ebook img

Traffic optimization in transport networks based on local routing PDF

0.59 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Traffic optimization in transport networks based on local routing

Trafficoptimizationintransport networks basedon localrouting SalvatoreScellato,1 LuigiFortuna,2,1 Mattia Frasca,2,1 Jesu´sGo´mez-Garden˜es,1,3 andVito Latora4,1 1LaboratoriosuiSistemiComplessi, ScuolaSuperiorediCatania, ViaSanNullo5/i,95123Catania, Italy 2Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita` degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy 3DepartamentodeMatema´ticaAplicada,ESCET,UniversidadReyJuanCarlos,E-28933Mo´stoles(Madrid),Spain 4DipartimentodiFisicaeAstronomia,Universita` diCatania,andINFN,ViaS.Sofia64,95123Catania,Italy (Dated:January8,2009) Congestionintransportnetworksisatopicoftheoreticalinterestandpracticalimportance. Inthispaperwe studytheflowofvehiclesinurbanstreetnetworks. Inparticular,weuseacellularautomatamodeltosimulate 9 themotionofvehiclesalongstreets,coupledwithacongestion-awareroutingatstreetcrossings. Suchrouting 0 makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically 0 2 updatetheroutestowardstheirdestinations.Byimplementingthemodelinrealurbanstreetpatternsofvarious cities,weshowthatitispossibletoachieveaglobaltrafficoptimizationbasedonlocalagentdecisions. n a PACSnumbers:89.20.-a,89.75.-k,89.40.Bb J 8 Introduction.-Traffic optimization has always been a cru- of the system. Therefore, to study congestion-awarerouting ] h cialissueinthecontextofcommunicationandtransportation ofvehiculartrafficintransportnetworksitisnecessarytoin- p systems [1, 2, 3, 4, 5]. A transport network is a network corporatetheabovetwoingredients. - of roads, streets, pipes, power lines, or nearly any structure In this paper, we focus on the realistic scenario in which c o whichpermitseithervehicularmovementortheflowofsome onlyalocalknowledgeofcongestionisavailableandusedby s commodity.Inmostofthedevelopedcountries,transportation theagentstomodifytheirroutes. Ourmodelisimplemented . s infrastructuresoriginallydesignedto carrya definedamount intermsofvehiculartrafficandweassumethatdriversknow c oftrafficare oftencongestedbyanoverwhelmingrequestof the shortest paths to their destinations and, simultaneously, i s resources: this is the case of railroads, airplane connections they are aware about the congestion of nearby roads. Both y and,ofcourse,urbanstreets. Anaivesolutiontotheproblem informations are easily accesible nowadays from navigating h p consistsinexpandingtheinfrastructuretomatchtheincreas- systems, visual inspection and short-range wireless commu- [ ingdemand. However,thisisnotalwayspossibleduetolim- nication with other vehicles [11]. We show how, by conve- itationsinavailablespace,negativeoutcomesorshortnessof nientlycontrollingagentdecisions,itispossibletominimize 1 resources. Abetterapproachistocarefullytunethebehavior theoverallcongestionofthesystemandachieveperformances v 8 oftheexistinginfrastructurestoefficientlyexploittheiractual asgoodasthoseobtainedwithcomplete(global)trafficinfor- 7 structureandaccommodatethenewtrafficdemands. mation. 0 1 The study of congestion in complex networks has been The model.-Thethree ingredientsof the modelare: i) the . mainly focused on information systems, such as grid- substrate graph, ii) the vehicular dynamicsalong the streets, 1 0 computing networks or the Internet [4, 6]. In such context, iii)theroutingatstreetcrossings. 9 diversesolutionshavebeenproposedinordertoincreasethe The dynamics of vehicles takes place on top of urban 0 networkloadavoidingtheonsetofcongestion[7]. Inpartic- graphs. Weconsiderthestreetpatternofacityasaweighted v: ular,congestion-awarerouting,inwhichthenodesofthenet- graphwithN nodesandK edges. Eachedgeofthenetwork i work(therouters)redirectdynamicallytheinformationpack- representsastreet,alongwhichvehiclesmove,whereasnodes X etsacrossthelesscongestedpaths,hasprovedtoimproveno- accountofintersectionsbetweenstreets. Theweightofeach ar tablythecapacityofthenetwork[8,9].Itthusseemspossible edge is proportionalto the length of the road [19]. Here we tomakeuseofsimilarkindsofroutingstrategiesintransport assumeforsimplicitythateachedgeallowsmovementofve- networks. Ontheotherhand,transportnetworkspresentim- hiclesinbothdirections. Wehaveconsideredeightnetworks portantfeaturesdifferentfrominformationsystems. First, in representing1-squaremilesamplesofurbanstreetpatternsof a transport network the links (i.e. the roads) carry the flow real cities [19] (see Table I for details). The above city set ofvehicles,whereasthenodesarejustintersectionsbetween rangesfrom self-organizedcities, such as Bolognaand Lon- links. Therefore,onecannotneglectthedynamicsthatoccurs don,grownthroughacontinuousprocessoutofthecontrolof along the links: the quality of vehicle movement along the anycentralagency,togrid-likecitiessuchasLosAngelesand roadscharacterizesthefunctioningoftransportsystems. An- Barcelona,realizedoverashortperiodoftimeastheresultof other important feature is that, since transport networks are urbanplans,andusuallyexhibitinggridstructures. embeddedin the realspace, congestionisnotlocatedatpar- Thevehiculardynamicsalongthelinksoftheurbangraph ticular nodes of the system (such as the hubs in information is simulated by means of cellular automata [12, 13, 14]. In systems)[10]butitgeographicallyspreadsacrossthenetwork particular we use the Nagel-Schreckenberg (NaSch) model frombottlenecksanditmayeventuallyaffectalargeportion [15]. To this end, every link (street) of the city graph is di- 2 vided into a sequence of cells of equal length (5 meters) so City N K W hli α∗(L=0.06) α∗(L=0.1) thatnomorethanonevehiclecanoccupyacellateverytime Barcelona 210 323 36179 112.01 0.63 2.04 step. Eachvehicleisassignedavelocityvcellspertimestep Bologna 541 773 51219 66.26 0.87 1.54 [18]intherangev ∈[0,vmax].Wesetvmax =3,correspond- Brasilia 179 230 30910 134.39 1.52 2.09 LosAngeles 240 340 38716 113.87 1.82 2.43 ingtothetypicalmaximumvelocityof50Km/hinsideurban London 488 730 52800 72.33 1.02 1.26 areas.FollowingtheNaSchmodel,vehiclesaccelerate(decel- NewDelhi 252 334 32281 96.56 1.49 2.21 erate)whenthenextcellsareempty(occupied).Additionally, NewYork 248 419 36172 86.33 0.74 1.77 theintersectionsbetweenstreets(thenodesofthegraph)also Washington 192 303 36342 119.94 1.33 2.14 allowonlyonevehicleatagiventime,sothatseveralvehicles coming from different adjacent streets may compete for the TABLEI:Citysamplesconsidered: N andK arenumberofnodes same intersection [17]. For this reason, vehicles experience andlinksinthenetwork,W andhliarerespectivelythetotallength a slow down while approachinga roadintersection, as if the ofedgesandtheaverageedgelength(bothinmeters)[19].Wereport thevalueα∗thatmaximizestheaveragenumberofcompletedroutes endofthelanepresentedahindrance,sothattheyarriveatthe pervehicle. lastcelloftheedgewithv =0. Atthispoint,avehiclewaits to enter into the node [16] where it gets stuck until the first celloftheedgeintheproperoutgoingdirectionisfree. This waitinglockstheincomingflowsfromtheedges. Therefore, routing,α,andthenetworkload,L. First,inFig. 1weshow bottlenecksare created from the nodesand spread along the thecongestionpatternacrossthestreetsofBolognaforaload edges(roads)ofthegraph. L= 0.2,andforthreedifferentvaluesα =0,1,2. Itisclear Howvehiclesdecidetheiroutgoingdirectionwhenleaving that the larger the value of α, the more homogeneouslydis- a node? Here we implement a congestion-aware routing as tributedisthetraffic.Inordertostudyandquantifytheeffects a minimizationproblemthattakesinto accountthe lengthof ofcongestioninthevehicularmotionweanalyzetheso-called thepathandalsothetrafficalongtheoutgoingedges. When fundamentaldiagram [15]. The fundamentaldiagramrepre- a vehicle is at a node i it needs to choose a new node n in sents the network mean flux f (the average value of fluxes its neighborhoodΓi as the next hop on its path towards the onstreets)asafunctionofthetrafficloadL.Thisisshownin destinationt. Foreachoftheneighbouringnodesn,apenalty Fig.2(a)fordifferentvaluesofα. Eachofthecurvesf(L)ex- functionPnisdefinedas: hibitsthetypicalλ-inverseshapewiththetwotrafficphases: free-flow(inwhichtheflowincreasesasafunctionoftheload) Pn =(din+dnt)(1+cin)α , n∈Γi (1) atlowL,andcongested-flow(theflowdecreasesasafunction where din is the distance between nodes i and n, and cin oftheload)athighervaluesofL.Interestingly,boththevalue (cin ∈ [0,1]) represents the congestion of the link i → n, ofmaximumflowandthetransitionpointfromthefree-flow measured as the fraction of occupied cells in the link. The regimetothecongested-flowregime,increasewithα. Inpar- exponent α ≥ 0 accounts for the weight given to the local ticular,whenthevehiclesfollowshortestpaths(α = 0),they congestion in the drivers decision. The vehicle chooses the tendtoconcentrateinhighbetweennessnodesandlinks(we nodenwiththeminimumpenaltyPn. Ifcin = 0thepenalty havecheckedthatthestrongestcorrelationbetweenlinkflow functionPnisnothingelsethanthelenghtoftheshortestpath andbetweennessisindeedobtainedforα = 0). Inthiscase, tot,passingbynoden. Whencin 6=0theentireshortestpath even a small density of vehicles can result in a heavy load lengthiscorrectedbythe factor(1+cin)α. Inthisway, we at highbetweennessstreets. This givesrise to the formation assumethatthevehicleprojectsthecongestioncin ofthelink of clusters of jammed vehicles that cannot easily move and, i →nontheentirepathi→n →t. Notethat,whenα =0, although large regions of the city are quite uncongested as localcongestionplaysnoroleintheroutingandvehiclesfol- shown in Fig. 1(a), the overallflux of the networkis largely lowtheshortestpathstotheirrespectivedestinations. reduced. Weinitiallyplaceanumberofvehiclesproportionaltothe Theaboveresultisconfirmedbythesharpdecreaseofthe number of cells in the network, so that the network load, averagevehiclespeedvasafunctionofLforα=0shownin L = VC (i.e. the ratio between the number of vehicles V in Fig.2(b). Ontheotherhand,astheroutingstrategybecomes thenetworkandthetotalnumberofcellsC),isthesamefor more congestion-aware, the traffic is diverted from shortest all the cities considered. Initially, the vehicles are assigned path to free (and longer) paths causing that both the mean arandomsource(theirinitiallocation)andarandomdestina- speed of the vehicles and the mean flux on the streets are tionnode.Ateachtimestep,vehiclesmove(ifpossible)inthe largelyincreasedwith respecttothe caseα = 0, since more systemaccordingtotheNaSchrulesandthecongestion-aware vehiclesarenowabletoreachtheirdestinationswithoutbeing routing,Eq. (1). Finally, whena vehiclereachesitsdestina- blockedin congestednodes. More interestingly, we observe tionitisrandomlyassignedtoanewdestinationnode,sothat inFig.2(b)thatforα = 2and3theaveragevelocityv does Lisconstantintime. Afteraninitialtransientdynamics,the notdecrease monotonicallyas a functionof L but it reaches systemreachesasteadystateinwhichdataiscollected. a maximumvmax(α) at some load L∗(α). However,having Results.- Now we report the dynamical behavior of the a larger average velocity does not imply that the network is model in the different cities considered as a function of the working in a more efficient way. In fact, for large values of 3 (a) (b) (c) FIG.1:UrbanstreetnetworkofBologna(one-square-milesample).Linksaredrawnwithathicknessproportionaltotheircongestionc:from (a)to(c)amorecongestion-awarestrategyrulesthesameamountoftraffic,whichprogressivelyflowsinalargernumberofstreets.Thetraffic loadisfixedatL=0.2,whilethevaluesofαconsideredarerespectivelyequalto0,1and2. α, the vehicles can move faster running across longer paths theeffectoftheaveragecongestionofthepath(obtainedfrom attheexpenseofdelayingthearrivaltotheirdestinations. A theglobalknowledge)onthepathdistance. measureoftheefficiencyoftheroutingistheaveragenumber The averagenumberr of completedroutesper houris re- ofroutesrcompletedbyavehicleduringonehour. ported in Fig. 2(d). The figure shows that the routing with The value of r is reported in Fig. 2(c) as a function of L. globalknowledgedoes notperformmuch better than that of The results indicate that, because of congestion, the number Eq. (1). Additionally,atlargeloads,localknowledgeoutper- ofcompletedroutesdecreaseswhenthenumberofvehiclesin formsglobalknowledgeintermsofr. Moreover,whenglobal the city increases. The precise dependenceof r on the load, informationis takeninto account,the optimalroutingα∗ in- is related to the value of α. For α = 0, the average vehi- creases. This is related to the fact that, since congestion in cle speed has a very sharp drop as the load increases. For linksclosetovehiclelocationisalwaysup-to-dateandthere- the congestion-aware strategy with α = 1 the decrease is foreaccurate,routingbasedon localcongestionneedslower smootherthanforα = 0,whileforα = 2(α = 3)thevalue valuesofα∗ todivertvehiclesonfreestreets. ofrissmallerthanthatofα = 1whenL < 0.1(L < 0.14), butlargerwhenL > 0.1(L > 0.14). Inpractice,foragiven Conclusions.- Congestion in transportationand communi- loadL,thefunctionr(α)showsamaximumatsomeα∗ [see cationnetworksisaseriousproblemforbothpublicgoodsand insetinFig.2(c)].Thevalueofα∗isseentoincreasewiththe userstime. In thispaper we have integratedthe three essen- load L, pointingout thatthe morecongestedthe networkis, tialingredientsofvehiculartrafficinurbansettings. Namely themorecongestion-awarehastobetheroutingto reachthe the graph structure of urban patterns, a cellular automata optimalfunctioning. On theotherhand,themaximumvalue modelforvehiculardynamicsalongthelinks,andtheuseof ofr,r(α∗),decreaseswithL. Similarresultsasthoseshown acongestion-awareroutinginspiredtodatatrafficintheInter- forBolognahavebeenfoundfortheothercitiesstudied. The net. Wethushaveprovidedwithasimpleandfeasiblemodel bestroutingexponentsα∗ obtainedfortworealisticvaluesof whereonlylocalinformationabouttrafficcongestionisused thevehicledensity,namelyL=0.06andL=0.1[3],arere- toroutevehicles.Ourresultsshowhoweachindividualagent portedinTableI. Itisclearthattheoptimalvalueα∗depends canbetterorganizeitsmotionbasedonitslimitedlocalknowl- stronglyontheparticulartopologyoftheurbangraph. edgeoftrafficand,atthesametime,achieveoptimalperfor- Eventhoughapreciseinformationonglobalcongestionis mancesattheglobalsystemlevel. Wehaveimplementedthis inpracticerarelyavailable,wefinallystudythecaseinwhich modelinseveralrealcitieswithdifferentstructuralproperties eachvehicleknowsexactlythecongestionineverylinkofthe showinghowtheoptimalvehicleroutingstrategydependson network. Namely, we comparethe results obtainedwith Eq. thenetworktopology.Finally,wehaveshownthat,counterin- (1)withthoseobtainedwiththepenaltyfunction tuitively,a (unfeasible)routingbasedona globalknowledge ofcongestionisnotsuitedwhentheloadofvehiclesislarge. α Pn =(din+dnt)(1+hcinti) , (2) Theproposedroutingmodelis generalenoughto be applied where hcinti accounts of the average road congestion along toseveraltypesofhumantransportnetworks. Moreover,the thepathfromitotpassingbyn. Therefore,wenowproject dynamic and distributed nature of the model allows several 4 (a) (b) (c) (d) FIG.2: Averagestreetflow(a),averagevehiclespeed(b),andaveragenumberofcompletedroutespervehicleperhour(c)asafunctionof thenetworkloadL.Theaveragenumberofcompletedroutespervehiclefortheglobal-awarestrategyisalsoreportedforcomparisoninpanel (d).Intheinsetswereportrasfunctionα.ThenetworkconsideredisthatofthecityofBologna. applicationstobebuiltwhichmayimplementthecongestion- [8] P.Echenique, J.Go´mez-Garden˜es, andY.Moreno, Phys.Rev. aware strategy to improve the available vehicle’s navigation E70,056105(2004). systems. [9] P.Echenique, J.Go´mez-Garden˜es, andY.Moreno, Eur.Phys. Acknowledgments.- We are indebted to C. Mascolo and I. Lett.71,325(2005). [10] P. Crucitti, V. Latora and M. Marchiori, Phys. Rev. E 69, Leontiadis for their valuable comments. V. Latora was sup- 045104(R)(2004). ported by the Engineering and Physical Sciences Research [11] I.Leontiadis,C.Mascolo.“OpportunisticSpatio-TemporalDis- Council[grantnumberEP/F013442/1]. seminationSystemforVehicularNetworks”,InProceedingsof theFirstInternationalWorkshoponMobileOpportunisticNet- working(ACM/SIGMOBILEMobiOpp2007).Colocatedwith Mobisys07.PuertoRico,USA,June2007. [12] S.Wolfram,Rev.Mod.Phys.55,601(1983). [1] J.G.Wardrop,Sometheoreticalaspectsofroadtrafficresearch, [13] J.Esser,M.Schreckenberg,Int.J.Mod.Phys.C8,1025(1997). InstituteofCivilEngineers(1952). [14] D.Helbing,Phys.Rev.E57,6176(1998). [2] D.Helbing,Rev.Mod.Phys.73,10067(2001). [15] K.Nagel,M.Schreckenberg,J.Phys.IFrance2,2221(1992). [3] D.Chowdhury, L.Santen, andA.Schadschneider, Phys.Rep. [16] D.ChowdhuryandA.Schadschneider,Phys.Rev.E59R1311 329,199(2000). (1999). [4] R. Pastor-Satorras, A. Vespignani, Evolution and Structureof [17] O. Biham, A. A. Middleton, D. Levine, Phys. Rev. A 46, theInternet:AStatisticalPhysicsApproach,(CambridgeUniv. R6124(1992). Press,Cambridge,2004). [18] A timestepisassumedtobebeequal to1sec, theminimum [5] D.Belomestny,V.JentschandM.Schreckenberg,J.Phys.A36, timeofreactionofadriver. 11369(2003). [19] A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E [6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. 73 066107 (2006); P. Crucitti, V. Latora, S. Porta, Chaos 16 Hwang,Phys.Rep.424,175(2006). 015113 (2006); S. Porta, P. Crucitti, V. Latora, Enviromental [7] R. Guimera´, A. D´ıaz-Guilera, F. Vega-Redondo, A. Cabrales, andPlanningB33,705(2006). andA.Arenas,Phys.Rev.Lett.89,248701(2002). Trafficoptimizationintransport networks basedon localrouting SalvatoreScellato,1 LuigiFortuna,2,1 Mattia Frasca,2,1 Jesu´sGo´mez-Garden˜es,1,3 andVito Latora4,1 1LaboratoriosuiSistemiComplessi, ScuolaSuperiorediCatania, ViaSanNullo5/i,95123Catania, Italy 2Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita` degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy 3DepartamentodeMatema´ticaAplicada,ESCET,UniversidadReyJuanCarlos,E-28933Mo´stoles(Madrid),Spain 4DipartimentodiFisicaeAstronomia,Universita` diCatania,andINFN,ViaS.Sofia64,95123Catania,Italy (Dated:January8,2009) Congestionintransportnetworksisatopicoftheoreticalinterestandpracticalimportance. InthisPaperwe studytheflowofvehiclesinurbanstreetnetworks. Inparticular,weuseacellularautomatamodeltosimulate 9 themotionofvehiclesalongstreets,coupledwithacongestion-awareroutingatstreetcrossings. Suchrouting 0 makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically 0 2 updatetheroutestowardstheirdestinations.Byimplementingthemodelinrealurbanstreetpatternsofvarious cities,weshowthatitispossibletoachieveaglobaltrafficoptimizationbasedonlocalagentdecisions. n a PACSnumbers:89.20.-a,89.75.-k,89.40.Bb J 8 Introduction.-Traffic optimization has always been a cru- of the system. Therefore, to study congestion-awarerouting ] h cialissueinthecontextofcommunicationandtransportation ofvehiculartrafficintransportnetworksitisnecessarytoin- p systems [1, 2, 3, 4, 5]. A transport network is a network corporatetheabovetwoingredients. - of roads, streets, pipes, power lines, or nearly any structure In this Paper, we focus on the realistic scenario in which c o whichpermitseithervehicularmovementortheflowofsome onlyalocalknowledgeofcongestionisavailableandusedby s commodity.Inmostofthedevelopedcountries,transportation theagentstomodifytheirroutes. Ourmodelisimplemented . s infrastructuresoriginallydesignedto carrya definedamount intermsofvehiculartrafficandweassumethatdriversknow c oftrafficare oftencongestedbyanoverwhelmingrequestof the shortest paths to their destinations and, simultaneously, i s resources: this is the case of railroads, airplane connections they are aware about the congestion of nearby roads. Both y and,ofcourse,urbanstreets. Anaivesolutiontotheproblem informations are easily accesible nowadays from navigating h p consistsinexpandingtheinfrastructuretomatchtheincreas- systems, visual inspection and short-range wireless commu- [ ingdemand. However,thisisnotalwayspossibleduetolim- nication with other vehicles [11]. We show how, by conve- itationsinavailablespace,negativeoutcomesorshortnessof nientlycontrollingagentdecisions,itispossibletominimize 1 resources. Abetterapproachistocarefullytunethebehavior theoverallcongestionofthesystemandachieveperformances v 8 oftheexistinginfrastructurestoefficientlyexploittheiractual asgoodasthoseobtainedwithcomplete(global)trafficinfor- 7 structureandaccommodatethenewtrafficdemands. mation. 0 1 The study of congestion in complex networks has been The model.-Thethree ingredientsof the modelare: i) the . mainly focused on information systems, such as grid- substrate graph, ii) the vehicular dynamicsalong the streets, 1 0 computing networks or the Internet [4, 6]. In such context, iii)theroutingatstreetcrossings. 9 diversesolutionshavebeenproposedinordertoincreasethe The dynamics of vehicles takes place on top of urban 0 networkloadavoidingtheonsetofcongestion[7]. Inpartic- graphs. Weconsiderthestreetpatternofacityasaweighted v: ular,congestion-awarerouting,inwhichthenodesofthenet- graphwithN nodesandK edges. Eachedgeofthenetwork i work(therouters)redirectdynamicallytheinformationpack- representsastreet,alongwhichvehiclesmove,whereasnodes X etsacrossthelesscongestedpaths,hasprovedtoimproveno- accountofintersectionsbetweenstreets. Theweightofeach ar tablythecapacityofthenetwork[8,9].Itthusseemspossible edge is proportionalto the length of the road [19]. Here we tomakeuseofsimilarkindsofroutingstrategiesintransport assumeforsimplicitythateachedgeallowsmovementofve- networks. Ontheotherhand,transportnetworkspresentim- hiclesinbothdirections. Wehaveconsideredeightnetworks portantfeaturesdifferentfrominformationsystems. First, in representing1-squaremilesamplesofurbanstreetpatternsof a transport network the links (i.e. the roads) carry the flow real cities [19] (see Table I for details). The above city set ofvehicles,whereasthenodesarejustintersectionsbetween rangesfrom self-organizedcities, such as Bolognaand Lon- links. Therefore,onecannotneglectthedynamicsthatoccurs don,grownthroughacontinuousprocessoutofthecontrolof along the links: the quality of vehicle movement along the anycentralagency,togrid-likecitiessuchasLosAngelesand roadscharacterizesthefunctioningoftransportsystems. An- Barcelona,realizedoverashortperiodoftimeastheresultof other important feature is that, since transport networks are urbanplans,andusuallyexhibitinggridstructures. embeddedin the realspace, congestionisnotlocatedatpar- Thevehiculardynamicsalongthelinksoftheurbangraph ticular nodes of the system (such as the hubs in information is simulated by means of cellular automata [12, 13, 14]. In systems)[10]butitgeographicallyspreadsacrossthenetwork particular we use the Nagel-Schreckenberg (NaSch) model frombottlenecksanditmayeventuallyaffectalargeportion [15]. To this end, every link (street) of the city graph is di- 2 vided into a sequence of cells of equal length (5 meters) so City N K W hli α∗(L=0.06) α∗(L=0.1) thatnomorethanonevehiclecanoccupyacellateverytime Barcelona 210 323 36179 112.01 0.63 2.04 step. Eachvehicleisassignedavelocityvcellspertimestep Bologna 541 773 51219 66.26 0.87 1.54 [18]intherangev ∈[0,vmax].Wesetvmax =3,correspond- Brasilia 179 230 30910 134.39 1.52 2.09 LosAngeles 240 340 38716 113.87 1.82 2.43 ingtothetypicalmaximumvelocityof50Km/hinsideurban London 488 730 52800 72.33 1.02 1.26 areas.FollowingtheNaSchmodel,vehiclesaccelerate(decel- NewDelhi 252 334 32281 96.56 1.49 2.21 erate)whenthenextcellsareempty(occupied).Additionally, NewYork 248 419 36172 86.33 0.74 1.77 theintersectionsbetweenstreets(thenodesofthegraph)also Washington 192 303 36342 119.94 1.33 2.14 allowonlyonevehicleatagiventime,sothatseveralvehicles coming from different adjacent streets may compete for the TABLEI:Citysamplesconsidered: N andK arenumberofnodes same intersection [17]. For this reason, vehicles experience andlinksinthenetwork,W andhliarerespectivelythetotallength a slow down while approachinga roadintersection, as if the ofedgesandtheaverageedgelength(bothinmeters)[19].Wereport thevalueα∗thatmaximizestheaveragenumberofcompletedroutes endofthelanepresentedahindrance,sothattheyarriveatthe pervehicle. lastcelloftheedgewithv =0. Atthispoint,avehiclewaits to enter into the node [16] where it gets stuck until the first celloftheedgeintheproperoutgoingdirectionisfree. This waitinglockstheincomingflowsfromtheedges. Therefore, routing,α,andthenetworkload,L. First,inFig. 1weshow bottlenecksare created from the nodesand spread along the thecongestionpatternacrossthestreetsofBolognaforaload edges(roads)ofthegraph. L= 0.2,andforthreedifferentvaluesα =0,1,2. Itisclear Howvehiclesdecidetheiroutgoingdirectionwhenleaving that the larger the value of α, the more homogeneouslydis- a node? Here we implement a congestion-aware routing as tributedisthetraffic.Inordertostudyandquantifytheeffects a minimizationproblemthattakesinto accountthe lengthof ofcongestioninthevehicularmotionweanalyzetheso-called thepathandalsothetrafficalongtheoutgoingedges. When fundamentaldiagram [15]. The fundamentaldiagramrepre- a vehicle is at a node i it needs to choose a new node n in sents the network mean flux f (the average value of fluxes its neighborhoodΓi as the next hop on its path towards the onstreets)asafunctionofthetrafficloadL.Thisisshownin destinationt. Foreachoftheneighbouringnodesn,apenalty Fig.2(a)fordifferentvaluesofα. Eachofthecurvesf(L)ex- functionPnisdefinedas: hibitsthetypicalλ-inverseshapewiththetwotrafficphases: free-flow(inwhichtheflowincreasesasafunctionoftheload) Pn =(din+dnt)(1+cin)α , n∈Γi (1) atlowL,andcongested-flow(theflowdecreasesasafunction where din is the distance between nodes i and n, and cin oftheload)athighervaluesofL.Interestingly,boththevalue (cin ∈ [0,1]) represents the congestion of the link i → n, ofmaximumflowandthetransitionpointfromthefree-flow measured as the fraction of occupied cells in the link. The regimetothecongested-flowregime,increasewithα. Inpar- exponent α ≥ 0 accounts for the weight given to the local ticular,whenthevehiclesfollowshortestpaths(α = 0),they congestion in the drivers decision. The vehicle chooses the tendtoconcentrateinhighbetweennessnodesandlinks(we nodenwiththeminimumpenaltyPn. Ifcin = 0thepenalty havecheckedthatthestrongestcorrelationbetweenlinkflow functionPnisnothingelsethanthelenghtoftheshortestpath andbetweennessisindeedobtainedforα = 0). Inthiscase, tot,passingbynoden. Whencin 6=0theentireshortestpath even a small density of vehicles can result in a heavy load lengthiscorrectedbythe factor(1+cin)α. Inthisway, we at highbetweennessstreets. This givesrise to the formation assumethatthevehicleprojectsthecongestioncin ofthelink of clusters of jammed vehicles that cannot easily move and, i →nontheentirepathi→n →t. Notethat,whenα =0, although large regions of the city are quite uncongested as localcongestionplaysnoroleintheroutingandvehiclesfol- shown in Fig. 1(a), the overallflux of the networkis largely lowtheshortestpathstotheirrespectivedestinations. reduced. Weinitiallyplaceanumberofvehiclesproportionaltothe Theaboveresultisconfirmedbythesharpdecreaseofthe number of cells in the network, so that the network load, averagevehiclespeedvasafunctionofLforα=0shownin L = VC (i.e. the ratio between the number of vehicles V in Fig.2(b). Ontheotherhand,astheroutingstrategybecomes thenetworkandthetotalnumberofcellsC),isthesamefor more congestion-aware, the traffic is diverted from shortest all the cities considered. Initially, the vehicles are assigned path to free (and longer) paths causing that both the mean arandomsource(theirinitiallocation)andarandomdestina- speed of the vehicles and the mean flux on the streets are tionnode.Ateachtimestep,vehiclesmove(ifpossible)inthe largelyincreasedwith respecttothe caseα = 0, since more systemaccordingtotheNaSchrulesandthecongestion-aware vehiclesarenowabletoreachtheirdestinationswithoutbeing routing,Eq. (1). Finally, whena vehiclereachesitsdestina- blockedin congestednodes. More interestingly, we observe tionitisrandomlyassignedtoanewdestinationnode,sothat inFig.2(b)thatforα = 2and3theaveragevelocityv does Lisconstantintime. Afteraninitialtransientdynamics,the notdecrease monotonicallyas a functionof L but it reaches systemreachesasteadystateinwhichdataiscollected. a maximumvmax(α) at some load L∗(α). However,having Results.- Now we report the dynamical behavior of the a larger average velocity does not imply that the network is model in the different cities considered as a function of the working in a more efficient way. In fact, for large values of 3 (a) (b) (c) FIG.1:UrbanstreetnetworkofBologna(one-square-milesample).Linksaredrawnwithathicknessproportionaltotheircongestionc:from (a)to(c)amorecongestion-awarestrategyrulesthesameamountoftraffic,whichprogressivelyflowsinalargernumberofstreets.Thetraffic loadisfixedatL=0.2,whilethevaluesofαconsideredarerespectivelyequalto0,1and2. α, the vehicles can move faster running across longer paths theeffectoftheaveragecongestionofthepath(obtainedfrom attheexpenseofdelayingthearrivaltotheirdestinations. A theglobalknowledge)onthepathdistance. measureoftheefficiencyoftheroutingistheaveragenumber The averagenumberr of completedroutesper houris re- ofroutesrcompletedbyavehicleduringonehour. ported in Fig. 2(d). The figure shows that the routing with The value of r is reported in Fig. 2(c) as a function of L. globalknowledgedoes notperformmuch better than that of The results indicate that, because of congestion, the number Eq. (1). Additionally,atlargeloads,localknowledgeoutper- ofcompletedroutesdecreaseswhenthenumberofvehiclesin formsglobalknowledgeintermsofr. Moreover,whenglobal the city increases. The precise dependenceof r on the load, informationis takeninto account,the optimalroutingα∗ in- is related to the value of α. For α = 0, the average vehi- creases. This is related to the fact that, since congestion in cle speed has a very sharp drop as the load increases. For linksclosetovehiclelocationisalwaysup-to-dateandthere- the congestion-aware strategy with α = 1 the decrease is foreaccurate,routingbasedon localcongestionneedslower smootherthanforα = 0,whileforα = 2(α = 3)thevalue valuesofα∗ todivertvehiclesonfreestreets. ofrissmallerthanthatofα = 1whenL < 0.1(L < 0.14), butlargerwhenL > 0.1(L > 0.14). Inpractice,foragiven Conclusions.- Congestion in transportationand communi- loadL,thefunctionr(α)showsamaximumatsomeα∗ [see cationnetworksisaseriousproblemforbothpublicgoodsand insetinFig.2(c)].Thevalueofα∗isseentoincreasewiththe userstime. In this Paperwe have integratedthe three essen- load L, pointingout thatthe morecongestedthe networkis, tialingredientsofvehiculartrafficinurbansettings. Namely themorecongestion-awarehastobetheroutingto reachthe the graph structure of urban patterns, a cellular automata optimalfunctioning. On theotherhand,themaximumvalue modelforvehiculardynamicsalongthelinks,andtheuseof ofr,r(α∗),decreaseswithL. Similarresultsasthoseshown acongestion-awareroutinginspiredtodatatrafficintheInter- forBolognahavebeenfoundfortheothercitiesstudied. The net. Wethushaveprovidedwithasimpleandfeasiblemodel bestroutingexponentsα∗ obtainedfortworealisticvaluesof whereonlylocalinformationabouttrafficcongestionisused thevehicledensity,namelyL=0.06andL=0.1[3],arere- toroutevehicles.Ourresultsshowhoweachindividualagent portedinTableI. Itisclearthattheoptimalvalueα∗depends canbetterorganizeitsmotionbasedonitslimitedlocalknowl- stronglyontheparticulartopologyoftheurbangraph. edgeoftrafficand,atthesametime,achieveoptimalperfor- Eventhoughapreciseinformationonglobalcongestionis mancesattheglobalsystemlevel. Wehaveimplementedthis inpracticerarelyavailable,wefinallystudythecaseinwhich modelinseveralrealcitieswithdifferentstructuralproperties eachvehicleknowsexactlythecongestionineverylinkofthe showinghowtheoptimalvehicleroutingstrategydependson network. Namely, we comparethe results obtainedwith Eq. thenetworktopology.Finally,wehaveshownthat,counterin- (1)withthoseobtainedwiththepenaltyfunction tuitively,a (unfeasible)routingbasedona globalknowledge ofcongestionisnotsuitedwhentheloadofvehiclesislarge. α Pn =(din+dnt)(1+hcinti) , (2) Theproposedroutingmodelis generalenoughto be applied where hcinti accounts of the average road congestion along toseveraltypesofhumantransportnetworks. Moreover,the thepathfromitotpassingbyn. Therefore,wenowproject dynamic and distributed nature of the model allows several 4 (a) (b) (c) (d) FIG.2: Averagestreetflow(a),averagevehiclespeed(b),andaveragenumberofcompletedroutespervehicleperhour(c)asafunctionof thenetworkloadL.Theaveragenumberofcompletedroutespervehiclefortheglobal-awarestrategyisalsoreportedforcomparisoninpanel (d).Intheinsetswereportrasfunctionα.ThenetworkconsideredisthatofthecityofBologna. applicationstobebuiltwhichmayimplementthecongestion- [8] P.Echenique, J.Go´mez-Garden˜es, andY.Moreno, Phys.Rev. aware strategy to improve the available vehicle’s navigation E70,056105(2004). systems. [9] P.Echenique, J.Go´mez-Garden˜es, andY.Moreno, Eur.Phys. Acknowledgments.- We are indebted to C. Mascolo and I. Lett.71,325(2005). [10] P. Crucitti, V. Latora and M. Marchiori, Phys. Rev. E 69, Leontiadis for their valuable comments. V. Latora was sup- 045104(R)(2004). ported by the Engineering and Physical Sciences Research [11] I.Leontiadis,C.Mascolo.“OpportunisticSpatio-TemporalDis- Council[grantnumberEP/F013442/1]. seminationSystemforVehicularNetworks”,InProceedingsof theFirstInternationalWorkshoponMobileOpportunisticNet- working(ACM/SIGMOBILEMobiOpp2007).Colocatedwith Mobisys07.PuertoRico,USA,June2007. [12] S.Wolfram,Rev.Mod.Phys.55,601(1983). [1] J.G.Wardrop,Sometheoreticalaspectsofroadtrafficresearch, [13] J.Esser,M.Schreckenberg,Int.J.Mod.Phys.C8,1025(1997). InstituteofCivilEngineers(1952). [14] D.Helbing,Phys.Rev.E57,6176(1998). [2] D.Helbing,Rev.Mod.Phys.73,10067(2001). [15] K.Nagel,M.Schreckenberg,J.Phys.IFrance2,2221(1992). [3] D.Chowdhury, L.Santen, andA.Schadschneider, Phys.Rep. [16] D.ChowdhuryandA.Schadschneider,Phys.Rev.E59R1311 329,199(2000). (1999). [4] R. Pastor-Satorras, A. Vespignani, Evolution and Structureof [17] O. Biham, A. A. Middleton, D. Levine, Phys. Rev. A 46, theInternet:AStatisticalPhysicsApproach,(CambridgeUniv. R6124(1992). Press,Cambridge,2004). [18] A timestepisassumedtobebeequal to1sec, theminimum [5] D.Belomestny,V.JentschandM.Schreckenberg,J.Phys.A36, timeofreactionofadriver. 11369(2003). [19] A. Cardillo, S. Scellato, V. Latora, S. Porta, Phys. Rev. E [6] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. 73 066107 (2006); P. Crucitti, V. Latora, S. Porta, Chaos 16 Hwang,Phys.Rep.424,175(2006). 015113 (2006); S. Porta, P. Crucitti, V. Latora, Enviromental [7] R. Guimera´, A. D´ıaz-Guilera, F. Vega-Redondo, A. Cabrales, andPlanningB33,705(2006). andA.Arenas,Phys.Rev.Lett.89,248701(2002).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.