Trailing Edge Noise Generation of Porous Airfoils Von der Fakult¨at fu¨r Maschinenbau, Elektrotechnik und Wirtschaftsingenieurwesen der Brandenburgischen Technischen Universit¨at Cottbus zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte Dissertation vorgelegt von Diplom-Ingenieur Thomas F. Geyer geboren am 07.01.1981 in Radebeul Vorsitzender: Prof. Dr.-Ing. Christoph Egbers Gutachter: Prof. Dr.-Ing. Ennes Sarradj Gutachter: Prof. Dr.-Ing. Thomas Carolus Tag der mu¨ndlichen Pru¨fung: 18.08.2011 Contents Nomenclature v Danksagung ix 1 Introduction 1 2 Review on literature 5 2.1 Porous airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Aerodynamics of porous airfoils . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Application of flow-permeable trailing edges for noise control . . . . 6 2.2 Airfoil trailing edge noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Dependence on flow speed . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Dependence on angle of attack . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Trailing edge noise spectral shape . . . . . . . . . . . . . . . . . . . 15 2.3 Effects of surface roughness . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Measurement setup 21 3.1 Porous airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Characterization of the porous materials . . . . . . . . . . . . . . . 21 3.1.2 Airfoil data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Wind tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Aerodynamic force measurements . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 Acoustic measurements and data processing . . . . . . . . . . . . . . . . . 37 3.4.1 Beamforming theory . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Microphone array characteristics . . . . . . . . . . . . . . . . . . . 42 3.4.3 Two–dimensional beamforming . . . . . . . . . . . . . . . . . . . . 44 3.4.4 Three–dimensional beamforming . . . . . . . . . . . . . . . . . . . . 52 3.5 Constant temperature anemometry measurements . . . . . . . . . . . . . . 63 ii CONTENTS 4 Measurement results and discussion 69 4.1 Aerodynamic measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Acoustic measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1 Two–dimensional beamforming results . . . . . . . . . . . . . . . . 74 4.2.2 Three–dimensional beamforming results . . . . . . . . . . . . . . . 75 4.3 Constant temperature anemometry measurements . . . . . . . . . . . . . . 91 4.3.1 Velocity profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.2 Boundary layer integral parameters . . . . . . . . . . . . . . . . . . 97 4.3.3 Turbulence parameters in the wake . . . . . . . . . . . . . . . . . . 105 4.3.4 Turbulence spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Development of a basic trailing edge noise prediction model 119 5.1 Development of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Trailing edge noise prediction based on measured turbulence spectra and measured mean velocity . . . . . . . . . . . . . . . . . . . . . . 122 5.1.3 Trailing edge noise prediction based on modeled turbulence spectra and mean velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.2 Prediction of the trailing edge noise of porous airfoils . . . . . . . . . . . . 140 5.2.1 Comparison of predicted and measured trailing edge noise . . . . . 141 5.2.2 Discussion of the results and possible improvements to the model . 143 6 Conclusion 145 7 Zusammenfassung 149 Literature 153 List of Figures and Tables 161 A Additional wind tunnel data 169 B Microphone positions 171 C Photographs of the experimental setup 173 D Comparison of three–dimensional beamforming algorithms for a single point source 175 CONTENTS iii E Additional turbulence spectra 177 E.1 Influence of the spanwise position . . . . . . . . . . . . . . . . . . . . . . . 177 E.2 Normalization approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 E.3 Turbulence spectra at different chord positions . . . . . . . . . . . . . . . . 178 iv CONTENTS Copyright / Rechtliche Bedingungen This work is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/orsendalettertoCreativeCommons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA. Sa¨mtliche Rechte am Inhalt dieser Arbeit verbleiben beim Autor. Der Autor u¨bertra¨gt der Brandenburgischen Technischen Universit¨at Cottbus das einfache Verbreitungsrecht, also das Recht, im Rahmen der gesetzlichen Aufgaben der Hochschulbibliotheken wei- tere Kopien dieser Dissertation herzustellen und zu verbreiten bzw. in Datennetzen zur Verfu¨gung zu stellen. Diese Arbeit darf heruntergeladen und frei verwendet werden, wenn sie entsprechend zitiert wird. Eine Bearbeitung von Inhalten dieser Arbeit (Bilder, Tabellen) bedarf der Erlaub- nis des Autors. Eine kommerzielle Nutzung der Dissertation und die Vervielfa¨ltigung aus kommerziellen Zwecken sind ausgeschlossen. Nomenclature Functions and scalars a transfer function A (acoustic) transfer matrix A [m2] cross–sectional area of the porous sample s A [m2] cross–sectional area of the socket outlet for the measurement socket of the in situ air flow resistance b [m] spanwise extent / wingspan B transfer matrix of the six–component balance c [m/s] speed of sound c [m] chord length l C drag coefficient D C lift coefficient L d [m] fibre diameter f d [m] characteristic sensor size min d [m] pore diameter p d [m] thickness of the porous sample s D [m] nozzle diameter D directivity function e exponent E{} expectation operator f [s-1] frequency f [s-1] third–octave band center frequency c f [s-1] sample frequency S F spectral shape function F [N] drag force D F [N] lift force L F [N] side force S F matrix of aerodynamic forces and moment g proportionality factor G cross spectral matrices of microphone signals ˆ G estimate of the cross spectral matrices of microphone signals h [m] trailing edge thickness h steering vector H shape factor 12 vi v I [W/m2] sound intensity in the far field I identity matrix k [m-1] wave number k(cid:48) [m2] thermal permeability k [m2] viscous permeability v K constant L [dB] third octave band sound pressure level p L [dB] overall sound pressure level p,tot m arbitrary integer m slope of a linear function i i M number of sound sources Ma Mach number M [Nm] pitching moment P M [Nm] rolling moment R M [Nm] yawing moment Y n [Pa] amplitude of noise signals; arbitrary integer n number of blocks B n matrix of noise signals N number of microphones p [Pa] sound pressure p matrix of sound pressures p p [Pa] reference sound pressure, 2·10−5 Pa 0 q [m3/s] sound energy flux q [m3/s] volume flow velocity through a porous sample s r [Pa s/m2] air flow resistivity R [m] distance between source and observer R [Pa s/m] specific air flow resistance s Re Reynolds number based on chord length s [m] distance between two adjacent pores S [m2] wing area S cross spectral matrices of source signals S auto power spectral density XX Sr Strouhal number based on chord length c l Sr Strouhal number based on boundary layer displacement thickness δ1 SR [m-1] spatial resolution T [s] (measurement) duration TR [s-1] time resolution Tu Turbulence intensity u [m/s] turbulent velocity fluctuations u¯ [m/s] mean velocity at the edge of the laminar sublayer b u [m/s] characteristic velocity scale of the turbulence 0 u [m/s] flow velocity through a porous sample s u [m/s] measure of the turbulent velocity fluctuations in the unsteady v vortical flow over an airfoil or wing according to [Lilley, 1998] U [m/s] fluid velocity U(cid:48) [m/s] (spline) fit of the fluid velocity U [m/s] wind tunnel flow speed 0 U [m/s] turbulence convection velocity c Nomenclature vii v [v] signals from the single load cells (i = 1, 2...,6) i V [m3] turbulent eddy volume V [m3] pore volume of a porous material p V [m3] volume of the skeletal material of a porous material s V [m3] (total) volume of a porous material t V matrix of signals from load cells w arbitrary scalar W [kg] (aircraft) weight x, y, z [m] cartesian coordinates x position vector ∆x [m] streamwise extent of porous treatment Greek symbols α [◦] geometric angle of attack β [◦] angular coordinate of a cylindrical eddy according to [Ffowcs Williams and Hall, 1970] γ normalized turbulence intensity δ [m] boundary layer thickness δ [m] thickness of the laminar sublayer b δ [m] boundary layer displacement thickness 1 δ [m] momentum thickness 2 δ [m] energy thickness 3 η [N s/m2] dynamic viscosity θ [◦] inclination angle Λ [m] characteristic viscous dimension Λ(cid:48) [m] thermal characteristic dimension λ [m] (sound) wave length ν [m2/s] kinematic viscosity Ξ [◦] angle between convection velocity and trailing edge ρ [kg/m3] fluid density ρ [kg/m3] density of the skeletal material of a porous material s ρ [kg/m3] (total) density of a porous material t σ surface porosity s σ volume porosity v τ tortuosity Θ [◦] sideline angle Φ [m2/s] power spectral density of streamwise velocity fluctuations uu Ψ [◦] elevation angle ω [s-1] circular frequency ω [s-1] characteristic source frequency of turbulent eddies 0 Ω [◦] trailing edge solid angle (cid:96) [m] turbulence correlation length viii v Indices, superscripts and special characters H conjugate transpose (Hermitian transpose) + Moore-Penrose pseudoinverse D drag i, j, k arbitrary indices is in situ L lift n normalized peak characterizing a spectral peak por porous ref reference (non–porous) s (porous) sample; surface v viscous; volume W wing ¯ (overline) mean value ˜ (tilde) root–mean–square Abbreviations BPM noise prediction model by Brooks, Pope and Marcolini [Brooks et al., 1989] CFD Computational Fluid Dynamics CTA Constant Temperature Anemometry FFT Fast Fourier Transformation LDA Laser Doppler Anemometry PSD power spectral density PSF point spread function TNO noise prediction model developed at the Netherlands Organi- sation for Applied Scientific Research [Moriarty et al., 2005]
Description: