignments(MSA)oftherelevantS.apimelustranscript-derivedsequenceswith thecorrespondinginputsetswereobtainedusingMAFFTv. 7.0[53]. Visualizations,conservations, andconsensusesofMSAwereobtainusingJalviewv2.10[54]. Togaininsightsonthephylogeneticrelationshipsofthetranscriptswithsimilaritytothelow molecularmassspidertoxins,weretrievedninesequenceswhichcode,orputativelycode,forU8 agatoxinandU8agatoxin-likepeptidesfromGenBankandUniProt. Thesesequencesincludedtwo fromcDNAclonedfromtwoinsectspecies;andsevendeducedfromcDNAclonedfromsevenarachnid species. MultiplesequencealignmentforthefullprecursorwasgeneratedusingMAFFT,resultingina matrixconsistingof34terminalsand208aminoacidsites. Maximumlikelihood(ML)treetopologies were inferred in IQtree v 1.5.5 [55] using the PMB + Γ4 model, detected with ModelFinder [56] in IQtree,andbyimplementing1000ultrafastbootstrapresampling[57]. Bayesianinference(BI)analysis was performed with MrBayes 3.2.2 [58] using the JTT + Γ + I model, selected under the Bayesian informationcriterionusingProTest3[59]. Fourruns, eachwithfourMarkovchainsandadefault distributionofchaintemperatures,wereimplementedfor5×106generations. Convergenceofeach chainwasassessedusingTracerv. 1.6with5×105generationsdiscardedasburn-in. SupplementaryMaterials:Thefollowingareavailableonlineathttp://www.mdpi.com/2072-6651/10/5/207/s1, SequencesreportedfromthelibraryofSynphyronusapimelusareinfastaformat. AuthorContributions:C.E.S.-L.andP.P.S.conceivedanddesignedtheexperiments.P.P.S.,A.Z.O.,andM.S.H. collectedthespecimens.C.E.S.-Lperformedtheexperimentsandanalyzedthedata.P.P.S.contributedreagents. C.E.S.-LandP.P.S.wrotethepaper,withallauthorscontributingedits. Funding:ThisresearchwasfundedbytheNationalScienceFoundationundergrantno.IOS-1552610.C.E.S.-L. wassupportedbyaCONACYTpostdoctoralfellowship(reg.207146/454834). Acknowledgments:JesúsBallesterosassistedintheexperimentsandbioinformatics.EditsfromJesúsBallesteros andGretaBinfordwereincorporatedintothemanuscript.Commentsfromthreeanonymousreviewersrefined themanuscriptandvisualpresentationofthedata. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Harvey, M.S. Pseudoscorpions of the World, version 3.0; Western Australian Museum: Perth, Australia, 2013.Availableonline:http://www.museum.wa.gov.au/catalogues-beta/pseudoscorpions(accessedon 18April2018). 2. Murienne,J.;Harvey,M.S.;Giribet,G.FirstmolecularphylogenyofthemajorcladesofPseudoscorpiones (Arthropoda:Chelicerata).Mol.Phylogenet.Evol.2008,49,170–184.[CrossRef][PubMed] 3. Harms,D.;Dunlop,J.A.ThefossilhistoryofPseudoscorpions(Arachnida:Pseudoscorpiones).Foss.Rec. 2017,20,215–238.[CrossRef] 4. Wheeler,W.C.;Hayashi,C.Y.Thephylogenyoftheextantchelicerateorders. Cladistics1998,14,173–192. [CrossRef] 5. Giribet,G.;Edgecombe,G.D.;Wheeler,W.C.;Babbitt,C.PhylogenyandSystematicPositionofOpiliones: ACombinedAnalysisofChelicerateRelationshipsUsingMorphologicalandMolecularData.Cladistics2002, 18,5–70.[CrossRef][PubMed] 6. Shultz,J.W.Aphylogeneticanalysisofthearachnidordersbasedonmorphologicalcharacters. Zool. J. Linn.Soc.2007,150,221–265.[CrossRef] Toxins2018,10,207 10of12 7. Regier, J.C.; Shultz, J.W.; Zwick, A.; Hussey, A.; Ball, B.; Wetzer, R.; Martin, J.W.; Cunningham, C.W. Arthropodrelationshipsrevealedbyphylogenomicanalysisofnuclearprotein-codingsequences.Nature 2010,463,1079–1083.[CrossRef][PubMed] 8. Borner,J.;Rehm,P.;Schill,R.O.;Ebersberger,I.;Burmester,T.Atranscriptomeapproachtoecdysozoan phylogeny.Mol.Phylogenet.Evol.2014,80,79–87.[CrossRef][PubMed] 9. Sharma, P.P.; Kaluziak, S.T.; Pérez-Porro, A.R.; González, V.L.; Hormiga, G.; Wheeler, W.C.; Giribet, G. PhylogenomicinterrogationofArachnidarevealssystemicconflictsinphylogeneticsignal.Mol.Biol.Evol. 2014,31,2963–2984.[CrossRef][PubMed] 10. Harvey,M.S.ThephylogenyandclassificationofthePseudoscorpionida(Chelicerata:Arachnida).Invertebr.Syst. 1992,6,1373–1435.[CrossRef] 11. Santosdos,W.F.;Coutinho-Netto,J.EffectsoftheParatemnuselongatuspseudoscorpionvenomintheuptake andbindingoftheL-glutamateandGABAfromratcerebralcortex.J.Biochem.Mol.Toxicol.2006,20,27–34. [CrossRef][PubMed] 12. Gopalakrishnakone,P.;Possani,L.D.;Schwartz,E.F.;RodriguezdelaVega,R.C.ScorpionVenoms;Springer: Berlin,Germany,2015. 13. Gopalakrishnakone,P.;Corzo,G.;deLima,M.E.;Diego-Garcia,E.SpiderVenoms;Springer:Berlin,Germany,2016. 14. Pessini, A.C.; Takao, T.T.; Cavalheiro, E.C.; Vichnewski, W.; Sampaio, S.V.; Giglio, J.R.; Arantes, E.C. A hyaluronidase from Tityus serrulatus scorpion venom: Isolation, characterization and inhibition by flavonoids.Toxicon2001,39,1495–1504.[CrossRef] 15. Ferrer,V.P.;deMari,T.L.;Gremski,L.H.;TrevisanSilva,D.;daSilveira,R.B.;Gremski,W.;Chaim,O.M.; Senff-Ribeiro,A.;Nader,H.B.;Veiga,S.S.ANovelHyaluronidasefromBrownSpider(Loxoscelesintermedia) Venom(Dietrich’sHyaluronidase):FromCloningtoFunctionalCharacterization.PLoSNegl.Trop.Dis.2013, 7,e2206.[CrossRef][PubMed] 16. Bordon,K.C.F.;Wiezel,G.A.;Amorim,F.G.;Arantes,E.C.ArthropodvenomHyaluronidases:Biochemical propertiesandpotentialapplicationsinmedicineandbiotechnology.J.Venom.Anim.ToxinsIncl.Trop.Dis. 2015,21,43.[CrossRef][PubMed] 17. Lajoie,D.M.;Zobel-Thropp,P.A.;Kumirov,V.K.;Bandarian,V.;Binford,G.J.;Cordes,M.H.J.PhospholipaseD ToxinsofBrownSpiderVenomConvertLysophosphatidylcholineandSphingomyelintoCyclicPhosphates. PLoSONE2013,8,e72372.[CrossRef][PubMed] 18. Incamnoi,P.;Patramanon,R.;Thammasirirak,S.;Chaveerach,A.;Uawonggul,N.;Sukprasert,S.;Rungsa,P.; Daduang,J.;Daduang,S.Heteromtoxin(HmTx),anovelheterodimericphospholipaseA2fromHeterometrus laoticusscorpionvenom.Toxicon2013,61,62–71.[CrossRef][PubMed] 19. Cabezas-Cruz,A.;Valdés,J.J.Areticksvenomousanimals?Front.Zool.2014,11,47.[CrossRef][PubMed] 20. Perner,J.;Provazník,J.;Schrenková,J.;Urbanová,V.;Ribeiro,J.M.C.;Kopácˇek,P.RNA-seqanalysesofthe midgutfromblood-andserum-fedIxodesricinusticks.Sci.Rep.2016,6,36695.[CrossRef][PubMed] 21. Rodriguez-Valle, M.; Moolhuijzen, P.; Barrero, R.A.; Ong, C.T.; Busch, G.; Karbanowicz, T.; Booth, M.; Clark, R.; Koehbach, J.; Ijaz, H.; et al. Transcriptome and toxin family analysis of the paralysis tick, Ixodesholocyclus.Int.J.Parasitol.2018,48,71–82.[CrossRef][PubMed] 22. Vachon,M.Ordredespseudoscorpions.InGrassé,TraitédeZoologie;Masson:Paris,France,1949;Volume6, pp.437–481. 23. Weygoldt,P.TheBiologyofPseudoscorpions;HarvardUniversityPress:Cambridge,MA,USA,1969. 24. Garb, J.E.; Sharma, P.P.; Ayoub, N.A. Recent progress and prospects for advancing arachnid genomics. Curr.Opin.InsectSci.2018,25,51–57.[CrossRef][PubMed] 25. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight,S.S.;Eppig,J.T.;etal.GeneOntology:Toolfortheunificationofbiology.Nat.Genet.2000,25,25–29. [CrossRef][PubMed] 26. GeneOntologyConsortium.TheGeneOntology(GO)databaseandinformaticsresource.NucleicAcidsRes. 2004,32,258D–261D. 27. Hodgson,E.ToxinsandVenoms.Prog.Mol.Biol.Transl.Sci.2012,112,373–415.[PubMed] 28. Chen,Z.;Wang,B.;Hu,J.;Yang,W.;Cao,Z.;Zhuo,R.;Li,W.;Wu,Y.SjAPI,thefirstfunctionallycharacterized Ascaris-typeproteaseinhibitorfromanimalvenoms.PLoSONE2013,8,e57529.[CrossRef][PubMed] 29. Mourão,C.; Schwartz,E.Proteaseinhibitorsfrommarinevenomousanimalsandtheircounterpartsin terrestrialvenomousanimals.Mar.Drugs2013,11,2069–2112.[CrossRef][PubMed]
Description: