ebook img

Trajectory Learning for Highly Aerobatic Unmanned Aerial Vehicle Master Thesis Maja Celine ... PDF

87 Pages·2012·1.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trajectory Learning for Highly Aerobatic Unmanned Aerial Vehicle Master Thesis Maja Celine ...

UNIVERSITY OF OSLO Department of Informatics Trajectory Learning for Highly Aerobatic Unmanned Aerial Vehicle Master Thesis Maja Celine Sevaldson August 14, 2012 Abstract Thedynamicsoffixedwingplanesarewellunderstood withinthe conven- tional flight envelope. The situation is different in the case of aerobatic maneuverswithalargeangleofattack,suchasperchingandverticalhover. In such maneuvers the airflows around the plane are unpredictable mak- ingitdifficulttocreateaccuratedynamicmodels,whichwouldnormallybe neededforthedesignofconventionalcontrollers. YethumanRCpilotsare abletoflythesemaneuverswithfixedwingplanes. Apprenticeship learning provides a promising solution to the problem of automating highly aerobatic maneuvers. It allows the maneuver to be learnedfrom demonstration flightsdone by a human RC pilotrather than relyingonanaccuratedynamicsmodel. Thefocusofthisthesisisonaspecificissueinapprenticeshiplearning, namely how to infer the trajectory the pilot intended to fly from a set of suboptimal demonstration trajectories. Such a trajectory can be used as a target trajectory for an autonomous controller. A trajectory learning algorithm that has shown promising results in automation of aerobatic helicopterflightisappliedtoafixedwingUAVplatform. The algorithm is tested on two different maneuvers; A straight line of level flight, and a vertical hover maneuver. In the case of both maneuvers the algorithm learned the intended trajectory without prior knowledge aboutthetrajectory. In order to collect training data for the trajectory learning task, an appropriate platform and data acquisition system are needed. This thesis therefore also presents the development of a fixed wing UAV platform for researchonautomationofaerobaticflight. iii iv Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesisoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Supportingcontributions . . . . . . . . . . . . . . . . . . 2 1.2.2 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Relatedwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 StanfordAutonomousHelicopter . . . . . . . . . . . . . 3 1.3.2 Aerobaticmaneuvers . . . . . . . . . . . . . . . . . . . . 4 2 Background 7 2.1 HiddenMarkovModels . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 DiscreteMarkovProcesses . . . . . . . . . . . . . . . . . 7 2.1.2 HiddenMarkovModel. . . . . . . . . . . . . . . . . . . . 8 2.2 Expectation-Maximization. . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 MaximumLikelihoodEstimation . . . . . . . . . . . . . 11 2.2.2 EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 ExtendedKalmanSmoother. . . . . . . . . . . . . . . . . . . . . 12 2.3.1 DiscreteKalmanfilter . . . . . . . . . . . . . . . . . . . . 12 2.3.2 ExtendedKalmanfilter . . . . . . . . . . . . . . . . . . . 13 2.3.3 Kalmansmoother . . . . . . . . . . . . . . . . . . . . . . 13 2.4 DynamicTimeWarping . . . . . . . . . . . . . . . . . . . . . . . 14 3 TrajectoryLearning 17 3.1 Statemodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Timealignment . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Thetrajectorylearningalgorithm . . . . . . . . . . . . . . . . . 19 3.2.1 E-stepforhiddentrajectory . . . . . . . . . . . . . . . . 20 3.2.2 M-stepforhiddentrajectory . . . . . . . . . . . . . . . . 20 3.2.3 Timealignment . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 DynamicModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Equationsofmotion . . . . . . . . . . . . . . . . . . . . . 22 3.4 Improvementsofthemodel . . . . . . . . . . . . . . . . . . . . . 23 4 Experimentalplatform 25 4.1 Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Dynamicalpropertiesoftheplane. . . . . . . . . . . . . 27 4.1.2 Modificationstotheairframe . . . . . . . . . . . . . . . 29 v 4.1.3 Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.4 RadioControlSystem . . . . . . . . . . . . . . . . . . . . 30 4.2 Microcontrollers,SensorsandDataAcquisition . . . . . . . . 31 4.2.1 ArduPilotMega . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.2 InertialMeasurementUnit . . . . . . . . . . . . . . . . . 32 4.2.3 GPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.4 Barometricpressuresensor. . . . . . . . . . . . . . . . . 34 4.2.5 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.6 PilotInputs . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.7 DataAcquisitionandStorage . . . . . . . . . . . . . . . 37 4.3 Testenvironment . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 AlternativePositioningSystems . . . . . . . . . . . . . . . . . . 39 4.5 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 ExperimentsandResults 43 5.1 Preliminarytests. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.1 GPSaccuracy . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1.2 Outdoorflighttests . . . . . . . . . . . . . . . . . . . . . . 44 5.2 Collectingtrainingdata. . . . . . . . . . . . . . . . . . . . . . . . 45 5.2.1 Linearflightandbankedturns . . . . . . . . . . . . . . . 46 5.2.2 Hoveringwithtransitions . . . . . . . . . . . . . . . . . . 47 5.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.1 Selectinggooddemonstrations . . . . . . . . . . . . . . 49 5.3.2 BPMfilteringandcalibration. . . . . . . . . . . . . . . . 49 5.3.3 LocalizationofPositionData . . . . . . . . . . . . . . . . 51 5.3.4 IMUdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.5 Pilotcontrolinputs . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4.1 Timealignment . . . . . . . . . . . . . . . . . . . . . . . . 57 5.4.2 Straightlineoflevelflight . . . . . . . . . . . . . . . . . . 59 5.4.3 Verticalhover . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.4 ModelPredictionError . . . . . . . . . . . . . . . . . . . 64 6 Conclusion 67 6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.1.2 Timealignment . . . . . . . . . . . . . . . . . . . . . . . . 68 6.1.3 Trajectorylearning . . . . . . . . . . . . . . . . . . . . . . 68 6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 vi List of Figures 2.1 ThreestateMarkovmodeloftheweather . . . . . . . . . . . . . 9 2.2 HiddenMarkovModelofcrazysodadispenser . . . . . . . . . 9 2.3 Dynamictimewarping. Thefigureisadaptedfrom[31]. . . . . 14 2.4 Dynamic time warping distance matrix. The figure is borrowedfrom[40]. . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Modeloftherelationbetweenthehiddentrajectoryandone ofthedemonstrations. Thecolourednodesareunobserved. . 19 3.2 Model of the state when τk is fixed. Coloured nodes are j unobserved.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Expertpilotflyingtheplaneinverticalhover. . . . . . . . . . . 25 4.2 ElectriflyYak543D . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Reinforcementofthemotormount . . . . . . . . . . . . . . . . 30 4.4 Measuredthrustasafunctionofcontrolinput. . . . . . . . . . 30 4.5 7channelFutabaRCsystem . . . . . . . . . . . . . . . . . . . . . 31 4.6 DiagramofDAQsystem . . . . . . . . . . . . . . . . . . . . . . . 32 4.7 Electronicsmountedontheplane . . . . . . . . . . . . . . . . . 33 4.8 ArduPilotMegaboard . . . . . . . . . . . . . . . . . . . . . . . . 34 4.9 MicroStrain3DM-GX3IMU . . . . . . . . . . . . . . . . . . . . . 34 4.10 MediaTek3329GPS . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.11 Bosch Sensortech BMP085 digital pressure sensor inside plasticenclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.12 Maxbotixultrasonicrangefindersonar . . . . . . . . . . . . . . 36 4.13 Outdoortestspace. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.14 IndoorflightintheCEPSUMgym. . . . . . . . . . . . . . . . . . 38 4.15 TheStingerDomeofConcordiaUniversityinMontreal . . . . 38 4.16 Principleofstereocomputervision . . . . . . . . . . . . . . . . 39 4.17 2Dtrackingbasedoncolourtresholding . . . . . . . . . . . . . 40 5.1 On ground GPS test at McGill downtown campus. The red line marks the actual path travelled, while the yellow line showstheloggedGPSdata. . . . . . . . . . . . . . . . . . . . . . 43 5.2 ComparisonofGPSandBPMaltitudedata . . . . . . . . . . . . 44 5.3 InairtestsofDAQsystemandGPSlogging. . . . . . . . . . . . 45 5.4 Handlaunchoftheplaneforatrainingdatacollectionflight intheStingerDome. . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.5 Mark-upoftheStingerDomefieldforcollectingtrainingdata. 47 vii 5.6 VerticalhoverintheStingerDome. . . . . . . . . . . . . . . . . 48 5.7 Verticalhover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.8 East-Northplotofagoodlinearflightdemonstration. . . . . 49 5.9 Positionplotandpitchanglefromagoodhoverdemonstration 50 5.10 BPMdataisfilteredusinga3rdorderButterworth low-pass filterwith1Hzcut-offfrequency. . . . . . . . . . . . . . . . . . . 50 5.11 UncalibratedBPMdataandSonarreferencesignal . . . . . . . 51 5.12 Uncalibrated BPM data and Sonar reference at the two regionswherecalibrationpointswereselected. . . . . . . . . . 51 5.13 CalibratedBPMdataandSonarreferencesignal . . . . . . . . 52 5.14 Zoomedinviewofthetwocalibrationregionsaftercalibration 52 5.15 IMUframeandbodyframeoftheplane. . . . . . . . . . . . . . 53 5.16 Ailerondeflectionasafunctionofinputpulsewidth . . . . . . 55 5.17 Elevatordeflectionasafunctionofinputpulsewidth . . . . . 56 5.18 Rudderdeflectionasafunctionofinputpulsewidth . . . . . . 56 5.19 ThrustinNewtonsvsPWMcommand . . . . . . . . . . . . . . 57 5.20 Linearvelocities(n˙e˙d˙)fromthelinearflight. . . . . . . . . . . 58 5.21 AngularVelocitiesaroundtheplanez-axis(r). . . . . . . . . . . 58 5.22 East-Northpositionoflevelflight(meters) . . . . . . . . . . . . 59 5.23 Positionandlinearvelocityoftheplaneduringastraightline oflevelflight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.24 Orientationduringlevelflight(EulerAngles). . . . . . . . . . . 60 5.25 Angularvelocitiespqr (rad/sec),levelflight.. . . . . . . . . . . 61 5.26 Controlinputs,levelflight. . . . . . . . . . . . . . . . . . . . . . 61 5.27 Hovermaneuver. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.28 Hovermaneuver-Linearvelocitiesandposition. . . . . . . . . 63 5.29 AngularVelocities,hoverflight(rad/sec). . . . . . . . . . . . . 63 5.30 Orientationduringhover(Eulerangles). . . . . . . . . . . . . . 63 5.31 Controlinputs,hovermaneuver. . . . . . . . . . . . . . . . . . . 64 5.32 Model prediction error inlinearaccelerations (u˙v˙w˙) during straightflight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.33 Modelpredictionerrorinangularaccelerations(p˙q˙r˙)during straightflight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.34 Model prediction error inlinearaccelerations (u˙v˙w˙) during thehovermaneuver. . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.35 Modelpredictionerrorinangularaccelerations(p˙q˙r˙)during thehovermaneuver. . . . . . . . . . . . . . . . . . . . . . . . . . 65 viii List of Tables 4.1 Detailedweightbreakdownoftheexperimentalplatform . . . 27 4.2 MomentsandproductsofinertiaofYak54withData Acqui- sitionsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Parameters used in calculation of rotational damping mo- ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ix x

Description:
Aug 14, 2012 In such maneuvers the airflows around the plane are unpredictable mak- learned from demonstration flights done by a human RC pilot rather
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.