International Journal o f Molecular Sciences Review Transcriptional Regulation and Transport of Terpenoid Indole Alkaloid in Catharanthus roseus: Exploration of New Research Directions JiaqiLiu1,2,JunjunCai3,RuiWang2,*andShihaiYang1,* 1 CollegeofChineseHerbalMedicine,JilinAgriculturalUniversity,Changchun130047,China; [email protected] 2 CropResearchInstitute,SichuanAcademyofAgriculturalSciences,Chengdu610066,China 3 WestChinaHospital,SichuanUniversity,Chengdu610066,China;[email protected] * Correspondence:[email protected](R.W.);[email protected](S.Y.); Tel.:+86-28-8450-4238(R.W.);+86-431-8453-3358(S.Y.); Fax:+86-28-8450-4238(R.W.);+86-431-8453-3131(S.Y.) AcademicEditor:MarcelloIriti Received:4November2016;Accepted:22December2016;Published:28December2016 Abstract: As one of the model medicinal plants for exploration of biochemical pathways and molecular biological questions on complex metabolic pathways, Catharanthus roseus synthesizes morethan100terpenoidindolealkaloids(TIAs)usedforclinicaltreatmentofvariousdiseasesand fornewdrugdiscovery. Giventhatextensivestudieshaverevealedthemajormetabolicpathways andthespatial-temporalbiosynthesisofTIAinC.roseusplant,littleisknownaboutsubcellularand inter-cellulartraffickingorlong-distancetransportofTIAendproductsorintermediates,aswellas theirregulation. Whilethesetransportprocessesareindispensableformulti-organelle,-tissueand -cellbiosynthesis,storageandtheirfunctions,greateffortshavebeenmadetoexplorethesedynamic cellular processes. Progress has been made in past decades on transcriptional regulation of TIA biosynthesisbytranscriptionfactorsaseitheractivatorsorrepressors;recentstudiesalsorevealed severaltransportersinvolvedinsubcellularandinter-cellularTIAtrafficking. However,manydetails and the regulatory network for controlling the tissue-or cell-specific biosynthesis, transport and storageofserpentineandajmalicineinroot,catharanthineinleafandroot,vindolinespecificallyin leafandvinblastineandvincristineonlyingreenleafandtheirbiosyntheticintermediatesremaintobe determined.Thisreviewistosummarizetheprogressmadeinbiosynthesis,transcriptionalregulation andtransportofTIAs. Basedonanalysisoforganelle,tissueandcell-typespecificbiosynthesisand progresses in transport and trafficking of similar natural products, the transporters that might be involved in transport of TIAs and their synthetic intermediates are discussed; according to transcriptomeanalysisandbioinformaticapproaches,thetranscriptionfactorsthatmightbeinvolved inTIAbiosynthesisareanalyzed. Furtherdiscussionismadeonabroadcontextoftranscriptional andtransportregulationinordertoguideourfutureresearch. Keywords: terpenoid indole alkaloids; biosynthesis; transcription factor; transporter; regulatory network;compartmentation 1. Introduction Plant secondary metabolites are often produced either in certain tissues or cells under stress conditionsorinducedbyvariousdevelopmental,hormonalandenvironmentalcues. Thebiosynthesis of secondary metabolites is often tightly regulated at transcriptional levels. Even in a plant cell where secondary metabolites are synthesized, the multiple enzymes and their reactions are often compartmentalizedintovarioussubcellularorganelles,suchaschloroplast,endoplasmicreticulum Int.J.Mol.Sci.2017,18,53;doi:10.3390/ijms18010053 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2017,18,53 2of20 (ER), vacuoles, as well as apoplastic spaces. It is also often observed that the synthetic site of secondarymetabolitesisusuallydifferentfromthesitewherethesechemicalsfunction,asdefensive compounds against insects, bacteria or fungal pathogens. Thus, efficient transport of precursors, metabolic intermediates and the end products for biosynthesis, storage or function, are of critical in whole plant secondary metabolism and their biological significance. Many studies support the idea that transporters, either across membranes or intra-cellular trafficking, or inter-cellular long distance transport, provide another layer of regulation for metabolic flux [1,2]. Furthermore, thesetransmembranetransporters,vesicletraffickingcomponents,aswellasproteincarriersarealso regulatedattranscriptionallevels[3]. Therefore,transcriptionalandtransportregulationofsecondary metabolitebiosynthesisarecriticalresearchtopics. Catharanthus roseus (Madagascar periwinkle) is a perennial herb belonging to the family Apocynaceae. Itproducesover100differentterpenoidindolealkaloids(TIAs),someofwhichexhibit strongpharmacologicalactivitiesandareessentiallyusedinclinicaltreatmentofvariousdiseases[4]. Vinblastine and vincristine, which have been used clinically to treat cancers since 1950s, are the mostvaluabledimericTIAsinC.roseus[5]. ThesetwodimericTIAsareproducedintraceamount in C. roseus by couplingvindoline and catharanthine, both of whichhave also been reported with anti-bacterialactivities,anti-diabeticpropertiesanddiureticactions[6]. OtherTIAsfromC.roseussuch asajmalicineandserpentineareusedinanti-hypertensiveandanti-neuro-inflammatoryagents[6]. Duetoextremelylowyieldofthehighlyvaluablevinblastineandvincristine,substantialeffortsin pastdecadeshaveputonlarge-scalecellculture,bioreactorprocessingbiotechnologyandmetabolic engineeringtoimprovetheirproductioninordertomeettheincreasingdemandsfromthemarket. However,thesuccessisverylimited. IthasbeenrealizedthatunderstandingoftheTIAbiosynthesis, transportandtheirregulationmayempowerourabilitytoapplynewandrobustmolecularandgenetic toolsinmetabolicengineeringoftheproductionofthesevaluablemetabolites[7–10]. Severalreviews were published about the organ-, tissue- and cell-specific as well as transcriptional regulation of TIAbiosynthesis[8,11]. However,thebreakthroughsmaderecentlyonTIAbiosynthesisregulation and particularly, the intra- and inter-cellular TIA transport, from molecular biology, genomic and transcriptomicspointsofviewhaveprovidedsignificantinsightsintotheseimportantdynamiccellular processes[12]. ThisreviewistosummarizethesemostrecentprogressesmadeonTIAbiosynthesis, transcriptionalregulationandtheirtransportandtoemploytranscriptomeanalysisforfurtherlooking forTIAtranscriptionalregulatorsthatarepotentiallyinvolvedintheTIAbiosynthesis. 2. TheBiosyntheticPathwayoftheTIAsinCatharanthusroseus Inrecentdecades,C.roseushasbeenextensivelystudiedforelucidatingthecomplexbiosynthetic pathways of TIAs and now it has become an ideal medicinal plant for in-depth investigating the complexmolecularmechanismsforTIAbiosynthesisandtransportaswellastheirtranscriptional regulation. All the TIAs in C. roseus are derived from the central precursor strictosidine, whichisacondensedproductofthetryptophanpathway-derivedtryptamineandtheseco-iridoid pathway-derivedsecologaninbystrictosidinesynthase(STR)(Figure1). Studiesonthebiosynthetic pathways of tryptamine and secologain have been carried out for years. Two enzymes have been revealedfortheircriticalrolesintryptaminebiosynthesis,anthranilatesynthase(AS)andtryptophan decarboxylase (TDC) [7,13], however, specific process remains to be determined. In seco-iridoid pathway, secologanin is finally generated through eight steps after the hydrolysis of geranyl diphosphate (GPP) to geraniol by geraniol synthase (GES) [14], in such pathway, all the enzymes involvedhavebeenidentifiedandthereversiblereactionfrom10-oxogeranialto7-deoxyloganetic acid has also been illuminated, while the recent study did not found the intermediate product iridotrialinthisreaction[15–17]. Subsequently,thecentralprecursorstrictosidineisconvertedinto strictosidine aglycoside by strictosidine β-D-glucosidase (SGD) [18], and strictosidine aglycoside can be used to synthesize various kinds of TIAs. Crystal structure studies detected two new cathenamine reductases (CRs), namely, heteroyohimbine synthase (HYS) and tetrahydroalstonine Int.J.Mol.Sci.2017,18,53 3of20 synthase(THAS).HYSreducescathenamineintoajmalicineand19-epi-ajmalicine, whileTHASis predomIinnt. aJ.n Mtolly. Srcie. 2s0p17o, n18s, i5b3 lefortheconversionoftetrahydroalstoninefromstrictosidinea3g olf y19c on[19]. Alstonineandserpentinearetheoxidationproductsoftetrahydroalstonineandajmalinerespectively. HYS reduces cathenamine into ajmalicine and 19-epi-ajmalicine, while THAS is predominantly Although the specialized oxidation enzyme has not been isolated, the oxidation conversion from responsible for the conversion of tetrahydroalstonine from strictosidine aglycon [19]. Alstonine and ajmalinseertpoensteinrpe eanret itnhee opxirdeasteionnt phroadsubctese onf toetbrasheyrdvreodalsitnonpinlea nantdv aajmcuaolinlees reasnpedctiivselmy. aAinlthlyouagchc tuhme ulated in rootssp[e2c0ia]l.izedV ionxdidoaltiinone eisnzaymnei mhaps onrotat nbteebni oissoylanttehde, ttihce porxeidcuatriosno rcoonfvevrisniocnr ifsrtoimne aajmnadlinve intob lastine. Since thseerpceynttoinceh proremseent Ph4a5s 0beeenn zoybmseerveCdY iPn 7p1lDan1t Vv2acutaolbees rasnodn iins em3a-oinxlyy gaeccnuamseula(tTed3 Oin) raonotds [a2n0]. alcohol Vindoline is an important biosynthetic precursor of vincristine and vinblastine. Since the cytochrome dehydrogenase (ADHL), tabersonine3-reductase (T3R) have been identified, the biosynthesis P450 enzyme CYP71D1V2 tabersonine3-oxygenase (T3O) and an alcohol dehydrogenase (ADHL), process from tabersonine to vindoline is well understood. However, the enzymes converting the tabersonine3-reductase (T3R) have been identified, the biosynthesis process from tabersonine to strictosidine-aglycone into tabersonine remain to be identified. On the other hand, the whole vindoline is well understood. However, the enzymes converting the strictosidine-aglycone into biosyntthaebseirssonoifnea rneomtahienr top bree ciduernstoifriedc.a Othna trhaen otthhienr eharnedm, tahien wshtoole bbeiosryenvtheeaslies do,f aanloththoeur gprheciutrssopr utative intermecdatihaatera,nsthteinme mremadaienns intoe b,eh raesvebaeleedn, aildtheonutgifih eitds pfourtataivleo inngtertmimedeia[t2e,1 s]t.emAmftaedrentihnee, bhiaoss byenetnh esis of vindolinideenatnifdiedc afothr aar alonntgh itnime,e t[h2e1]y. Aarfteerc othuep bleiodsyinntthoesdisi mof evriincdaollkinael oaindds ,caat-h3a(cid:48)r,a4n(cid:48)-thainnhe,y tdhreoyv ainreb lastine (AVLB),cowuiptlhedt heinptoe rodximidearisce aa-l3k(cid:48)a,l4o(cid:48)i-dasn, hay-d3′r,4o′v-ainnhbyldarsotvinineblsaysntinthe as(eA(VPLRBX), 1)w[i2th2 ].tThhe evpearlouxaidbalseeT IAsin a-3′,4′-anhydrovinblastine synthase (PRX1) [22]. The valuable TIAs in C. roseus, vinblastine and C. roseus, vinblastine and vincristine, were eventually derived from AVLB through multiple steps, vincristine, were eventually derived from AVLB through multiple steps, which remain to be whichreumndaeitnermtoinbeedu. ndetermined. Figure 1. Schematic biosynthetic pathways for terpenoid indole alkaloids (TIAs) in Catharanthus Figure 1. Schematic biosynthetic pathways for terpenoid indole alkaloids (TIAs) in roseus. The updated TIA biosynthetic pathways are presented by incorporating the most recently Catharanthus roseus. The updated TIA biosynthetic pathways are presented by incorporating the published results. Question marks in red indicate unknown process or enzymes for the reactions. most reAcebbnrtelvyiaptiuonbsl isahree:d DrXesSu, lt1s-d.eQoxuye-Dst-xioynlulomsea rk5-sphinosprheadte insdynicthaatese;u nDkXnRo, w1n-deporxoyc-De-sxsylourloseen zymes for the5-rpehaocstpihoantse . Arbedburectvoiiasotimoenrsasea; re:MDCTX, S, M1-EdPe oxyc-yDti-dxyyltlrualnossfeeras5e-;p hoCsMphKa, te 4s-y(cnytthidaisnee; DXR, 1-deoxy5-′D-d-ixpyhlousplohsoe)-25--Cp-hmoesthpyhl-aDt-eerryetdhruitcotlo iksionmasee;r aMseE;CMS,C T2-,CM-mEePthcyyletriydthyrlittroal n2s,f4e-rcaycsleo;dCipMhoKsp,h4a-t(ec ytidine 5(cid:48)-diphosysnpthhaos)e-;2 -CH-DmSe, thhyyld-rDox-eyrmyetthhyrilbtoultenkyiln a4s-ed;ipMhoEspChaSt,e 2-sCyn-mthaesteh; ylHeDryRt,h rhityodlro2xy,4m-ceythcyllobdutiepnhylo sphate 4-diphosphate reductase; IDI, isopentenyl diphosphate isomerases; IPP isomerase; GPPS, geranyl synthase; HDS, hydroxymethylbutenyl 4-diphosphate synthase; HDR, hydroxymethylbutenyl diphosphate synthase; GES, geraniol synthase; CPR, cytochrome P450 reductase; G10H, geraniol 4-diphosphatereductase; IDI,isopentenyldiphosphateisomerases; IPPisomerase; GPPS,geranyl 10-hydroxylase; 10HGO, 10-hydroxygeraniol dehydrogenase; IS, iridoid synthase; IO, iridoid diphospohxiadtaeses; y7n-DthLaGsTe,; 7G-dEeoSx,ygloegraanneitoicl ascyidn tghluacsoes;ylCtraPnRsf,ercayset;o DchLr7oHm, 7e-dPeo4x5y0logreandiuc catcaids eh;ydGro1x0yHla,seg; eraniol 10-hydrLoAxMylTa,s elo;ga1n0icH aGciOd ,m1et0h-yhltyradnrsofexryasgee; rSaLnSi,o slecdoleohgyandinro sgyennthaassee;; AISS,, ainrtihdroanidilatse ysnytnhthaassee;; TIDOC,, iridoid oxidaset;r7y-pDtoLpGhaTn, d7e-dcaeroboxxyylloagsea; nSeTtRic, astcriicdtogsilduicnoe ssyylntrthaanssef;e SraGsDe,; DstrLic7tHos,id7i-ndee oβ-xDy-glolugcaonsiidcaascei; dTh16yHd2r,o xylase; tabersonine 16-hydroxylase 2; 16OMT, 16-hydroxytabersonine-16-O-methyltransferase; T3O, LAMT, loganic acid methyltransferase; SLS, secologanin synthase; AS, anthranilate synthase; tabersonine 3-oxygenase; T3R, tabersonine 3-reductase; NMT, N-methyltransferase; D4H, TDC, tryptophan decarboxylase; STR, strictosidine synthase; SGD, strictosidine β-D-glucosidase; desacetoxyvindoline 4-hydroxylase; DAT, acetyl CoA: deacetylvindoline 4-O-acetyltransferase; CR, T16H2, tabersonine 16-hydroxylase 2; 16OMT, 16-hydroxytabersonine-16-O-methyltransferase; cathenamine reductases; THAS, tetrahydroalstonine synthase; HYS, heteroyohimbine synthase; T3O, taPbReXrs1o, an-i3n′,4e′-a3n-hoyxdyrgoevninabslaes;tinTe3 sRy,ntthaabsee;r PsoEnRi, npeuta3t-irveed puercotxaisdea;seN. MT, N-methyltransferase; D4H, des acetoxyvindoline 4-hydroxylase; DAT, acetyl CoA: deacetylvindoline 4-O-acetyltransferase; CR,cathenaminereductases;THAS,tetrahydroalstoninesynthase;HYS,heteroyohimbinesynthase; PRX1,a-3(cid:48),4(cid:48)-anhydrovinblastinesynthase;PER,putativeperoxidase. Int.J.Mol.Sci.2017,18,53 4of20 3. TranscriptionalRegulationofTIABiosynthesis Plenty of evidence indicates that the synthesis of TIAs is strictly regulated by transcription factors that target on the key structural genes. Elicitors such as yeast, jasmonate (JA) and related oxylipins, hormonessuchasauxinsaswellasenvironmentalcuescanstimulateTIAbiosynthesis in C. roseus [23,24]. It has been revealed that these stimuli-promoted TIA biosyntheses happen via transcriptional regulation of TIA synthetic genes, such as STR, TDC, G10H. The mechanisms for regulating the biosynthesis of different TIA end products are complicated and diversified; manytranscriptionfactorshavebeencharacterizedfortheirregulatoryfunctionsandsomeofthem havebeensuccessfullyappliedforTIAproduction[24]. Therearemanyexamplesthatapplieddifferenttranscriptionfactorstoimprovethecontentof plantsecondarymetabolites.OverexpressionofTSAR1orTSAR2inbasichelix-loop-helix(bHLH)gene familyinMedicagotruncatulahairyrootscausedtheup-regulationoftriterpenesaponinbiosynthetic genes and increased accumulation of triterpene saponins [24]. A novel APETALA2/Ethylene Response Factors (AP2/ERF) family transcription factor PsAP2 from Papaver somniferum was overexpressedintobacco,whichshowedimprovedresistancetobothabioticandbioticstresses[25]. AfterexpressingsevenMYBtranscriptionfactors(Dof1.1,IQD1-1,MYB28,MYB29,MYB34,MYB51 andMYB122)involvedinaliphaticandindolicglucosinolate(GSL)biosynthesisinChinesecabbage, thealiphaticandindolicGSLcontentsarechanged[26]. OverexpressionofAaERF1andAaERF2from Artemisia annua could increase the accumulation of artemisinin and artemisinic acid in transgenic A. annua plants [27]. Thus, it is an effective way to apply effective transcription factors for plant secondarymetabolicengineering. Two AP2/ERF family transcription factors ORCA2 and ORCA3 were characterized as the critical regulators for TIA biosynthesis. They could specifically bind to the JERE (jasmonate and elicitor-responsiveelement)inSTRpromoterandcanbeup-regulatedbyJA[28]. InC.roseushairy roots,theup-regulatedexpressionofORCA2significantlychangedthetranscriptsofmanystructural genesinTIAbiosynthesis,suchasAS,TDC,G10H,LAMT,STR,T16H,PRX1,D4H,SGDandDAT; moreover, the induced ORCA2 also caused the changes of the expressions of several TF encoding genes,suchasORCA3,ZCT1,ZCT2,ZCT3andCrMYC2(Figure2). Accordingly,theaccumulationof catharanthine,ajmalicine,serpentineandtabersoninewerealsochangeddramaticallyafterORCA2 induction[29]. AnotherstudyfoundthatvindolineintheORCA2transgenichairyrootscouldbe significantlyincreasedcomparedtothecontrollines[30]. Therefore,ORCA2playsanimportantrolein theregulationofTIAmetabolism. AnotherAP2/ERFfactorORCA3wasisolatedbyT-DNAactivation tagging approach, which could also regulate the expressions of many TIA synthetic genes [31]. InC.roseuscellsuspensioncultures,overexpressingORCA3causedtheup-regulationofTDC,STR,SLS, CPR,D4H,ASandDXS,variableexpressionofSGD,aswellasunaffectedexpressionofG10HandDAT. Therefore,overexpressionofORCA3significantlyinducedtryptamineinshikimatepathway,whileit didnotcausesecologanininseco-iridoidpathway. Also,feedingloganintoORCA3-overexpressed lines significantly increase TIA production [31]. Partly different from the results of C. roseus cell suspensioncultures,overexpressionofORCA3and,alongwithJAelicitationinhairyroot,induced theexpressionlevelsofAS,DXS,SLSandSTR,decreasedtheexpressionofSGD,butnotaffected TDC,G10H,CPR,GBFsandORCA2. Thedifferencesmayresultfromdifferentregulatorymechanisms betweentwotypesoftissueculturesystems[32]. Therefore,theoverexpressionofORCA3alonein two types of tissue cultures could not cover all the pathway genes, such as G10H, SGD and DAT. Anotherstudyshowsthatco-overexpressionofORCA3andSGDinC.roseushairyrootsresultedina significantincreaseofmanyTIAs[33]. Co-overexpressionofG10HandORCA3inC.roseusplantand hairyrootsbothincreasedtheaccumulationofTIAs,indicatingthatco-overexpressionofregulator andcriticalsyntheticgeneisanefficientwaytoincreasemetaboliteproduction[34]. BesidesJA,other ORCA3inducersarefoundrecently. FeedingartemisinicacidtoC.roseusmeristematiccellsresultedin theincreaseofthetranscriptlevelofORCA3,whichindicatedthatartemisinicacidmaybeanother Int.J.Mol.Sci.2017,18,53 5of20 waytoinduceORCA3[35]. AnotherstudyshowsthatinoculationoffungalendophytesinC.roseus couldup-regulatetheexpressionofORCA3andenhancetheaccumulationofvindoline[36]. ThefactthatORCAscanbeinducedbynotonlyJAbutalsootherelicitorimpliestheexpressions oftwoORCAsareregulatedbymoretranscriptionfactors,suchasCrMYC2. Asapositiveregulator fortheexpressionsofORCAs,CrMYC2wasinitiallyisolatedthroughayeastone-hybridscreening systemusingatetramerofG-boxfromtheSTRpromoterasbait,whileitcannotcontroltheactive oftheSTRpromoter[37]. CrMYC2canregulatetheexpressionORCA3geneviabindingtoaspecific sequenceinthejasmonate-responsiveelement(JRE)fromORCA3promoter[38]. Overexpressionor knockdownofCrMYC2significantlychangedtheexpressionofORCAsandalsohadastrongeffect ontheaccumulationofcatharanthineandtabersonine, butshowednoinfluenceonSTRandTDC expression,whichindicatedthatCrMYC2iscriticalfortheexpressionofMeJA-responsiveORCAs andtheaccumulationofalkaloidbutitcouldnotregulatesuchstructuralgenesasSTRandTDC[39]. AbHLHtranscriptionfactorBIS1fromcladeIVaisolatedfromC.roseuscouldregulatetheexpression ofstructuralgenesthatORCA3cannotcover[40]. OverexpressionofBIS1inC.roseuscellsandhairy rootscausedasignificantincreaseintheexpressionoftheseco-iridoidpathwaygenesupstreamof LAMTandthe2-C-methyl-D-erythritol-4-phosphate(MEP)pathwaygenes. Meanwhile,loganicacid, secologaninandstrictosidinewerehighlyaccumulatedintheBIS1-overexpressingcells. However, theaccumulationofTIAsintransgenichairyrootswasnotincreased,whichmayberesultedfrom thedown-regulationofORCA3targetgenesLAMT,SLS,TDC,andSGD.Decreasedexpressionofthe ORCA3targetgeneswasnotcausedbydecreasedexpressionofORCA2orORCA3,norofanyother knownC.roseusTFencodinggenepreviouslylinkedwithregulationoftheMIApathway,andthus involvesother,yetunknown,regulatorymechanisms. AnotherbHLHtranscriptionfactorBIS2was identifiedrecently,whichisthehomologofBIS1thatcanformhomo-orheterodimerswithBIS1. Same withBIS1,overexpressingBIS2inC.roseussuspensioncellscouldalsoup-regulateMEPaswellas seco-iridoidpathwaygenes,knockdownofBIS2completelyabolishedtheJA-inducedup-regulation oftheseco-iridoidpathwaygenesandtheaccumulationofTIAs. TheexpressionofBIS2couldbe regulatedbyBISs,whiletheBISs-bindingsitesofBIS2promoterremaintobedetermined. BIS1and BIS2couldbothregulatethestructuralgenesthatORCA2andORCA3cannotaffect,suchasG10H[41]. Therefore,BISstogetherwithORCAsmaycontrolthewholeupstreampathwayofTIAbiosynthesis andsupportsufficientsyntheticprecursorofTIAs. TwoAP2/ERFproteinsformaclusterwithORCA3,ORCA4andORCA5werecloned,whichare homologoustoORCA3. TheexpressionofORCA4andORCA5canbealsoinducedbyJAlikeORCA3. However,unlikeORCA3,ORCA4andORCA5cannotbedirectlyregulatedbyCrMYC2,theymaybe regulatedbyothertranscriptionfactors. Moreover,overexpressionofORCA4inC.roseushairyroots significantlyincreasedthetranscriptslevelsofgenesinbothtryptophanpathwayandseco-iridoid pathway,andalsoincreasedseveralTIAs,especiallytabersonine. Therefore,ORCA4isfunctionally overlappingbutdivergentwithORCA3[42]. CrWRKY1,belongingtothegroupIIIWRKYsuperfamily,wasidentifiedinC.roseus,whichcanbe inducedbyseveralphytohormonesandpreferentiallyexpressesinroots[43]. StudiesfoundCrWRKY1 regulatesTDCbybindingWboxelementinTDCpromoter. OverexpressionofCrWRKY1inC.roseus hairyrootsincreasedseveralkeypathwaygenes,suchasAS,DXS,SLS,SGD,especiallyTDC;aswellas TFencodinggenes,suchasZCTs,whileitrepressesthetranscriptionalactivatorsORCA2,ORCA3,and CrMYC2. Moreover,theaccumulationofserpentinewassignificantlyincreased,whilecatharanthine wasdecreased. Therefore,CrWRKY1isanidealcandidatetoregulateserpentinebranchtoproduce moreajmalicineandserpentine. CrBPF1 is a kind of MYB transcription factor that binds to BA region in STR promoter. OverexpressingCrBPF1inC.roseushairyrootschangedtheexpressionofmanypathwaygenes. Asfor regulatorygenes,overexpressingCrBPF1increasedthetranscriptsofORCA3,CrMYC1,CrMYC2,BIS1, GBF2andZCTs,butlittleaffectedtheexpressionsofORCA2andCrWRKY1. Althoughoverexpression of CrBPF1 could not obviously increase the accumulation of TIAs and even caused the decrease Int.J.Mol.Sci.2017,18,53 6of20 ofserpentine,itcouldextensivelyregulateTIApathwaygenesandincreasetheexpressionofTIA transcriptionalrepressors,whichmaybeagooddirectiontotheresearchofTIAbiosynthesis[44]. IthasbeenreportedthatusingG-boxelementintheSTRpromotersasbaittoscreenC.roseus yeastexpressionlibraryresultedinidentificationofG-boxbindingfactorsCrGBF1andCrGBF2[37,45]. BothCrGBF1andCrGBF2actastranscriptionalrepressorsoftheSTRviabindingtotheNRelement Int. J. Mol. Sci. 2017, 18, 53 6 of 19 in STR promoter, which indicated that GBFs may play an important role in the regulation of the expressionofSItT hRasa bneden trheepoarctecdu tmhaut luastiinogn Go-bfoTx IeAlesm.ent in the STR promoters as bait to screen C. roseus yeast expression library resulted in identification of G-box binding factors CrGBF1 and CrGBF2 ThreeCys2/His2-typezincfingertranscriptionfactorsfromC.roseus,ZCT1,ZCT2andZCT3, [37,45]. Both CrGBF1 and CrGBF2 act as transcriptional repressors of the STR via binding to the NR wereisolatedthroughayeastone-hybridscreeningsystemusinganelicitor-responsiveDBelement element in STR promoter, which indicated that GBFs may play an important role in the regulation of in TDC prthoem exoptreerssaiosn bofa SitTR[ 4a6n]d. thAe allccoumf uthlaetimon orfe TpIrAess. s the activities of STR and TDC promoters in trans-activatioTnhraees sCayyss2,/Hwish2-itcyhpem zianyc fpinrgoebr atrbalnyscbripetiroens ufalctteodrs ffrroomm Ct. hroeseeuxs,i sZtCeTn1c, eZCoTf2a apndo tZeCnTt3r, epression were isolated through a yeast one-hybrid screening system using an elicitor-responsive DB element domain,LxLxLmotifintheC-terminalregionofZCTs. Inaddition,theZCTproteinscanalsorepress in TDC promoter as bait [46]. All of them repress the activities of STR and TDC promoters in thetranscriptionalactivatingactivationoftheORCAs,andarefoundtobeinducedbyyeastextract trans-activation assays, which may probably be resulted from the existence of a potent repression (YE)andJdAo.mHaion,w LexvLxeLr, mthoetirfe ina rtehes eCv-teerrmalindail frfeegrieonn coefs ZbCeTtsw. Iene nadZdiCtioTn1, ,tZheC ZTC2Ta pnrdoteZinCs Tca3n. Talhsoe STRand TDCpromroepterersss tbhien tdrainnsgcrispittieosnaol facZtiCvaTti1ng, ZacCtivTa2tioanr eofd thifef OerReCnAtsf, raonmd aroen feouonfd ZtoC bTe 3in,dauncedd tbhye yesatsrtu cturesof extract (YE) and JA. However, there are several differences between ZCT1, ZCT2 and ZCT3. The ZCT1,ZCT2andZCT3arealsodifferent[46]. Furthermore,thefunctionsofthemarepartiallydifferent. STR and TDC promoters binding sites of ZCT1, ZCT2 are different from one of ZCT3, and the ZCT1andZCT2actasrepressorsofhydroxymethylbutenyl4-diphosphatesynthase(HDS)whileZCT3 structures of ZCT1, ZCT2 and ZCT3 are also different [46]. Furthermore, the functions of them are hasnoeffepcatrtoianllyH dDiffSer[e4n7t.] .ZACTr1e canedn tZsCtuT2d yacst haos wresprtehsasotrss iloefn hcyindrgoxZyCmTet1hywlbautsennyol t4s-duifpfihcoisepnhattteo increase TIA produsycntitohanseo (rHtDhSe) wexhpiler eZsCsTio3 nhaos fntoh eeffeTcIt Aonb HioDsSy [n47th]. eAt ircecgeennt setsu,dyw shhiocwhs mthaaty sibleencrinegs uZlCteTd1 from the was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes, which remainedelevatedexpressionlevelofZCT3. TheseresultsrevealthattheZCTsmayplayoverlapping may be resulted from the remained elevated expression level of ZCT3. These results reveal that the butdistinctfunctionsinTIAbiosynthesis[48]. ZCTs may play overlapping but distinct functions in TIA biosynthesis [48]. Figure2. FRigeugrue l2a.t iRoenguolaftiTonI Aof bTiIoAs ybinostyhnetthiecticp aptahthwwaayyss bbyy trtarnascnrsipctrioipn tfiaocntorfsa cint oCrasthianranCthautsh arorsaenust.h usroseus. Various structural genes (marked in blue) in TIA biosynthetic pathway are regulated by different Variousstructuralgenes(markedinblue)inTIAbiosyntheticpathwayareregulatedbydifferent transcription factors (TFs). ORCAs are believed to be key regulators that directly bind to the transcription factors (TFs). ORCAs are believed to be key regulators that directly bind to the promoters of structural genes involved in TIA biosynthesis. Several TFs such as WRKYs not only promoterscoonftrsotlr uthcet uexrparlesgseionne osf isntrvuoctluvreald gienneTs IbAut balisoos yrengtuhlaetes itsh.e SeexpvreerssailonT Fofs ostuhecrh TaFss iWnclRudKinYgs notonly control theMYexCp2,r OesRsCioAns, oZfCTsst,r uetcct. uSroamle gTeFns essucbhu ats aMlsYoC2r ecgouullda nteot tdhierecetxlyp rreegsusliaoten thoef eoxtphreesrsioTnF sof including structural genes in biosynthetic pathways. Therefore, these TFs form a transcriptional regulatory MYC2, ORCAs, ZCTs, etc. Some TFs such as MYC2 could not directly regulate the expression of network for TIA biosynthetic pathways. Among them, some TFs, such as BIS2, ZCT2 and WRKY2 structural genes in biosynthetic pathways. Therefore, these TFs form a transcriptional regulatory (marked in green), are negative regulators, whereas most TFs (marked in red) are positively regulate networkfoTrIAT bIAiosybniothseysins.t hDeXtSi,c 1p-daetohxwy-Da-yxsy.luAlosme o5-npghotshpehmate, ssyonmtheasTe; FGs1,0sHu, cgheraasnioBlI S102-,hyZdCroTx2ylaasne;d WRKY2 (markedinCPgRre, ceynto),charroemnee Pg4a50ti rveedurcetgasuel; aLtAoMrsT,,w lohgaenrieca ascimd mosetthTylFtrsan(msfearraksee; dSLiSn, sreecdol)ogaarneinp soysnitthivaseel;y regulate TIAbiosynSTthRe, sstirsic.toDsiXdiSn,e 1sy-dntehoasxey; S-DG-Dx, ystlruicltoossiedi5n-ep βh-Do-sgpluhcoastiedassye;n CthR,a csaeth;eGna1m0Hine, rgeedruactnaisoesl; 1T016-hHy2,d roxylase; tabersonine 16-hydroxylase 2; 16OMT, 16-hydroxytabersonine-16-O-methyltransferase; T3O, CPR,cytochromeP450reductase;LAMT,loganicacidmethyltransferase;SLS,secologaninsynthase; tabersonine 3-oxygenase; T3R, tabersonine 3-reductase; NMT, N-methyltransferase; D4H, STR, stricdtoessaicdeitnoxeyvsinydnotlhinaes 4e-h;ydSrGoxDyl,asse;t rDiActTo, saicdetiynl eCoβA-: Dde-gacleutyclovsiniddoalsinee; 4-CO-Rac,etcyalttrhanesnfearmasein. e reductases; T16H2, tabersonine 16-hydroxylase 2; 16OMT, 16-hydroxytabersonine-16-O-methyltransferase; T3O, tabersonine 3-oxygenase; T3R, tabersonine 3-reductase; NMT, N-methyltransferase; D4H, desacetoxyvindoline4-hydroxylase;DAT,acetylCoA:deacetylvindoline4-O-acetyltransferase. Int.J.Mol.Sci.2017,18,53 7of20 4. TransportofTIAsinandbetweenOrgans,Tissues,CellsandSubcellularCompartments Tissue, cell-specific and multi-organelle-participated synthesis of specific TIAs have been extensively studied with various techniques, including in situ hybridization, immunoblot, transcriptomicanalysisandGFP-fusionofmetabolicenzymesortransporters. Highlycomplicated regulationofvariousregulatoryandstructuralgenes,translocationofmetabolicenzymesandtransport ofmetabolicintermediatesthroughdifferenttissues,cellsandsubcellularcompartmentsarerequired forefficientbiosynthesisofTIAsuponvarioushormonalandenvironmentalcues[49]. Threemodesof transportofalkaloidsinplantshavebeenreported: inter-organ,inter-cellularandintra-cellular[50]. Thetypicalinter-organalkaloidstransportsareforberberineandnicotine:berberineissynthesized in the root of Coptis japonicais and then transported to the rhizome through a long distance [51]; nicotineisproducedonlyintherootofNicotianatabacumandtransportedtotheleavesoftheplantvia thexylem[52]. InC.roseus,synthesisofsomeTIAssuchasvindolineandcatharanthine,mainlytakes placeinyoungleavesandstems,whereassynthesisofotherssuchasajmalicineandserpentinemainly occursinroots. Theyalsodisplaycomplexinter-cellularandintra-cellulartransport. 5. Inter-CellularTransportIsRequiredforBiosynthesisofTIAs Studies have revealed that TIA biosynthetic pathway in aerial organs of C. roseus occurs in four cell types: internal phloem-associated parenchyma (IPAP), epidermal cells, laticifers and idioblasts [53,54]. The IPAP cells exist in the periphery of stem pith or in traxylary on the upper part of the vascular bundles in leaves and are full of chloroplast with the plastid-located MEP pathway enzymes [53,55]. MEP pathway, which is required for the development and function of chloroplast, happens mostly in young green tissues [56]. The early step of seco-iridoid pathway, geraniolconversioninto10-oxogeranialviageraniol10-hydroxylase(G10H)areco-localizedinthe IPAPcellsofyoungtissuessuchasleavesandroots[11,57]. Iridoidoxidase(IO),7-deoxyloganetic acidglucosyltransferase(7-DLGT)and7-deoxyloganicacidhydroxylase(DL7H)arealsolocalized totheIPAPcellsandtheirtranscripts, whicharefourtimesmoreabundantinthewholeleafthan in the epidermis, while loganic acid methyl-transferase (LAMT) and secologanin synthase (SLS) are preferentially expressed in the leaf epidermis. Loganic acid, as the intermediate, is assumed to move from the IPAP cells to the epidermis to convert into secologain under the catalyzing of LAMTandSLS[58–62]. Tryptamineandsecologaninarecondensedtoformstrictosidineinepidermal cell of young developing shoots and leaves, meanwhile, STR- and SGD- catalyzed central steps also happen in the epidermis (Figure 3) [63]. Strictosidine is the central precursor of TIAs, some ofwhicharedirectlyformedinepidermis,suchasajmalineandcatharanthine. Ajmalineismainly accumulated in root epidermis, while catharanthine is mainly secreted to the surface of leaves by the ATP Binding cassette (ABC) transporter CrTPT2 to transport it from the epidermis to the leaf surfaceinthewaxexudates(Figure3)[64]. Asforvindoline,thelateprecursordesacetoxyvindoline forvindolinebiosynthesisisformedinepidermis,theenzymestabersonine16-hydroxylase2(T16H2), 16-hydroxytabersonine-16-O-methyltransferase(16OMT),T3O/T3RandN-methyltransferase(NMT) arepreferentiallylocalizedinepidermis[31,32]. However,Desacetoxyvindoline4-hydroxylase(D4H) and acetyl-CoA:4-O-deacetylvindoline 4-O-acetyltransferase (DAT), catalyzing the last two steps are confirmed to localize idioblasts and laticifers of leaves, stems and flowers [65]. Therefore, the intermediatesdesacetoxyvindolineorotheraccessoryproductsneedtobetransportedfromepidermis toidioblastsorlaticifersforatwo-stepcollaborationtoformvindoline[66],butwhetheritisnecessary or how vindoline is transported out of idioblasts and laticifers remains unknown. Whether some stagesofthetranslocationareaccomplishedpassivelythroughthesymplasmorarecontrolledby plasmodesmata-localizedproteinsisstillanopenquestion. Int.J.Mol.Sci.2017,18,53 8of20 Int. J. Mol. Sci. 2017, 18, 53 8 of 19 Figure 3. Tissue-specific biosynthesis and inter-cellular transport of TIAs through known and Figure3.Tissue-specificbiosynthesisandinter-cellulartransportofTIAsthroughknownandunknown unknown transporters in Catharanthus roseus. The main TIA-biosynthesizing cells in the leaf of C. transportersinCatharanthusroseus.ThemainTIA-biosynthesizingcellsintheleafofC.roseusinclude roseus include palisade and spongy mesophyll cells, internal phloem-associated parenchyma (IPAP), palisade and spongy mesophyll cells, internal phloem-associated parenchyma (IPAP), epidermal epidermal cells, laticifers and idioblasts. So far, most transporters possibly involved in transport of cells, laticifers and idioblasts. So far, most transporters possibly involved in transport of TIA TIA intermediates or end products between these cells are unknown. The symbol “?” indicates the intermediates or end products between these cells are unknown. The symbol “?” indicates the unknown transportation system of inter-cellular transport. The only identified transporter unknowrensptornansisbpleo rftoart iroenlesaysisntgem ofo fcainthtaerra-cnethlliunlea roturta nosf puoprpt.eTr heepiodnelrymiadl ecnetlilfis eodnttora cnustpicolret eisr raens pAoBnCsi ble forreletarasninspgoortfecr aTthPaTr2a. nWthhienteheoru ptloafsmuopdpeesrmeaptaid, esyrmmbaollcizeellds oinn tboluceu tbicallles,i saraen aAlsBoC intvraonlvsepdo rinte rTITAP T2. Whethienrteprlmasemdiaotde etsramnasptao,rts ybemtwbeoelniz deidffeinrebnltu tyepbeas lolsf ,caelrles raelmsoaiinn vtoo blvee ddetienrmTiInAedin. termediatetransport betweendifferenttypesofcellsremaintobedetermined. 6. Intra-Cellular Transport of TIA Intermediates and End Products 6. Intra-CellularTransportofTIAIntermediatesandEndProducts The MEP pathway primarily takes place in the stroma of plastids or stromules in IPAP cells [11,67]. However, isopentenyl diphosphate isomerase (IDI), which catalyzes the interconversion of The MEP pathway primarily takes place in the stroma of plastids or stromules in IPAP isopentenyl diphosphate (IPP) and dimethylally diphosphate (DMAPP) to produce plenty of cells[11,67]. However,isopentenyldiphosphateisomerase(IDI),whichcatalyzestheinterconversion isoprenoids, was targeted to plastids, mitochondria and peroxisome [68]. Therefore, geraniol needs of isopentenyl diphosphate (IPP) and dimethylally diphosphate (DMAPP) to produce plenty of to be exported from the stroma by uncharacterized plastid inner or outer envelope transporter or isoprenoids,wastargetedtoplastids,mitochondriaandperoxisome[68]. Therefore,geraniolneeds some efficient metabolic flux into the cytosol of IPAP cells [69]. Geraniol is the substrate of the to be evxapcuoorltaerd mfreommbrtahnee- storro menadbopylausnmcihc arreatcictuerluizme d(EpRla)-satsisdociinanteedr oGr10oHu teinr etnhev eplorpodeutcrtaionns poofr ter or som1e0-heyffidcroiexnytgemraentiaobl o[7li0c], flwuhxichin itso futrhtehecr yctoonsvoelrtoefd IiPnAtoP thcee llolsga[n6i9c ]a.ciGd ebrya annio ElRi-sastshoeciastuebds Ptr4a5t0e of the vaDcuLo7lHa.r 1m0-heymdbrorxayngee-raonrioel nddeohypdlarosmgeincasree t(i1c0uHluGmO) (aEnRd )7--aDssLoGcTia atered foGu1n0dH in itnhet hcyetopsorol dinu IcPtAioPn of 10-hydcreollxsy. gLeorgaanniico la[c7id0 ]a,nwdh sieccholiosgfaunritnh aerrec soynnvtheerstiezdedin itno tthhee clyotogsaonl iocfa ecpididebrymaanl cEeRlls-,a ssisnoccei aLtAedMPT 450 DL7H.a1n0d- hEyRd-arnocxhyogreedr aPn4i5o0l SdLeSh yhdavroe gbeenena seen(s1u0reHdG toO l)oacantde i7n- DthLeG cTytoasroel foofu tnhde einpidtheermciyst o[7s1o]l. TinDICP AP involved in the shikimate pathway is localized to the cytosol of the epidermis. Tryptamine and cells. Loganicacidandsecologaninaresynthesizedinthecytosolofepidermalcells,sinceLAMTand secologanin are transported by unidentified transporters from cytosol into the vacuole, in which STR ER-anchoredP450SLShavebeenensuredtolocateinthecytosoloftheepidermis[71]. TDCinvolved condenses them into strictosidine [63]. The vacuole-accumulated strictosidine or its hydrolyzed intheshikimatepathwayislocalizedtothecytosoloftheepidermis. Tryptamineandsecologaninare product aglycon needs to be transported out of the vacuole into the cytosol. SGD was a highly stable transportedbyunidentifiedtransportersfromcytosolintothevacuole,inwhichSTRcondensesthem supramolecular complex within the nucleus, indicating that transportation of strictosidine across the intostrtiocntoospildasint eb[y6 3u]n.iTdhenetvifaiecdu otrlea-nascpcourmteru lpaltaeyds satr iccrtiotisciadl inroeleo rinit schonytdrorollliynzge dTIpAr obdiouscytnathgelysicso n[63n]e. eds tobetrSatnriscptoosritdeidneo augtlyocfotnhee ivs acocunvoelertiendt ointtho eTcIAytso, ssuocl.hS aGs Dcatwhaarsaanthhiignhe laynsdt atabbleerssuonpirnaem ino tlheceu clyatroscoolm ofp lex withinetphiedenrumcilse.u Tsh,ei ncodnicvaetrisniognt ohfa ttatbrearnsospnionret atoti ovinndooflsintrei cotcocsuirdsi nine vaacrrioousss cthometpoanrtompelanstst. bTyheu fnirisdte tnwtoifi ed transpostretpers pcaltaaylyszaedcr bityi cTa1l6rHol aenidn 1c6oOnMtroTl lwinegreT loIAcalbizioesdy innt thhees cisyt[o6s3o]l. [S7t2r]i.c Tto16siHd iins eana gElRy-caonncheoirsecdo Pn4v5e0r ted into TIAs, such as catharanthine and tabersonine in the cytosol of epidermis. The conversion of tabersonine to vindoline occurs in various compartments. The first two steps catalyzed by T16H and 16OMT were localized in the cytosol [72]. T16H is an ER-anchored P450 and can release Int.J.Mol.Sci.2017,18,53 9of20 Int. J. Mol. Sci. 2017, 18, 53 9 of 19 16-ahnydd rcoaxny traebleearsseo n1i6n-ehytodrtohxeyctyabtoesrosolnviinaei ttsoe xthpeo sciyntgoscoalt avlyiat icitss iteextpoowsianrgd cthatealcyyttioc ssoilte[7 t3o,7w4a]r.dN MtheE is likceylytotsoobl e[7l3o,c7a4l]i.z NedMinE tihse lilkeealfye ptoid beer mloicsailnizaesds oinci athtieo nlewafi tehpcidhelormroips lians tatshsyolcaiaktoioidn mweimthb crhalnoersop[7la5s–t7 7] (Fitghuyrleak4o).id membranes [75–77] (Figure 4). FigFuigruer4e. 4S. uSubbcceelllulullaarr ccoommppaarrttmmeennttaattioionn oof fTTIAIA biboisoysnythnethsiess aisnda nindteinr-t eorr- inotrrain-cterlal-uclealrl utrlaanrstproarnts opfo rt ofTTIAIAs sini nCaCthaatrhaanrtahnutsh ruosseuross. eTuIsA. bTioIsAynbthioetsiyc nptahtehtwicayp ainth aweraiayl oinrgaanesr ioafl Co.r rgoasneuss oofccCur.sr ions efuousro cceclul rs types: internal phloem-associated parenchyma (IPAP), epidermal cells, laticifers and idioblasts. An in four cell types: internal phloem-associated parenchyma (IPAP), epidermal cells, laticifers and ATP-binding cassette transporters TPT2 can transport catharanthine from epidermal cells to deposit idioblasts. AnATP-bindingcassettetransportersTPT2cantransportcatharanthinefromepidermal on cuticle. The transporters transport TIA intermediates between these cells, such as cellstodepositoncuticle.ThetransporterstransportTIAintermediatesbetweenthesecells,suchas desacetoxyvindoline from epidermal cells to laticifers and idioblasts for vindoline biosynthesis and desacetoxyvindolinefromepidermalcellstolaticifersandidioblastsforvindolinebiosynthesisand loganic acid communicates between the epidermal cells and IPAP cells, remain unknown, as loganicacidcommunicatesbetweentheepidermalcellsandIPAPcells,remainunknown,asindicated indicated by question marks. In each type of cells, primarily, the epidermal cells, the vacuole, the byquestionmarks. Ineachtypeofcells,primarily,theepidermalcells,thevacuole,thechloroplast chloroplast and possibly, the nucleus, are involved in the TIA biosynthesis. However, transporters or andpossibly,thenucleus,areinvolvedintheTIAbiosynthesis. However,transportersortransport transport mechanisms for cross-membrane communication of these intermediates are largely mechanismsforcross-membranecommunicationoftheseintermediatesarelargelyunknown.Howdo unknown. How do two important precursors secolognain and tryptamine are transported into the two important precursors secolognain and tryptamine are transported into the vacuole for their vacuole for their condensation into strictosidine by vacuole-localized STR? Are they transported by condensationintostrictosidinebyvacuole-localizedSTR?AretheytransportedbyMATEtransporters? MATE transporters? What is it necessary for SGD localization in the nucleus, as reported, since WhatisitnecessaryforSGDlocalizationinthenucleus,asreported,sinceaglyconisstillneedto aglycon is still need to be transported out of the nucleus? How the product of T3O/T3R is transported betransportedoutofthenucleus?HowtheproductofT3O/T3Ristransportedintothechloroplast into the chloroplast for methylation by the granule-localized NMT? All these questions need to be formethylationbythegranule-localizedNMT?Allthesequestionsneedtobeansweredtogivea answered to give a clear scenario of intermediate transport or trafficking during the TIA clearscenarioofintermediatetransportortraffickingduringtheTIAbiosynthesis.Abbreviationsare: biosynthesis. Abbreviations are: SGD, strictosidine β-D-glucosidase; STR, strictosidine synthase; TDC, SGtDry,psttorpichtaonsi ddeincearβbo-Dx-yglalusec;o DsiXdSa,s e1;-dSeToRx,ys-tDr-ixcytolusildosine e5-spyhnothspahsea;teT DsyCn,thtrayspe;t oDpXhRa,n 1-ddeecoaxryb-oDx-yxlyalsuel;oDseX S, 1-d5e-pohxyos-Dph-xaytelu losreed5u-pchtooissopmhaetreassey; nthaMseC;TD, XR,M1-EdPe oxyc-yDt-ixdyyllutrlaonssefe5r-apshe;o sphCaMteKre, duc4t-o(icsyotmidienrea se; MC5’T-d,MiphEoPspcyhtoi)d-y2-lCtr-amnesftehryals-De;-eCryMthKr,it4o-l( cyktinidaisnee; 5M’-dEiCpSh, os2p-Ch-om)-e2t-hCy-lmereytthhyrli-toDl- e2ry,4t-hcryictololdkiipnhaossep;hMaEteC S, 2-Csy-mntehtahsye;l erHyDthSr,i tohly2d,r4o-xcyymcleotdhiyplhbuotsepnhyal te4-sdyinpthhoasspeh;aHte DsSy,nhthyadsreo; xyHmDeRt,h yhlybdurtoexnyyml e4t-hdyiplbhuotesnpyhla te syn4-tdhiapsheo;spHhDatRe ,rehdyudcrtaosxey; mIDeIt,h yIPlbPu itseonmyelra4s-ed; ipGhPoPsSp, hgaetreanryeldduipchtaossep;haItDe Is,ynIPthPaseis; oGmEeSr,a sgee;ranGioPlP S, gesryanntyhladsiep;h Go1s0pHh,a tgeersaynniothl 1a0se-h;yGdrEoSx,ylgaesrea; n1i0oHlGsyOn, t1h0a-hsey;drGo1x0yHge,ragneiroaln dieohly1d0r-ohgyednraosxe;y IlDasSe,; ir1id0oHidG O, 10-shyyndthraosxey; g7eDrLanS,i o7l-ddeeohxyydlorgoagneentaics ea;ciIdD sSy,nitrhidaoseid; DsLyGntTh, a7s-ed;e7oDxyLloSg,a7n-deteico xaycildog galnuecotiscyaltcriadnssfyernatshea; se; DLDGLT7,H7,- d7-edoexoyxlyolgoagnaentiicc aacciidd 7g-hluycdorsoyxlytrlaasnes; fLerAaMseT;,D loLg7aHn,ic7 -adceido xmyelothgyalntriacnascfiedra7s-eh; ySdLrSo, xsyeclaosloeg;aLnAinM T, logsaynnitchaascei; d methyTlt1r6aHns2f,e rase; SLtSab,esrescoonliongea nin syn1th6-ahsyed;rTox1y6lHas2e, taberson2;i ne 16-hy1d6rOoMxyTla, se 2;1166-hOyMdrTo,xy1t6a-bheyrdsornoixnyet-a1b6e-Ors-omneitnhey-l1tr6a-nOs-fmereatshey; lTtr3aOn,s ftearbaesres;onTi3nOe ,3t-aobxyegrseonnaisne;e T33-oRx, ytgaebnerassoen;inTe3 R, tab3e-rresdonuicntaes3e;- rNedMuTc,t Nas-em;eNthMyTlt,raNn-smfeerathsey;l tDra4nHs,f dereasasece;tDox4yHv,inddeosalicneet o4x-hyyvdinrodxoylliansee;4 D-hAyTd,r aocxeytylals Ceo;DA:A T, acedteyalcCetoyAlv:idndeaoclientey l4v-iOn-daocelitnyeltr4a-nOs-faecreatsye.l transferase. Int.J.Mol.Sci.2017,18,53 10of20 Laticifersandidioblastsarethecellslocatedinstemsandleaveswheretabersoninederivative converts into vindoline. The last two vindoline synthetic enzymes DAT and D4H are localized in cytoplasmandnucleusofthelaticifersandidioblastscells[74]. Vindolineisformedinthecytosol oflaticifersandidioblastsandtransportedintothevacuolebyaspecificprotonantiporter,whichis energized by the V-H+-ATPase. Catharanthine and AVLB are also taken up into the vacuole of epidermalcellsbyanuncharacterizedantiporterthroughanH+-dependentmechanism(Figure4)[78]. SincecatharanthineandvindolinearenotinthevacuoleofthesamecellsinC.roseusleaves,theyare coupledtoformbisindolealkaloidsvinblastineandvincristine,onlybecausestimulationfromexternal environmentcouldbreakdownthespatialseparation. However,aslongasbisindolealkaloidforms, theyaretransportedandaccumulatedinthevacuoles. 7. TheBiochemical,MolecularBiologicalAspectsofTIATransporters TIAs present in C. roseus tissues for many physiological functions. Catharanthine can inhibit the growth of fungal zoospores and shows insect toxicity at physiological concentrations on the surface of C. roseus leaves. The complex developmental, environmental, hormonal, organ- and cell-specificcuesregulatethegenesinvolvedinthebiosynthesisofTIAs[77].Proteinkinasecascade-or calcium-mediatedsignalingisimportantfortheregulationofmethyljasmonate-dependentandyeast elicitor-inducedTIAbiosynthesisinC.roseuscells[79–81]. Thesefactors-induceddenovobiosynthesis andactivesecretionofTIAscostlotsofenergy.Thelong-distancetransportofendproductsorsecretion ofTIAstothetargetsitesalsorequiresenergy[64]. ThevacuolarsequestrationoftheseTIAsmore likelydependsonsecondarytransporters,suchasMATEormultidrugresistancetransporter[78]. Thebiosynthesisofintermediatesaswellasend-productsofTIAshappensindifferenttissues andorgans,andtheyaresubsequentlytransportedtothesitesforthenextreactions,storage,orfor theirphysiologicalfunctions. Therefore,theefficientlong-distancetransportisessentiallyrequired. Usually, three basic transport or trafficking processes exist for organic compounds in plant cells, membrane vesicle trafficking of substances, protein-aided transport/subcellular trafficking and membranetransporters-mediatedacross-membranetransport[3,82]. AlthoughgreatattentionwaspaidtothetransportofTIAslongtimeago,nowitisrecognized thatapassivediffusionisusuallyimpossiblefortransportofhighlychargedTIAs,likewiseforan unspecific ion-trap mechanism [20,83]. Plenty of evidence indicates that many alkaloids such as berberine in Coptis japonica, nicotine in tobacco, or terpenoids are transported across the plasma membranebyABCtransporters. Forexample,CjMDR1expressedinthexylemoftherhizome[51] andCjABCB2expressedincellsaroundthexylemoftherhizome[84]areinvolvedinthetransportof berberinetotheplacewhereberberineissynthesized;NtNUP—aplasmamembranenicotine—actsas aprotonsymporterofnicotine[85];multidrugandtoxiccompoundextrusion(MATE)transporters act as vacuolar sequestration of nicotine [86,87]; NpPDR1—a plasma membrane pleiotropic drug resistance-typeABCtransporterinNicotianaplumbaginifolia—transportsditerpenesclareolantifungal compound[88]. OverexpressionofCjMDR1inC.roseuscellculturespromotedasignificantuptakeand accumulationofajmalicineandtetrahydroalstoninecomparedwithcontrollinesafterfeedingthese alkaloids[89]. TheseresultssuggestthatTIAscanbetransportedbysuchtypeofABCtransporter. Proteomic study on two independent cell lines with different TIAs metabolism reveal that some differentiallyexpressedtransporterspossiblyinvolvedinthetransportofTIAs,includingsevenABCG proteins,threemultidrugresistancepumps,twomultidrugresistance-associatedproteins,threesoluble ABCtransporters(ABCEandABCFsubfamilies)andoneforeachMATEandpeptidetransporter[90]. InC.roseus,TIAsareprovedtobeaccumulatedinthevacuolesbyvarioustechniques[78,91,92]. OnestudyindicatesthataspecificprotonantiportsystemcouldtrapTIAsinthevacuolesofC.roseus mesophyllcells. TheuptakeofvindolineintotheisolatedtonoplastvesicleswasdependentonATP andH+gradientacrossvacuolarmembrane,sinceitwassharplysuppressedbyH+gradientdissipators butunaffectedbyABCtransporterinhibitor[78]. Interestingly,catharanthineandanhydrovinblastine are also incorporated into the vacuole through an H+-dependent mechanism. These indicate that
Description: