ebook img

Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control ... PDF

17 Pages·2017·3.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control ...

aerospace Article Trajectory Tracking of a Tri-Rotor Aerial Vehicle Using an MRAC-Based Robust Hybrid Control Algorithm ZainAnwarAli*,DaoboWang,MuhammadAamirandSuhaibMasroor CollegeofAutomationEngineering,NanjingUniversityofAeronauticsandAstronautics,Nanjing210016, China;[email protected](D.W.);[email protected](M.A.);[email protected](S.M.) * Correspondence:[email protected];Tel.:+86-130-1693-1051 AcademicEditor:MichaelWing Received:2November2016;Accepted:20December2016;Published:19January2017 Abstract: Inthispaper,anovelModelReferenceAdaptiveControl(MRAC)-basedhybridcontrol algorithm is presented for the trajectory tracking of a tri-rotor Unmanned Aerial Vehicle (UAV). The mathematical model of the tri-rotor is based on the Newton–Euler formula, whereas the MRAC-basedhybridcontrollerconsistsofFuzzyProportionalIntegralDerivative(F-PID)andFuzzy ProportionalDerivative(F-PD)controllers.MRACisusedasthemaincontrollerforthedynamics, whiletheparametersoftheadaptivecontrollerarefine-tunedbytheF-PDcontrollerforthealtitude controlsubsystemandtheF-PIDcontrollerfortheattitudecontrolsubsystemoftheUAV.Thestability ofthesystemisensuredandprovenbyLyapunovstabilityanalysis. Theproposedcontrolalgorithm is tested and verified using computer simulations for the trajectory tracking of the desired path asaninput. TheeffectivenessofourproposedalgorithmiscomparedwithF-PIDandtheFuzzy LogicController(FLC).Ourproposedcontrollerexhibitsmuchlesssteadystateerror,quickerror convergenceinthepresenceofdisturbanceornoise,andmodeluncertainties. Keywords: ModelReferenceAdaptiveControl;FuzzyLogicController(FLC);trajectorytracking; tri-rotorUAV 1. Introduction Currently,researchintheareaofcontrolengineeringisfocusedonthefieldofunmannedflight bodyaircraft,suchashelicopters,hex-rotor,quad-rotor,andtri-rotorrobots,duetotheirvarietyof applications,especiallyintheareaofdefense[1–4].Otherareasincludesurveillance,environmental monitoring,agriculture,andmediacoverage. Foranyunmannedflight,thepositionandaltitudeof therobotcantakeadvantageofsensorinformation[5,6].Thispaperprovidesatrajectorytracking controlalgorithmforthetri-rotoraerialvehiclebytakingadvantageofverticaltakeoffandlanding (VTOL).Theunmannedtri-rotorsystemisusedforimagingofforestfires,accidents,surveillance, transportation, and the detection of manholes [7–11]. The full weight of the system depends on controllingtheexternalbars,whichrequireshighenergyconsumption. Thetri-rotoraerialvehiclehasfourinputcommands,Col,Lat,Lon,andPed,foraltitude,latitude, longitude,andangularcontrolcommand. Thenineoutputsare(p,q,r),(u,v,w),and(ϕ, θ, ψ),which aretherotationalvelocity,translationalvelocity,andEulerangles[12]. Torectifytherotorreactionthat isfoundinyawmoments,aBrushlessDirectCurrent(BLDC)motorisfixedtothetriangularstructure ofthetri-rotor. Someofthemainreasonsthatthetri-rotorUAVissuperiortothequad-rotoraerialvehicleareas follows: (i)OrientationofUnmannedAerialVehicle(UAV):Bycomparingthetri-rotorUAVwiththe quad-rotorUAVstructure,theorientationofthequad-rotorrapidlydisappearsatlargerdistancesdue Aerospace2017,4,3;doi:10.3390/aerospace4010003 www.mdpi.com/journal/aerospace Aerospace2017,4,3 2of17 toitsstructurebeingsymmetrical. Moreover,byusingLight-EmittingDiodes(LED),theoperativesare notablyconfusedinthedaytime. Comparedtoquad-rotorUAV,tri-rotorUAVorientationisobviousat farlongerdistances;(ii)NaturalFlyingDynamics: Tri-rotorUAVsareabletoflyinaroutethatclosely resemblesthefixed-wingUAV.Rapidturningability,forwardflight,andincreasingordecreasingthe velocityinanintuitivepatternaretheleadingadvantages. Ontheotherhand,quad-rotorUAVsare notveryintuitive; themainadvantageofthetri-rotorUAVisthatitresemblesfixedwingaircraft dynamicsduringflight,whileaquad-rotorbehaveslikeasinglerotoraircraft. Thestructureofthe tri-rotorUAVallowstheswitchingbladetoenjoynotonlythebenefitofUAV’sintuitivestructure, hoveringofflight, andforwardflightcapability, butalsoVTOL;(iii)Yawanglecontrollingability: TheyawcontrolisusedfortherotationofaUAVarounditsverticalaxis. Theyawanglepermitsthe UAVtomakequickerturnsasperagivenreference. Ascomparedtotri-rotorUAVs,thequad-rotor UAVyawcontrollingisdonebythevariationoftorquebyusingallfourrotors. Thetri-rotorUAV movesdownwardifanyoftherotorsdecelerate,whereasacceleratingtherotormakesUAVrotate. InswitchingbladeUAVs,anadvancedpivotbackyawmechanismessentiallypermitsthebackrotorto rotatelaterallyalongthelongitudinalaxis. RotatingtheUAVbyusingtheseforcesratherthantorque vectoringrequiresmorepropellerstoactasanalternatefortheapplicationofforceontheverticalaxis. ThismeansthatthepropellersoperateatfullcapacityandthebackpropellercanstillturntheUAV. Ifwemaintaintheorientationeveninarough,windyenvironment,itisefficientandeasiertocontrol: turningthebackpropellerintothewindcounteractsitsforce,andtheswitchingbladeUAVcould easilybeoperatedinthesetypesofenvironments,whereasaquad-rotorUAVofthesamesizewould notflywellintheabovementionedcase[13–15]. The latest unmanned tri-rotor systems are easy to use provided that they rely on the Fuzzy Proportional Integral (F-PI) control algorithm discussed in [16–19]. For the tri-rotor, the operating conditionsofthesystemandtherotormovementcoupledwiththenonlinearF-PIcontrollerislocated outside(intheouterloop)ofthesystem(theyawheadingisfastandreliableasitishardtocontrol the angle). To design a control algorithm for the nonlinear characteristics (noise and disturbance) ofatri-rotor,thispaperpresentstheconditionsforfuzzyalgorithmswithanexistingPDcontroller. Forcomparativeanalysis,atri-rotorFuzzyProportionalDerivative(F-PD)computersimulationof responseperformanceispresentedin[20]. ThemainobjectiveoftheModelReferenceControl(MRC) orpole-placementmethodistofindtheinputofthesystemanddrivethesystemoutputbytracking thereferenceprovidedbytheinputmodelascloselyaspossible. Thebasicthemeistoequalizethesystemoutputprovidedbythereferencesysteminput;wecan alsosaythatthesystemoutputconvergestothereferenceinputexponentially[21–24]. AFuzzyLogic Controller(FLC)mainlyconcernsthelinguisticrules. Thebenefitofthefuzzylogiccontrolleristhata clarificationofaspecificdifficultycanberecognizedwithrespecttohumanbehaviorsothatitcan berecognizedbyanoperator,andtheirinvolvementcanbeusedtodesignthecontroller’sIF/THEN rules[25]. ThebiggestadvantageofFLCisclarityastotheenlargement,estimation,andmaintenance ofthecontrolsystem[26]. Manyhybridcontrollerschemeswereformerlyappliedforthestabilization, desired path tracking, and trajectory tracking of UAV, like the Model Reference Adaptive Control (MRAC)base(ProportionalIntegralDerivative,PID)controllerin[27,28]. In[29],Mohammadietal. useafuzzy-basedPIDcontrollertocontroltheattitudeandaltitudeofaquad-rotorUAV.Regulation, Pole-Placement,andTracking(RST)basedualcontrollerschemewereproposedforcontrollingthe stabilizationofatri-rotorUAV[30]. Afuzzy-basedhybridcontrolalgorithmwasdesignedforthe stabilizationoftri-rotorUAVs[31]. Anadaptivehybridcontrollerschemewasusedtocontrolthe attitudeandaltitudeofthetri-rotorUAV[32]. Inthisarticle,theperformanceoftheMRAC-hybridcontrolleriscomparedwithafuzzy-based PID(F-PID)controller[33]andaFuzzylogiccontroller(FLC)[34].Thekeycontributionsofthisarticle are(1)anovelMRAC-basedfuzzyPDandfuzzyPIDcontrolleraredesignedtocontrolthealtitude andattitudemovementoftheaerialvehicleandremovethetransientandsteadystateerror;(2)the Aerospace2017,4,3 3of17 Aerospace 2017, 4, 3 3 of 17 proposedcontrolleruseslinearandangularvelocitycomponents,whicharegivenasaninputtothe The rest of the manuscript is structured as follows. The tri-rotor system model and preliminaries, controller;and(3)thestabilityanalysisoftherotationalsystemisprovedbyLyapunovstabilitytheory. as well as the system main engine, are discussed in Section 2. In Section 3, the design of the control Therestofthemanuscriptisstructuredasfollows. Thetri-rotorsystemmodelandpreliminaries, algorithm is provided, such that the position, altitude, and rotational control of the vehicle are aswellasthesystemmainengine,arediscussedinSection2. InSection3,thedesignofthecontrol discussed along with the system stability proof. Section 4 presents the simulation results and algorithmisprovided,suchthattheposition,altitude,androtationalcontrolofthevehiclearediscussed discussions of the paper. Finally, Section 5 gives the conclusions of the paper. alongwiththesystemstabilityproof. Section4presentsthesimulationresultsanddiscussionsofthe paper. Finally,Section5givestheconclusionsofthepaper. 2. The Tri-Rotor System Model and Preliminaries 2. ThTehTer i-mRoodtoerl Soyf sttheem trMi-roodteolr aanedriaPlr evleimhiicnlea riise staken from [35–37]. Tri-rotor UAV dynamics and parameters are multivariable and nonlinear in nature. The model of the system is shown in Figure 1, The model of the tri-rotor aerial vehicle is taken from [35–37]. Tri-rotor UAV dynamics and which depicts the three rotors of the UAV placed in a triangular frame. However, one rotor of the parametersaremultivariableandnonlinearinnature. ThemodelofthesystemisshowninFigure1, three is used as a tilt rotor as per the requirements, and this is used to nullify the effects of the torque whichdepictsthethreerotorsoftheUAVplacedinatriangularframe. However,onerotorofthethree reaction. isusedasatiltrotoraspertherequirements,andthisisusedtonullifytheeffectsofthetorquereaction. AAssssuummppttiioonn 11.. TThhee ffoorrmmaattiioonn oorr aarrrraannggeemmeenntt ooff tthhee ttrrii--rroottoorr aaeerriiaall vveehhiiccllee iiss wweellll aaddjjuusstteedd iinn tteerrmmss ooff tthhee oorriieennttaattiioonn ooff tthhee xx,, yy,,a annddz za axxisisw witithhr reessppeeccttt toor roototorr1 1,,r roototorr3 3,,a annddr orototorr2 2,,r ersepspecetcitviveleyly.. Figure1.Thestructureofthetri-rotoraerialvehicle. Figure 1. The structure of the tri-rotor aerial vehicle. 22..11.. SSyysstteemm DDyynnaammiiccss TThhee mmoototorrb blaladdeer ardadiuiussis ids edneontoetdedby bRy T(cid:1844)a(cid:3021)n danδTd is(cid:2012)(cid:3021)th eist othtael taontgalu alanrgvuellaorc ivteyloocfitthye osfy tshteem sy;astiesmth; ea bisla dtheea brelaad,ρea aisretah,e (cid:2025)a(cid:3028)ir dise nthsiet ya,iqr sdheonuslidtyb, eqt hsehoroutlodr bshea tfhteto rroqtuoer, tsrhiasftth teotroqtuael,t h(cid:1872)r(cid:3045)u sits ptrhoed tuocteadl itnhrtuhset spyrsotedmuc,ethde inae trhoed ysnyastmemic,c otheeffi aceiernodtoyfntahmruics tciosedffeincioetnetd obfy thArcut,stth ies adeernodotyenda mbyic (cid:1827)ro(cid:3030)(cid:3047)to, rthseh aafetrcoodeyffincaimenitc irsoAtocrq ,sahnadft Acocepfifsictiheenta iesr o(cid:1827)d(cid:3030)y(cid:3044)n, aamndic (cid:1827)co(cid:3030)(cid:3043)e ffiisc tiehnet aoefropdoywnearm. ic coefficient of power. A(cid:1827)(cid:3030)(cid:3047)==t(cid:1872)(cid:3045)/⁄ρ(cid:2025)(cid:3028)a(cid:1853)(δ((cid:2012)(cid:3021)R(cid:1844)(cid:3021)))2(cid:2870) ((11)) ct r a T T (cid:1827) =(cid:1869)⁄(cid:2025) (cid:1853)((cid:2012) (cid:1844) )(cid:2870)(cid:1844) (2) (cid:3030)(cid:3044) (cid:3028) (cid:3021) (cid:3021) (cid:3021) A = q/ρ a(δ R )2R (2) cq a T T T (cid:1827) =(cid:1829) ⁄(cid:2025) (cid:1853)((cid:2012) (cid:1844) )(cid:2871) (3) (cid:3030)(cid:3043) (cid:3043) (cid:3028) (cid:3021) (cid:3021) A =C /ρ a(δ R )3 (3) cp p a T T The coefficient of power can be written as (cid:1829) =(cid:1869)(cid:2012) . (cid:3043) (cid:3021) THheenccoee, fficientofpowercanbewrittenasCp = qδT. Hence, (cid:1827) =(cid:1827) =(cid:1869)(cid:2012) ⁄(cid:2025) (cid:1853)((cid:2012) (cid:1844) )(cid:2871). (4) A(cid:3030)(cid:3043)= A(cid:3030)(cid:3044)= qδ(cid:3021)/ρ(cid:3028)a(δ (cid:3021)R (cid:3021))3. (4) cp cq T a T T The total external forces and torques acting in the frame of the vehicle are given by: Aerospace2017,4,3 4of17 Thetotalexternalforcesandtorquesactingintheframeofthevehiclearegivenby: (cid:40) f = f + f + f ext. x y z (5) f = 0+t δ |δ |sinα−t (δ |δ |cosα+δ |δ |+δ |δ |). ext. r 1 1 r 1 1 2 2 3 3 Thetiltangleisdefinedbyαandcanbecontrolledbyusingu ,theyawcontroller. 4   τfext. = (cid:18)(3)20.5 ∗ltr(δ2|δ2|−−δ3(|lδt3r|δ)1(cid:19)|δτ1+|fesx(cid:16)itn.12α=L−tτrx(kδτ+2δ|1δτ|2yδ|1++|cτoδzs3α|δδ32||)δ2−|+ltrδδ31||δδ31||)cosα+kτδ1|δ1|sinα(cid:17)  (6) where f , f , and f arethetotalforcesthatareexertedonabody,andτ , τ , τ arethetotaltorque x y z x y z responsesalongthex,y,orzdirectionoftheEarthcoordinatesystem. Assumption 2. The three-rotor UAV is rigid. Then, the nonlinear dynamics can be derived using the Newton–Eulerformulas. Fortheidealhoveringandtrajectorytrackingcoefficientofprofile,dragistakentobeconstant andsupposedtobe0.015. Thevalueistakenfromthemomentumtheory[38],inwhichthesolidity ratioisdenotedby“σ”. ToavoidalltheexternaleffectsexertedontheUAVbodymoments,rotational andtranslationaldynamicsareusedtogovernthetri-rotorUAV,andarewrittenasfollows. TranslationalDynamics: Wehavetoneglectalltheeffectsofframemovementsonthetranslational velocitycomponentsleadingthetri-rotoraerialvehicle,whicharegivenby: .. X = (u /m)(cosϕcosψsinθ+sinψsinϕ) (7) 1 .. Y = (u /m)(sinθsinψcosϕ−sinϕcosψ) (8) 1 .. Z = −g+(u /m)(cosθcosϕ). (9) 1 where“m”isthemass,u theverticalorcollectiveisforce. 1 RotationalDynamics: Wehavetoneglecttheframemovementsthatareexertedonthebodyof UAV,similartothetranslationalvelocityeffects: .. (cid:0) (cid:1) ϕ = qr I −I /I +(L/I )u (10) y z x x 2 .. (cid:0) (cid:1) (cid:0) (cid:1) θ = pr I −I /I + L/I u (11) z x y y 3 .. (cid:0) (cid:1) ψ = pq I −I /I +(L/I )u (12) x y z z 4 where“L”isthelengthfromthecenterofUAV,u , u , u aretheroll,pitch,andyawcontrolcommands, 2 3 4 respectively,generatedbythepropellersofthetri-rotoraerialvehicle. Theinertialmomentsofthe tri-rotorare I , I , and I . x y z AngularRatesorEulerAngles: . . p = ϕ−ψsinθ (13) . . q = θcosϕ+ψcosθsinϕ (14) . . r = ψcosθcosϕ−θsinϕ (15) The position from the center of mass in terms of the inertial frame is defined by x, y, and z, respectively. The Euler angles, ϕ, θ, and ψ, are used to define the position of UAV. For the trajectory tracking, neglect the higher order dynamics and let u = u + mg. Consequently, 1 T .. .. .. X = −gϕ, Y = gθ, Z = u /m. T Aerospace2017,4,3 5of17 2.2. MainEngine(ElectricMotors) ABrushlessDirectCurrent(BLDC)motorhasamagnetontherotorsideandwindingonthe Aerospace 2017, 4, 3 5 of 17 statorsideisdrivenbyapresetserialarrangementoftheDirectCurrent(DC)powersourcecalled caocmommmutuattoatro. rI.nI nstsattaotro wrwinidnidnign,g b,abcakc kEElelcetcrtor oMMaaggnneteitci cFFieieldld (E(EMMFF) )isis ggeenneerraatteedd wwhheenn tthhee rroottaattiinngg mmaaggnneett iinntteerraaccttss wwiitthh tthhee ssttaattoorr ppoollee.. TThhee mmooddeell ooff BBLLDDCC mmoottoorr iiss ttaakkeenn ffrroomm [[3399]].. EΕT(cid:3021)==ZΖT(cid:3021)IΙT(cid:3021)++ϕφd(cid:1856)d(cid:1856)IΙtT(cid:1872)(cid:3021)++(cid:2027)ς(cid:3021)T (1(41)6 ) ς(cid:2027)(cid:3021)== ζ(cid:2014)(cid:3045)..ΓΓ(cid:3045)(cid:1858)f((ΘΘ(cid:3045))),, (1(51)7 ) T r r r where (cid:2014) , Θ , Γ are the angular rotor velocity, the rotor position, and the rotor magnetic flux whereζ (cid:3045), Θ(cid:3045), Γ(cid:3045)aretheangularrotorvelocity,therotorposition,andtherotormagneticfluxconstant, croesnpsetacntitrv, erleys,rpaencdrtivtheelyg, eannedr attheed gteonrqeruaeteisd gtiovreqnuea sisT gei=venς TaζrsIT (cid:2286).(cid:3032) = (cid:3098)(cid:3269)(cid:3085) (cid:3293)(cid:2945)(cid:3269) . IInn tteerrmmss ooff mmaacchhiinnee ppaarraammeetteerrss,, ttoorrqquuee iiss ddeefifinneedd aass:: T(cid:2286)(cid:3032)==T(cid:2286)(cid:3013)++(cid:1836)J d(cid:3031)(cid:3031)(cid:3085)ζ(cid:3047)(cid:3293)r++(cid:2022)ξ(cid:2014)ζ(cid:3045). . (1(61)8 ) e L r dt 33.. DDeessiiggnn ooff tthhee CCoonnttrrooll AAllggoorriitthhmm TThhee ccoommpplleettee ssyysstteemm ccoonnttrrooll mmooddeell iiss ddiissccuusssseedd iinn FFiigguurree 22.. Figure 2. The block diagram of the reference trajectory control system. Figure2.Theblockdiagramofthereferencetrajectorycontrolsystem. 3.1. The Control Objective and Its Approach 3.1. TheControlObjectiveandItsApproach The dynamics of the UAV includes altitude, roll, and pitch and yaw control command; The dynamics of the UAV includes altitude, roll, and pitch and yaw control command; (cid:2012) , (cid:2012) ,and (cid:2012) are the angular velocity of all three rotors, respectively. δ(cid:2869), δ(cid:2870), andδ(cid:2871) aretheangularvelocityofallthreerotors,respectively. 1 2 3 RRoollll CCoonnttrrooll:: TTwwoo ccoonnddiittiioonnss ccoonnttrrooll tthhee rroollll mmoommeenntt ooff tthhee vveehhiiccllee.. I. Clockwise (cid:2012) <(cid:2012) <(cid:2012) (cid:2870) (cid:2869) (cid:2871) I. Clockwiseδ < δ < δ II. Anticlo2ckwis1e (cid:2012) 3<(cid:2012) <(cid:2012) (cid:2871) (cid:2869) (cid:2870) II. Anticlockwiseδ < δ < δ 3 1 2 Pitch Control: There are also two conditions for pitch controlling. PitchIC. ontNrools:eT-Uhepr e(cid:2012)ar<ea(cid:2012)lso=tw(cid:2012)o conditionsforpitchcontrolling. (cid:2869) (cid:2871) (cid:2870) II. Nose-Down (cid:2012) =(cid:2012) <(cid:2012) (cid:2870) (cid:2871) (cid:2869) I. Nose-Upδ < δ = δ 1 3 2 II. YNaows eC-Donotwronl:δ Ya=wδ co<ntrδol has only one condition along with tilt angle. 2 3 1 • (cid:2012) =(cid:2012) =(cid:2012) (cid:1875)(cid:1861)(cid:1872)(cid:1860) (cid:2009) =0 (cid:2871) (cid:2870) (cid:2869) YawControl: Yawcontrolhasonlyoneconditionalongwithtiltangle. Altitude Control: To achieve the preferred altitude of the UAV, the RPM of all rotors of the UAV m•ustδ be= thδe s=amδe:w ithα =0 3 2 1 • (cid:2012) =(cid:2012) =(cid:2028) . (cid:2869) (cid:2870) (cid:3031)(cid:2869) AltitudeControl: ToachievethepreferredaltitudeoftheUAV,theRPMofallrotorsoftheUAVmustbe From translation and the rotational dynamics of UAV, the parameters (cid:1873) , (cid:1873) , (cid:1873) , and (cid:1873) are (cid:2869) (cid:2870) (cid:2871) (cid:2872) thesame: given as (cid:1873) = (cid:1864) (cid:2028) (δ(cid:2870)−δ(cid:2870)) (17) (cid:2869) (cid:2869) (cid:3030)(cid:2869) (cid:2869) (cid:2870) (cid:1873) = (cid:1864) (cid:2028) (δ(cid:2870)−δ(cid:2870))−(cid:1864) (cid:2028) δ(cid:2870)(cid:1855)(cid:1867)(cid:1871)(cid:2009) (18) (cid:2870) (cid:2870) (cid:3030)(cid:2869) (cid:2869) (cid:2870) (cid:2871) (cid:3030)(cid:2870) (cid:2871) (cid:1873) = (cid:1864) (cid:2028) (−δ(cid:2870)−δ(cid:2870))+(cid:1864) (cid:2028) δ(cid:2870)+(cid:1864) (cid:2028) δ(cid:2870)(cid:1871)(cid:1861)(cid:1866)(cid:2009) (19) (cid:2871) (cid:2872) (cid:3031)(cid:2869) (cid:2869) (cid:2870) (cid:2871) (cid:3031)(cid:2870) (cid:2871) (cid:2871) (cid:3031)(cid:2870) (cid:2871) Aerospace2017,4,3 6of17 • δ = δ = τ . 1 2 d1 From translation and the rotational dynamics of UAV, the parameters u , u , u , and u are 1 2 3 4 givenas (cid:16) (cid:17) u = l τ δ2−δ2 (19) 1 1 c1 1 2 (cid:16) (cid:17) u = l τ δ2−δ2 −l τ δ2 cosα (20) 2 2 c1 1 2 3 c2 3 (cid:16) (cid:17) u = l τ −δ2−δ2 +l τ δ2+l τ δ2sinα (21) 3 4 d1 1 2 3 d2 3 3 d2 3 (cid:16) (cid:17) u = τ δ2+δ2 +τ δ2 cosα (22) 4 c1 1 2 c2 3 wherethethrustcoefficientisτ , τ ,andthedragcoefficientisτ , τ . c1 c2 d1 d2 3.2. ModelReferenceAdaptiveControl The MRAC algorithm is used to insure the stability of proposed system dynamics as well as the noise and time delay in the system [40]. MRAC warrants serious consideration as a means of controllingthenonlinearandadaptivesystem. Theparametersofacontrolleraretunedbyusingthe errorbetweenthereferencemodelandcloseloopdynamics. Assumption3. Thesystemerroriswrittenase = T −T ,whereTisthex,y,orzaxis,respectively. T a d Assumption4. BycomparingF-PIDandtheFLCcontroller,theproposedMRAC-Hybridcontrolleraccurately followsthereferencetrajectoryproofoftheirrotationalsystemstability,asshowninTheorem1. 3.3. PositionalControl Proposition1. Thepositioncontrolofthesystemiswrittenusingtheadaptivelawfortheorientationofthe systembyusingEquations(7)and(8). . . . . . . Lete , e ,ande betheerrorsofspeed;x ,y ,andz arethedesiredspeeds,wherex , y ,andz x y z d d d a a a aretheactualspeedsinthex,y,andzdirections,respectively. . . e = x − x (23) x d a . . e = y −y (24) y d a . . e = z −z (25) z d a Thus,thedesiredroll,pitch,andyawcanbecalculatedbyusingtheseequations: . . ϕ = p+ψsinθ (26) d . . θ = q−ψcosθsinϕ/cosϕ (27) d . . ψ =r+θsinϕ/cosθcosϕ. (28) d 3.4. AltitudeControl FromEquation(9),thealtitudeofUAVcontainstheverticalforceofinputu andcanbewrittenas: 1 .. u = Zm+gm/cosθcosϕ, (29) 1 wherecosθandcosϕ=0andthefuzzy-basedproportionalderivativecontrollerusedtocontrolthe altitudeofUAVcanbeexpressedas: Aerospace2017,4,3 7of17 . FPD = −G z−G (z −z ), (30) D P a d wherez istheactualandz isthedesiredaltitude. Theinputrulesforerror,thederivativeoferror, a d andoutputrulesforthefuzzy-basedPDcontrollerareshowninFigure3,suchthatG andG are D P theproportionalandderivativegainsofthefuzzycontroller,respectively. Theoutputsurfaceofthe fuzzy-basedproportionalandfuzzy-basedderivativecontrollerareshowninFigure4. Aerospace 2017, 4, 3 7 of 17 Aerospace 2017, 4, 3 7 of 17 (a) (b) (a) (b) Figure 3. (a) Input rules for error and the derivative error of the fuzzy-based Proportional Derivative Figure3.(a)Inputrulesforerrorandthederivativeerrorofthefuzzy-basedProportionalDerivative (FPiDg)u croe n3t.r (oal)l eIrn;p (but) rthuele os ufotpr uetr rrourl easn fdo rt hthe ed feurzivzayt-ibvaes eerdr oPrD o fc othnetr foulzlezry. -based Proportional Derivative (PD)controller;(b)theoutputrulesforthefuzzy-basedPDcontroller. (PD) controller; (b) the output rules for the fuzzy-based PD controller. (a) (a) (b) (b) Figure 4. (a) The output surface of the fuzzy-based proportional controller; (b) the output surface of FigtFhuierg efuu4rz.ez (4ya.-) b(Taa)hs eTedho edu eotrpuiuvtpatutsitvu seru fcarofcanectreoo foltlfeh treh. ef ufuzzzyzy-b-baasseeddp prrooppoorrttiioonnaall ccoonnttrroolllleerr; ;((bb) )ththee oouutptpuut stusrufrafcaec oefo f the fuzzy-based derivative controller. thefuzzy-basedderivativecontroller. 3.5. Attitude Control 3.5. Attitude Control The fuzzy-based proportional integral derivative control method for the rotational dynamics of UAV Tahree afsuszizgyn-ebda saesd (cid:1873) pr,o(cid:1873)p,o artniodn (cid:1873)al. in tegral derivative control method for the rotational dynamics of (cid:2870) (cid:2871) (cid:2872) UAV are assigned as (cid:1873) ,(cid:1873) , and (cid:1873) . (cid:2870) (cid:2871) (cid:2872) Proposition 2. The roll tracking error of UAV can be written as: Proposition 2. The roll tracking error of UAV can be written as: Aerospace2017,4,3 8of17 3.5. AttitudeControl Thefuzzy-basedproportionalintegralderivativecontrolmethodfortherotationaldynamicsof UAVareassignedasu , u ,andu . 2 3 4 Proposition2. TherolltrackingerrorofUAVcanbewrittenas: e = ϕ −ϕ . (31) ϕ a d TheLyapunovfunctioninthesystemcanbeexpressedas: (cid:90) S = G e +G e dt, (32) 1 1 ϕ 2 ϕ (cid:82) inwhichG andG arethegainsforthefine-tuningofthesystemand e istherollintegralerror. 1 2 ϕ TheLyapunovstabilitytheoryisusedwhileusingtheLyapunovcandidatefunctionS asapositive 1 definiteanditstimederivativeasanegativesemi-definite,whichisshowninEquation(33). Assumption5.Bycomparingwiththepreviousworks,ourproposedmethodprovidesrobustnessinthepresence ofnoiseandmodeldisturbanceaswellasfastconvergenceandazerosteadystateerror. Theorem 1. The rotational controller in the equation that is applied for the tri-rotor aerial vehicle will asymptotically converge on the rotational velocity component and tracking errors along with the model uncertaintyandnoisetozero. Proof. ConsidertheLyapunovfunction V = (1/2)S2. (33) 1 1 Itsderivativeis . . (cid:0) . . (cid:1) V = S S = S G ϕ −G ϕ +G e . (34) 1 1 1 1 1 a 1 d 2 ϕ Note: NocontrolinputispresentinEquation(34). . (cid:0).(cid:1) Ifwesuppose ϕisthevirtualcontrol,thedesiredvirtualcontrol ϕ iswrittenas a (cid:0).(cid:1) . (cid:0) (cid:1) ϕ = ϕ − G e /G −(S /G ). (35) a d 2 ϕ 1 1 1 . Now,thevirtualcontrol ϕistherollcontrolrateofatri-rotoralongwithitsownerror: . . . S = ϕ −ϕ = (1/G )(S +S ). (36) 2 a d 1 1 1 NowtheamplifiedLyapunovfunctionforthesecondstagestrategyiswrittenas: V = (1/2)S2+(1/2)S2. (37) 2 1 2 Nextwetakethederivativeofsecondstepstrategy: . . . V = S S +S S . (38) 2 1 1 2 2 . . Afterthat,weputthevaluesofS andS inthesecondstepstrategyintothederivativeequation: 1 2 V.2=S2(cid:104)eϕ(cid:16)G12+GG21(cid:17)+(cid:82) eϕdt(G1G2)+e.ϕ(cid:16)GG21(cid:17)+qr(cid:16)Iy−IxIz(cid:17)+ LIux2 −ϕ..d(cid:105)−S1(cid:2)G1eϕ+G2(cid:82) eϕdt(cid:3). (39) Aerospace2017,4,3 9of17 Thedesireddynamicsofthesystemcanbewrittenas . . V = −(1/G )(S +S ). (40) 2 1 1 1 . NowbyputtingS andS inEquation(39),thedesirabledynamicsaregivenby 1 1 . . (cid:90) V = −e −e (G /G )− e dt(G /G ). (41) 2 ϕ ϕ 2 1 ϕ 2 1 Thedesiredsystemdynamicsverifiesthenegativedefiniteoftrackingerror,itsvelocitytracking error,andintegration. NowEquation(39)willbenegative,ifu isgivenby 2 u = −(cid:20)e (cid:18)G2 +G2(cid:19)+(cid:90) e dt(cid:18)G2 +G G (cid:19)+e. (cid:18)G2(cid:19)−ϕ.. +qr(cid:18)Iy−Iz(cid:19)(cid:18)Ix(cid:19)(cid:21). (42) 2 ϕ G 1 ϕ G 1 2 ϕ G d I L 1 1 1 x Similarly,thepitchcontrolequationcanbewrittenas u = −(cid:20)e (cid:18)G4 +G2(cid:19)+(cid:90) e dt(cid:18)G4 +G G (cid:19)+e. (cid:18)G4(cid:19)−θ.. +pr(cid:18)Iz−Iy(cid:19)(cid:18)Iy(cid:19)(cid:21). (43) 3 θ G 3 θ G 3 4 θ G d I L 3 3 3 y Lastly,theyawcontrolequationcanbewrittenas u = −(cid:20)e (cid:18)G6 +G2(cid:19)+(cid:90) e dt(cid:18)G6 +G G (cid:19)+e. (cid:18)G6(cid:19)−ψ.. +pq(cid:18)Ix−Iy(cid:19)(cid:18)Iz(cid:19)(cid:21). (44) 4 ψ G 5 ψ G 5 6 ψ G d I L 5 5 5 z Nowthefuzzy-basedPIDgainsandroll,pitch,andyawmodulescanbewrittenas G FP = 2 +G2 (45) G 1 1 G FI = 2 +G G (46) 1 2 G 1 G FD = 2, (47) G 1 whereG andG arethegainsforrollcontrolandfuzzyruleforthePIDcontroller,asdefinedafter 1 2 thestabilityperformance. Theinputrulesforerror,itsderivativeerror,andtheoutputrulesforthe fuzzy-basedPIDcontrollerareshowninFigure5. Theoutputsurfaceofthefuzzy-basedproportional, fuzzy-basedderivative,andfuzzy-basedintegralcontrollerareshowninFigure6. Therootsofacharacteristicequationcanbeobtainedbyplacingthepolesofthesystematthe desiredlocation,i.e.,k , k , k ,byusingthepole-placementmethodofAlietal.[31]. Tuningofthe a b c system can be made faster such that the derivative of the Lyapunov candidate function becomes morenegative. G 2 = k +k +k (48) G a b c 1 G 2 +G2 = k k +k k +k k (49) G 1 a b a c b c 1 G 2 +G G = k k k (50) G 2 1 a b c 1 ProofofStabilityPerformance. TheLyapunovcandidatefunctionisusedtoinsurethestabilityofour . system. ConsidertheLyapunovcandidatefunctiontobeV ≤0,where∀(e )ensuresthetracking T T error. Thedesiredpositions ϕ , θ , ψ areboundedbythesuppositionsuchthatthetrackingerroris d d d alsobounded. Moreover,thestabilityisalsoprovedbyLyapunovcandidatefunction“V,”whichis Aerospace 2017, 4, 3 9 of 17 (cid:1873) =−(cid:3428)(cid:1857) (cid:4672)(cid:3008)(cid:3120)+(cid:1833)(cid:2870)(cid:4673)+(cid:1516)(cid:1857) (cid:1856)(cid:1872)(cid:4672)(cid:3008)(cid:3120)+(cid:1833) (cid:1833) (cid:4673)+(cid:1857)(cid:4662) (cid:4672)(cid:3008)(cid:3120)(cid:4673)−(cid:2016)(cid:4663) +(cid:1868)(cid:1870)(cid:3436)(cid:3010)(cid:3301)(cid:2879)(cid:3010)(cid:3300)(cid:3440)(cid:4672)(cid:3010)(cid:3300)(cid:4673)(cid:3432). (41) (cid:2871) (cid:3087) (cid:3008)(cid:3119) (cid:2871) (cid:3087) (cid:3008)(cid:3119) (cid:2871) (cid:2872) (cid:3087) (cid:3008)(cid:3119) (cid:3031) (cid:3010)(cid:3300) (cid:3013) Lastly, the yaw control equation can be written as (cid:1873)(cid:2872) =−(cid:4674)(cid:1857)(cid:3103)(cid:4672)(cid:3008)(cid:3008)(cid:3122)(cid:3121)+(cid:1833)(cid:2873)(cid:2870)(cid:4673)+(cid:1516)(cid:1857)(cid:3103)(cid:1856)(cid:1872)(cid:4672)(cid:3008)(cid:3008)(cid:3122)(cid:3121)+(cid:1833)(cid:2873)(cid:1833)(cid:2874)(cid:4673)+(cid:1857)(cid:4662)(cid:3103)(cid:4672)(cid:3008)(cid:3008)(cid:3122)(cid:3121)(cid:4673)−(cid:2032)(cid:4663)(cid:3031)+(cid:1868)(cid:1869)(cid:4672)(cid:3010)(cid:3299)(cid:3010)(cid:2879)(cid:3301)(cid:3010)(cid:3300)(cid:4673)(cid:4672)(cid:3010)(cid:3013)(cid:3301)(cid:4673)(cid:4675). (42) Now the fuzzy-based PID gains and roll, pitch, and yaw modules can be written as (cid:1833) (cid:1832)(cid:1842)= (cid:2870)+(cid:1833)(cid:2870) (43) (cid:1833) (cid:2869) (cid:2869) (cid:1833) (cid:2870) (cid:1832)(cid:1835)= +(cid:1833) (cid:1833) (44) (cid:1833) (cid:2869) (cid:2870) (cid:2869) (cid:1832)(cid:1830)=(cid:3008)(cid:3118), (45) (cid:3008)(cid:3117) where (cid:1833) and (cid:1833) are the gains for roll control and fuzzy rule for the PID controller, as defined after (cid:2869) (cid:2870) the stability performance. The input rules for error, its derivative error, and the output rules for the fuzzy-based PID controller are shown in Figure 5. The output surface of the fuzzy-based proportional, fuzzy-based derivative, and fuzzy-based integral controller are shown in Figure 6. The roots of a characteristic equation can be obtained by placing the poles of the system at the desired location, i.e., (cid:1863) ,(cid:1863) ,(cid:1863) , by using the pole-placement method of Ali et al. [31]. Tuning of the (cid:3028) (cid:3029) (cid:3030) system can be made faster such that the derivative of the Lyapunov candidate function becomes more negative. (cid:1833) (cid:2870) =(cid:1863) +(cid:1863) +(cid:1863) (46) (cid:1833) (cid:3028) (cid:3029) (cid:3030) (cid:2869) (cid:1833) Aerospace2017,4,3 (cid:1833)(cid:2870)+(cid:1833)(cid:2869)(cid:2870) =(cid:1863)(cid:3028)(cid:1863)(cid:3029)+(cid:1863)(cid:3028)(cid:1863)(cid:3030)+(cid:1863)(cid:3029)(cid:1863)(cid:3030) (1407)o f17 (cid:2869) (cid:1833) (cid:2870) positiveanddefinite,andtheirderivative(cid:1833)i(cid:2869)s+ne(cid:1833)g(cid:2870)a(cid:1833)t(cid:2869)iv=e.(cid:1863)F(cid:3028)(cid:1863)o(cid:3029)r(cid:1863)e(cid:3030)x ample,V. (eT) <0, ∀(eT) (cid:54)=0&V(4(80)) = 0,(T = ϕ, θ, ψ). Aerospace 2017, 4, 3 10 of 17 ((aa)) ((bb)) FigFFuiigrgeuurr5ee. 55(.. a ()(aa)I) n IIpnnupptuuttr urruluellseessf offororre ererrrroroorrr a aannnddd dddeeerrriiivvvaaatttiiivvveee eeerrrrrrooorrr ooofff ttthhheee fffuuuzzzzzzyyy--b-bbaaasseseeddd PPPrroorpoppoororttriiotoinnoaanll a IIlnnIttneegtgerragalrl al DeDrDieverraiitvviavatteiivv(ePe I((DPPII)DDc))o ccnootnrnottrrloloelllrlee;rr(;;b (()bbt))h ttheheeo ououutpttppuuutttr ruruulelleesss f fofoorrr t tthhheee fffuuuzzzzzzyyy---bbbaaassseeeddd PPPIIIDDD cccooonnnttrtrrooollllleelerr.r. . (a) (b) (c) Figure 6. (a) The output surface of the fuzzy-based proportional controller; (b) the output surface of Figure6.(a)Theoutputsurfaceofthefuzzy-basedproportionalcontroller;(b)theoutputsurfaceof the fuzzy-based derivative controller; (c) the output surface of the fuzzy-based integral controller. thefuzzy-basedderivativecontroller;(c)theoutputsurfaceofthefuzzy-basedintegralcontroller. 4. Simulation Results and Discussion 4. SimulationResultsandDiscussion This section proves the effectiveness and stability of our proposed controller by using two Thissectionprovestheeffectivenessandstabilityofourproposedcontrollerbyusingtwodifferent different simulations of trajectory tracking of tri-rotor UAV. We compare our proposed MRAC- simHuylabtriiodn csoonftrtroalljeecr tworiytht rFa-cPkIiDn ganodf tFriL-rCo tcoornUtrAolVle.rWs ebyc oumtiplizairnego tuhrep droatpao osef d[3M1],R wAhCi-cHh yabreri dshcoownntr oinll er witThaFbl-eP I1D. andFLCcontrollersbyutilizingthedataof[31],whichareshowninTable1. Table 1. Tri-rotor aerial vehicle system parameters. Parameters Mass, m g L Ix Iy Iz Values 0.785 9.81 0.3050 0.3105 0.3105 0.3212 SI Units kg m/s2 m Kg·m2 Kg·m2 Kg·m2 The block diagram of reference trajectories and block diagram of the desired values for the control system are shown in Figure 2. Selected trajectories using input as a reference (which constantly changes its position by using the horizontal and vertical errors of UAV) are exposed as being real applications. That will also help us to analyze the effectiveness and robustness of our proposed control algorithm in the absence of noise or disturbance in Simulation I and in the presence of noise or disturbance in Simulation Case II. The attitude and altitude control equations are used to control the orientation of UAV, in which initial errors are controlled by the desired position of the UAV at the required altitude. The overall system performance depends on MRAC and the stability of the system is proven by Lyapunov stability. 4.1. Simulation Case I

Description:
use a fuzzy-based PID controller to control the attitude and altitude of a quad-rotor UAV. Regulation,. Pole-Placement, and . and translational dynamics are used to govern the tri-rotor UAV, and are written as follows. Translational
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.