ebook img

Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean PDF

12 Pages·2012·0.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean

PrecambrianResearch224 (2013) 11–22 ContentslistsavailableatSciVerseScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Trading partners: Tectonic ancestry of southern Africa and western Australia, in Archean supercratons Vaalbara and Zimgarn AlekseyV.Smirnova,b,∗,DavidA.D.Evansc,RichardE.Ernstd,e,UlfSöderlundf,Zheng-XiangLig aDepartmentofGeologicalandMiningEngineeringandSciences,MichiganTechnologicalUniversity,Houghton,MI49931,USA bDepartment of Physics,M ichig anTech nologicalUn iver sity,Houg hton,MI4 9931,USA cDepartment of Geology andGeop hysics,YaleUn iversity,Ne wHaven,C T0 6520,U SA dErnstGeosci en ces,Otta waK 1T3Y2,Can ada eCarlet onUniversity ,Ottaw aK1 S5B6 ,Canada fDepartm entofEarth andEco syst emS ciences,DivisionofGeology,LundUniversity,SE22362Lund,Sweden gCenterofEx cel lence forC oretoCrus tFluidSy stems,De pa rtmento fApp liedGeology ,C urtin U nivers ity,Perth,WA6845,Australia a r t i c l e i n f o a b s t r a c t Articlehistory: Originalconnectionsamongtheworld’sextantArcheancratonsarebecomingtractablebytheuseof Receiv ed26April2012 integrate dpaleomagn etican dge ochrono logicst udieson Paleopro tero zoicmafic dykeswa rm s.H erew e R19ecSeeivpetedm inb er erv2i0se1 d2 form report new high-quality p aleo magnetic data f rom the ∼2 .41 Ga Widgiemo oltha dyke swarm o f the Yil- garncratoninwesternAustralia,confirmingearlierresultsfromthatunit,inwhichtheprimaryorigin Accepted21September2012 ofcharacteristicremanentmagnetizationisnowconfirmedbybaked-contacttests.Thecorrespond- Available online xxx in g paleomagnet ic pole (10 .2◦S, 159.2◦E, A 95= 7.5◦) , in combin ati on with newly availab le a ges on dykes fromZimbabwe,allowforadirectconnectionbetweentheZimbabweandYilgarncratonsat2.41Ga, Keywords: withimpliedconnectionsasearlyastheircratonizationintervalsat2.7–2.6Ga.Theproposed“Zimgarn” Paleomagnetism Paleoproterozoic supercraton was likely distinct from Vaalbara (Kaapvaal plus Pilbara) at 2.4 Ga, but both of those entities Yilgarn independentlyfragmentedatca.2.1–2.0Ga,reassemblingintotheKalahariandWestAustraliancratons Pilbara by1.95–1.8Ga. Zimbabvecraton © 2012 Elsevier B.V. All rights reserved. Kaapvaalcraton 1. Introduction The Widgiemooltha mafic dykes of the Yilgarn craton (West- ernAustralia)constituteoneofthemostprominentdykeswarms Fundamental changes across the entire Earth system during of the world’s Precambrian shields (e.g., Sofoulis, 1966; Parker the Archean–Paleoproterozoic transition (ca. 3000–2000Ma) are et al., 1987). The dykes generally trend east-west and outcrop reflectedinglobaldynamicsthatbecamemoresimilartomodern- over the entire craton (Fig. 1). Most of the dykes are of picrite, style plate tectonics through that interval (Condie and Kröner, olivine–doleriteorquartz–doleritecompositionandhavenotbeen 2008;ReddyandEvans,2009),althoughthekinematicrecordfrom affectedbysignificantmetamorphiceventssincetheirformation thateraiscurrentlylimitedbyadearthofhigh-qualitypaleomag- (e.g.,Hallberg,1987). netic data (Evans and Pisarevsky, 2008). However, recent work The age of the Widgiemooltha dyke swarm is constrained by usingacombinedpaleomagneticandgeochronologicapproachon isotopic dating of its three largest dykes. Nemchin and Pidgeon mafic d yke swarm s within sever al A rchean cratons, for examp le (1998) r eported a ba ddeley ite U–P b age of 2418± 3Ma for the Slave (Buch anetal., 2009,2 012),Su perior(E vansand Ha lls,2010; wester nmost ex te nsion of the ∼600 -km -lon g Bin n er ing ie D yke definingmemberoftheSuperiasupercratonofBleeker,2003),and (Fig.1).ElectronmicroprobeU–Pbanalysesofbaddeleyitesfrom Vaalbara(deKocketal.,2009),hasstartedtochangethissituation, an eastern location of the Binneringie Dyke yielded a slightly enabling ust otest an dq uantif yth eorigin al connect ions thatmay you ngerag eof2410 .3± 2.1 Ma(Frenche tal.,2 002).Ab ad deleyite haveexis ted b etwe ent hem. U–Pbag eof 24 10.6+2 .1 /−1 .6M awasa ls oo btained f ortheCele- brationDyke(DoehlerandHeaman,1998).Fletcheretal.(1987) reporte dRb– SrandSm –Nd isochron ageof 2411±3 8M a forthe ultramafi ccore ofth e∼180- km-longJ imb erl anain tr usi on, loca ted ∗Correspondingauthorat:DepartmentofGeologicalandMiningEngineeringand south of th e Bi nn erin gie Dyke (Fig. 1). These d ata broad ly con- Sciences,Michigan Techno log icalUniversi ty, 630DowE CEB uilding, 1400Towns end firm the earliest geochronological study of the Widgiemooltha Drive, Houghton, MI 49931, USA. Tel.: +1 906 487 2365. dyke swa rm (Tur ek, 1966), which yielded a 242 0±30Ma Rb–Sr E-mailaddress:[email protected](A.V.Smirnov). 0301-9268/$–seefrontmatter© 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.precamres.2012.09.020 12 A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 -20o processing techniques, and it lacked a rigorous field test to confirm theprimaryoriginofdykemagnetization.Herewereportnewhigh- Pilbara qualitypaleomagneticdatafromtheWidgiemoolthadykeswarm, with implications for tectonic style of craton amalgamation and separationduringtheArchean–Paleoproterozoictransition. -24o 2. Methods 23 A 24 Yilgarn Wesampled27sitesrepresenting14separateWidgiemooltha 10 11,12 19,20 dykess panning mo stof theYilgarnc rato n(Fig.1 ).Fivetothirty- 9 twofi eld-drilled orien te dco resamp leswe reco llec tedf rom each -28o 26 C,I 22 21 18 site. Orientationw asdone with bothsola randm agneticc ompa sses. 16 17 Low -fieldtherm oma gneti cana lyses ,rem ane nceunblo ckingtem- 5 7DH,GE 1415 perature and magnetic h ysteresis measureme nts indicate the F 13 presenceofpseudosingle-domainmagnetiteorlow-Tititanomag- CD netiteinm o stdykes(Fig.2). RD -32o Perth 4 JBDD UniMveargsniteytaicn dreMmiachniegnacneT mecehansoulroegmiceanltUsn wiveerresi tcyounsdiuncgtaeudt oamt aYtaelde 271 23 three-axis DC SQUID 2G rock magneto meters ho used in magnet- ically shielded environments. After measurement of the natural remanentmagnetization(NRM),thesampleswerecycledthrough the Verwe y transition a t ∼120 K (V erwey, 1 939) by im mersing themintoliquidnitrogenforabouttwohoursinordertoreduce -36o aviscouscomponentcarriedbylargermagnetitegrains(Schmidt, 116o 120o 124o 1 993).Ne xt,alowalte rnating fiel d(AF) pre-treatm ent(to 100mTin 20mTsteps)wasappliedtoremoveanyremaininglow-coercivity Fig. 1. Locations of sampling sites of this study (circles) and of Evans’ (1968) (dia- vis cou soriso ther malrem an ence.Fin ally, 15–20ther maldemagne- monds)samplingsites.Open(orgrey)symbolsshowthesitesused(ornotused) tizationstepswereperformedinaninert(nitrogen)atmosphere. tPoil cbaalrcauclarateto tnhse. mTheianng praayleloinmeasginndeticica tdeirtehcetiWonids.g Siehmadoeodl tahraeadsy skheosww athrme Y;isloglaidrnl ianneds Progress ive d emagn etization w as ca rried out until t he magnetic showtheBinneringie(BD),Jimberlana(JD),Celebration(CD),andRandalls(RD) intensityofthesamplesfellbelownoiseleveloruntilthemeasured dykes .Ins etmapshow sthe areastudied byE vans(1968). direction sb eca meerrat ica nduns table (typic all yat5 80– 590◦C). Thecharacteristicremanentmagnetization(ChRM)forsamples age(usingadecayconstantof1.39×10−11yr−1);andtheconsis- displayingnearlylineardemagnetizationtrajectorieswasisolated tenc yofis ot opica gesattest st othe e xcellentpre serva tion ofthe usingprinc ipal-co mpon entanalysis(PCA )(Kirschvink ,19 80).The dykes . best-fi tlinewasusedifdefin edbyatl eastth reeconsecut ivedem ag- Magnetic surveys show both positive and negative anoma- netizationstepsthattrendedtowardtheoriginandhadamaximum lies associate d with the W idgiem ooltha d ykes (e.g., Tuc ker and angleofde viatio n(M AD)les sthan2 0◦. Forth em ajori ty ofdykes, Boy d, 1987), su gges ting the presence of dual-p olarit y rema nent the C hR M was iso lated w ithi n a n arrow (1 0–2 5◦C) tem pe rature magn etizatio n. The only pr evious pa leo magnetic stu dy of the ran geabov e520 ◦C(Figs .3–5).T he meand irectionswe recalculated Widgiemooltha dyke swar m(Evans, 1968)foundrem anenc edi rec- using Fisher statist ics(Fi sher, 195 3).As itemeanw asac ceptedfor tions of both p olarit ies from four indep enden tly cooled d ykes. furthe rcalcu lationsif itwaso btained f rom three orm oresamp les, Howe ve r,that studywas confin edto alimitedareain thesou theast- thecon fidencecircle ( ˛ 95)w assmalle rthan 15◦, an dthep recision ernYilgar n(Fig .1),it did notempl oy m odern dem ag neti zationand par ameterkwa sgrea terth an5 0. a b 900 ) 15 u m M /M = 0.143 rs s e m H = 159 Oe c ( nits) 600 ent Hc = 408 Oe u m 0 SI Mo κ ( 300 c eti n g a 0 M -15 -200 0 200 400 600 -0.5 0.0 0.5 Temperature (oC) Magnetic field (kOe) Fig.2. (a)Atypicallow-fieldthermomagneticcurve((cid:2)(T))measuredinargonfrom−192◦Cto700◦CusinganAGICOKLY-4SmagneticsusceptibilitymeteratYaleUniversity. The (cid:2)( T)cu r veindic atesthep resenceofasingl emag neticp hasewith aC uriet empe ratureb etw een57 0–58 0◦ C(low- Tititano magnetit eormagnetite ).The pr esenc eofnearly stoic hiom etric magnetit eis furthers up p orted byachar acteris ticp ea kobs ervedatabo ut−153◦ C,associate dwith theVerwey(193 9) transition. (b)A typicalm a gnetic hysteresis loop indicating pseudo-single domain behavior of the sample. Abbreviations are Hc, coercivity; Hcr, coercivity of remanence; Mrs, saturation remanence; Ms, saturationmagnetization. A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 13 a b 510 540 590 585 c d 525 545 575 585 e Fig.3. PaleomagneticresultsfromtheBinneringiedyke.(a–d)Typicalorthogonalvectorplotsofthermaldemagnetization(vertical/horizontalprojectionsshownby oinpdein ca/fit elletedm sypmerbaotulsr)e. Es qteupasl-(ainre ◦aC p).lo(e ts) sThh oewsi tthe-em acecaenp dteirde pcta iloenosmfra ogmnetthicis d sirtuecdtyio(ncisr (colep se)na snqduf arroems) Ea vnadn tsh(e1ir9 m68e) a(ntr (isaonlgidle csi)rculsee)d wt iothc athlceu 9la5t%e cthonefimdeeannc ed ciriercclteio (n˛9(5s )t.a Nr)uamnbd eirtss ˛95circl e (solid line) for the Binner ing ie d yke (Table 1). Open sq uare show s the directio n fro m Sit e K (Ev ans, 19 68) collect ed fro m baked gr anit e abou t five me ters fr om t he Binneringiedyke.Althoughbasedononlytwoindependentlyorientedsamples(Table1),thesiteKdirectionhintsattheprimaryoriginofthedykemagnetization. 3. Results geomagneticfieldattheArchean–Proterozoicboundary(Smirnov etal.,2011). Eighteen sites from thirteen separate dykes yielded well- Although Evans (1968) found consistent directions between defined (˛ <15◦ ) site mean dir ections, i ncludin g twelve sites dykes and b aked g ranite h ost ro cks at two sites, thos e are not 95 (from eight different dykes) that yielded directions consistent strictlypositivebaked-contacttestsbecausetheylackstable,dif- with those reported by Evans (1968) (Fig. 6a, Table 1), and the ferentresultsfromunbakedhostrocks.Weaugmenttheaggregate comb inedd atasetyie lds apale omagn eticp ole at10. 2◦S, 159 .2◦E Widgi emoolth a da taset wi th po sitive bak ed-conta ct t ests con- (A =7.5◦ ). The an gular di spersion of vir tual g eo magnet ic poles firmingtheprim aryageo fmag netizatio ninthesedykes .First isthe 95 (VGPs ) S=( 11.7 ±1.9)◦ f rom the W idg iemool tha dykes is lower inverse bak edconta ctt est fromNarrogin q uarry (Site1 )nea r the thanth at o f15– 17 ◦observed att hecomparablel atitude ba ndfor western endo ftheBin neri ngieD yke,whe rethe dyke isc ross- cut the last 5 million years (e.g., Johnson et al., 2008). However, the byathin,younger,east-westdykebearingaremanencedirection lowSvalueisconsistentwiththesystematicallylowVGPdisper- identical to those of the Marnda Moorn large igneous province sionvaluesmeasuredfromotherreliablepaleomagneticdatasetsof (LIP), also known in the Narrogin region as Wheatbelt or Fraser theNeoarcheanandPaleoproterozoicage,suggestingmorestable dykes(Pisarevskyetal.,2003;WingateandPidgeon,2005)(Table2; 1 4 Table1 anS uubmmetmbw eaerre oyn fo- ssfa iptmea plmeloeesma nua sgdenidree ttcoict i coraenlsc.u u(cid:3)llptas,t ˚efr otPhmaer etph atehle eWo lmaidtaigtgiunedmeetoi aco ndltdeh claol indngyaikttieuosdn. e S( Diotfe) taIhDned: v niinurctmulibanlea grtsieo odnme (naIo)g;t ne˛e 9tt5hicea pnoodril gek i(anVraeGl tsPhi)t.ee A s99 5c5o%al lnceodcn tKefi dad refeon rtc hethe c i9isr 5cs%lteu c daonyn,d fil etdhteteen rccsoe dncecirencnolettre aa tnthidoe nt sh pietae crsao fmnroceemtne trEr vfaoatrino psn a( 1lpe9aor6ma8m)a.g e(cid:3)ntsee, rt˚ ifcos dra iVrreeG ctPth ideo insssitt.r eiBb l uaistt iittohuned. en uamndb elorn ogfi tsuitdees . uNs eisd tfhoer Site ID (cid:3)s(◦S) ˚s(◦E) N B D (◦) I (◦) k ˛95(◦) (cid:3)p(◦N) ˚p(◦E) K A95(◦) Binneringie 27 33.0 116.95 4 258.9 −64.3 95 9.5 16.3 342.1 1 32.9 4 117.11 11 248.1 −62.3 731 1.7 08.6 339.9 3 32.49 118.54 8 272.3 −59.8 1212 1.6 22.1 353.3 26 31.80 121.42 9 236.2 −64.1 1607 1.3 2.8 336.8 9,25 31.53 122.32 19 225.1 −57.6 71 4.0 –8.2 336.3 C 31.7 121.7 4 246.0 −75.5 26 –e 17.9 327.9 I 31.7 121.7 4 233.5 −68.0 160 –e 5.2 332.2 Mean–BinnerinKg ai,edDykeb 31.6 122.1 2 7 224445..58 −−6650..40 2755 –7e.0 9.3 338.3 38 9.9 A.V Mean – Binneringie Dyke(thisstudyonly)b 5 247.8 −62.7 75 8.9 8.3 341.6 35 13.1 .Sm Jimbe rlana 57d 3322..1168 112211..7341 77 211370..43 −−6472..18 12377 151..29 −1.3 324.8 irnov FED 333222...211 111222121...807 533 222746830...505 −−−666916...505 1161969 −––eee 22860...607 333534780...307 etal./P Mean–JimberlaGnaDyke 32.1 121.8 3 5 225521..56 −−6687..08 17616 –9e.2 1143..79 333490..81 28 14.8 recam Other dikesc 11 31.32 121.59 6 262.7 −65.2 562 2.8 17.9 346.6 brian 14 30.18 121.97 16 242.5 −56.4 76 4.3 −1.0 347.1 Re 15 29.46 121.93 8 264.8 −68.8 146 4.6 19.9 342.4 sea 17 dKingoftheHillDyke 28.63 121.33 5 354.6 −81.4 51 10.9 rch 121809ddd 222866...033686 111222000...555299 1770 323395592...504 −−654640...214 15240450 1242...705 224 (20 2221 d 2278..8043 111199..9425 86 232586..39 −4681..52 178997 42..04 −7.0 333.7 13) 11 23CelebrationDyke 30.90 121.97 5 238.1 −67.6 172 5.8 6.2 335.3 –2 24 RandallsDy ke 30.90 122.38 7 266.1 −68.1 866 2.5 21.3 344.1 2 Ad, f 30.9 122.0 3 239.0 −67 25 –e 6.1 335.9 H 32.1 121.8 7 51.0 73 .5 86 –e 10.7 325.6 TotalWidgiemoolthamean–Thisstudyonly 8 245.3 −65.5 92 5.8 8.2 336.0 27 10.9 Thiss tudyplusEvans (1968 ), 2po larities g 9 247.5 −66.6 117 4.8 10.2 339.2 48 7.5 a Samplefrombakedgranite5mawayfromtheBinneringieDyke(Evans,1968).Notusedforthemean. b NositemeandirectionwascalculatedfortheBinneringiesites2,4,and8,whichyieldedscattereddirections. c NositemeandirectionwascalculatedforSites12,13,and16,whichyieldedscattereddirections. d Sitenotusedforcalculationofthemeandirections. e ˛95 is no t pro vid ed in Evans (1 968 ) f SiteA(Evans,1968)isequivalenttoourSite23andwasnotusedforcalculationofthetotalmeandirection. g TheSiteHdirectionwasinvertedforthetotalmeancalculation. A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 15 Site 7 a c N 0 500 5 4 - E 0 9 D W 575 E - FG 7 S -45 b -45 0 180 0 Fig.4. PaleomagneticresultsfromtheJimberlanadyke.(a)Atypicalorthogonalvectorplotofthermaldemagnetization(vertical/horizontalprojectionsshownbyopen/filled sym bo ls)fromSite7.N umber sindi cate temperatu reste ps( in ◦C).(b) Acceptedp aleom agne tic directio ns(opensquares) andtheirmean(sol idcircle)wit hthe9 5% confidence circle (˛9 5) for Site 7 (equal-ar ea projec tion). (c) The mean direct ion for the Jim berlana dyke (open squa re) an d its ˛95 area (soli d circl e) calc ulated from Sit e 7 ( this study) andSitesD,E,F,andG(Evans,1968)(Table1). Fig.6b).AlthoughtheyoungerNarrogindykeisundated,itsorien- extensionoftheMuggamurraswarm,apartoftheMardnaMoorn tationandpaleomagneticdirectionssuggestaMarndaMoornage LIP(Myers,1990;WingateandPidgeon,2005)intothenorthern thatwouldimplytheBinneringieremanencepre-dates1.2Ga. Yilgarn. Alternatively, these sites may represent Widgiemooltha An additional positive baked contact test that was conducted dykesthatrecordedtransitionalfielddirections.OneofJimberlana atBooylgooHills(Site21)whereaWidgiemoolthadykeintrudes dykesites(Site5)resultedinameandirectionthatissignificantly an Archean lava sequence provides more direct evidence of a different from the consistent directions obtained from the other primary magnetization in the Widgiemooltha swarm (Table 2; Jimberlana sites (Table 1; Fig. 4c). We speculate that this direc- Fig.6c).ThesedataindicatethattheBooylgoodykecarriesapri- tionmayrepresentalocalremagnetizationevent.Finally,Sites19 mary magnetic remanence, whose direction is identical to other and22yieldedwell-definednortherlydirectionswithintermediate WidgiemoolthadykesandthusconfirmsthattheWidgiemooltha upwardinclinationpossiblyreflectingarecentfieldoverprint. grandmeanpoleisrepresentativeoftheYilgarncratonat2.41Ga. ThecombinedresultfromourstudyandthatofEvans(1968)mer- 4. Discussionandconclusions itsa perfect7 pointc lassifi cat ionon Van der Vo o’s(1 990)Q- scale ofpaleomagneticreliability. A moderate to high paleolatitude for Yilgarn is directly com- Six additional sites yielded site-mean directions significantly parab le to that of the Zimbabwe cra ton , for wh ich recent U–Pb differe ntfromthe Widg iemoolt hagrandm ean(Table 1).Themean datinga llo wsre con stru ctionat2.4 1Gaacc ord ingtot hepub lished direction sfrom th reedykes(Sites 17,18 ,and 20)are cl ose tothe Sebang a Poor t Dyke virtual ge oma gne tic pole ( Mu sha yandebvu Fraser dyk e me an (Pi sarevs ky et a l., 2 00 3) an d to th e dire cti ons etal.,19 95;see Appe ndixA) .Themoderat eunc ertaintiesinboth yielded byth eintru dingthindy ke atN arrogin (Ta ble 2;F ig.6b)thus po les permit ava rietyofal low able juxtaposit ionsbetween the two offering a poss ibilitytha tth esed yk esmayre presen ta ne astw ard craton s,whic h wepro po sewerej oinedtogether inasupe rcra ton Table2 SummaryofpaleomagneticdirectionsusedforthebakedcontacttestsshowninFigure6b,c.Nisthenumberofsamplesusedtocalculatethepaleomagneticdeclination(D) and inclin ati on (I); ˛95and k are the 95 % co nfid enc e circle and th e con centrat ion param eter fo r p aleo magnet ic direction s. Site ID N D (◦) I (◦) k ˛95(◦) TotalWidgiemoolthamean(Table1) 9 247.5 −66.6 117 4.8 Narrogininversebakedcontacttest Site1(>5 mfrom thein truding dyke) 11 248.1 −62.3 731 1.7 Site 1 (<5 cm from the intruding dyke ) 1 322.8 −72.5 – – 1 325.7 −73.2 – – Sampleswithintheintrudingdyke 1 326.3 −61.6 – – 1 331.1 −63.4 – – 1 355.7 −58.9 – – FraserDykemean(Pisarevskyetal.,2003) 23 332.6 −74.1 110 2.9 BooylgooHillsbakedcontacttest Widgiemo olth adyke 3 265.4 −60.0 44 18.7 Archeanlavasat 3mformthecontact 7 266.1 −64.8 54 8.3 Archean lavas at >9 m from th econtac t 15 333.8 −40.0 25 7.2 16 A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 Site 11 Site 14 a b 90 0 - 9 - N N 555 -45 -45 535 575 W E 0 W 600E 0 180 180 S S Site 15 Site 21 c d 90 -90 - N 500 N 535 W E -45 -45 585 0 565 0 180 W E 180 S S e Site 23 f Site 24 0 0 9 9 - - N N 475 525 -45 -45 0 585 0 W 565 E 180 W E 180 S S Fig.5. PaleomagneticresultsfromtheotherdykesusedtocalculatethegrandWidgiemoolthadirection(Table1).Typicalorthogonalvectorplotsofthermaldemagnetization (ver tic al/horizontalpr ojectio nssh own byop en/fil ledsy m bols).Nu mbe rsind icatetemperatu resteps( in◦C). Equ al-area plotsshow theac cepte d paleoma gneticdirections (open squares) and their mean ( solid ci rcle ) with the 9 5% confid ence circl e (˛95) fo r each site. “Zimgarn”(Fig.7).Weemphasizethatuntiladditionalpaleomag- thesweepingpatternofyoungercratonstabilizationfromwestto neticdataareobtainedfromthetwocratons,aprecisemodelfor eastacrossZimbabwe(JelsmaandDirks,2002).Also,sinistraloff- Zimgarnwillremainelusive;nonetheless,wetentativelychoose setonmajorterrane-boundingshearzonesintheeasternYilgarn apreferredjuxtapositionguidedbyseveraladditionalgeometric (Czarnotaetal.,2010)canberestoredtoaproto-Zimgarnconfigu- constraints.First,wealigntheSebangaPoortDykeapproximately ration(Fig.7b)thatnearlyalignstheproposedKurnalpimagmatic paralleltotheWidgiemoolthadykes.Suchparallelismisallowed arcatca.2700MawithanotherproposedarccrossingZimbabwe paleomagneticallybecausebothdykesuiteshaveremanencedecli- atthesametimeinterval(JelsmaandDirks,2002). nationsroughlyinlinewiththedykestrikes.However,evenafter PostulationofaZimgarnsupercratonpresentsanoveldilemma satisfyingthisconstraint,withintheuncertaintiesofthepoles,any for Neoarchean reconstructions: are dyke swarms or basement relative position of the two cratons is permitted (i.e., they could provincesmorediagnosticoforiginalconnectionsbetweenextant betranslatedaroundeachother).Second,werestrictsuchtrans- cratons?BleekerandErnst(2006)presentedthesimplegeomet- lationsothatthe2.57GaGreatDykeofZimbabweprojectsoffthe ric argument that as vertical features, dykes provide piercing marginofYilgarn,becauseithasnotyetbeenidentifiedinWestern pointswhosepositionsarenotsensitivetocurrentexposurelevel; Australia. This constraint restricts the cratons to be either north in addition, analogy with more completely preserved radiating orsouthofeachotherinpaleogeographiccoordinatesat2.41Ga dyke swarms (e.g., Central Atlantic Magmatic Province) shows (Fig.7a).Third,wechoosethenorthernoptionforZimbabwerel- thattherift-relateddykescanshownearest-neighborconnections ativetoYilgarn,becausethemorejuvenileNeoarcheancharacter evenamongsuture-boundedprovincesofdifferentage.Thisrea- oftheeasternYilgarn(Czarnotaetal.,2010)isabettermatchfor soning provides a rationale for juxtaposing cratons with distinct A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 17 0o 0o a b Narrogin inverse baked contact test intruding dyke < 5 cm from intruding dyke o o û Fraser dyke mean o 0 0 0 0 9 9 9 9 - - > 0.5 m from 0o intruding dyke Booylgoo Hills baked contact test Archean lava 180û 180û c > 9 meters from contact Dyke o o 0 0 9 3 meters 9 - from contact 180o Fig.6. (a)Stereonetofacceptedsite-meanpaleomagneticdirections(diamonds–thisstudy;triangles–Evans,1968).Thickandthincircles(alsoin(bandc))showthemean sbheotww es e tnh-es imtee dainr eCchtiR oMn adnirde cittsi o˛n 9 5focro Sniet ec a1l c (uthlaet ˛ed95 friso mno at lsl haoccwenp)t.e Sdq d uiarreecst isohnosw (T tah bel eC 1 h)R. M(b )d Ti rheec tiinovnesr sf oe r b tahkee dsa cmonptleasc tt ateksetn a ftr tohm e Nthaer rBoigninne q ruinagrirey D(S yikt ee 1w; i stehein t e5x ctm). Dfrioa mmo tnhde contactwiththeintrudingdyke.TrianglesshowtheChRMdirectionsyieldedbytheintrudingdyke.ThemeanFraserdykedirection(star)iscalculatedforSite1basedon thepaleomagneticpolefromPisarevskyetal.(2003).(c)TheBooylgoobakedcontacttest(seetext).SquareandtriangleshowthemeandirectionfromtheArcheanlavas sampledat3mand>9mfromthecontact,respectively. cratonizationhistories,suchasYilgarnandZimbabwe,whichwere cratonic stabilization (Dirks and Jelsma, 1998; Frei et al., 1999). previously grouped into separate supercratons (Bleeker, 2003). Second, Zimgarn and Vaalbara magmatic “barcodes” share no The distinctive 2.41-Ga age match between Widgiemooltha and knownmatchesthroughtheinterval2.6–2.0Gainterval(e.g.,Ernst Sebanga Poort dykes (Söderlund et al., 2010) may be diagnostic andBleeker,2010).Third,paleomagneticlatitudesaresomewhat oftheiroriginalconnectiondespitethemismatchofcratonization distinctbetweenthetwosupercratonsat2.69Ga(althoughuncer- agesforYilgarnandZimbabwe. taintiesarelarge;Table3). TheZimgarn-likeassemblagemighthavebeenjoinedtoSuperia Zimgarn probably fragmented into separately drifting fromNeoarcheancratonizationtoearlyPaleoproterozoicsepara- Zimbabwe and Yilgarn cratons sometime between 2.2 and tion,asproposedbySöderlundetal.(2010),butpreciselycoeval 2.0Ga (Figs. 7c and 8a). Two rift- to passive-margin successions paleomagnetic poles at 2.41Ga are not yet available from Supe- areevident:theMagondiSupergroupinZimbabwe,whichisolder rior or adjoining cratons to test that hypothesis. In the Scotland than 2.0Ga (McCourt et al., 2001) and may indicate rifting as sector of the North Atlantic craton, the older Scourie dykes are earlyas2.26Ga(Manyerukeetal.,2004);andtheYerridaBasinin nearly th esam eage (2418+ 7/−4Ma ;He aman andTar ney,19 89) north ern Yilg arn ,thatextend s from asea rlya sca .2.2–2.1 Gain a as the Widgiemooltha and Sebanga dykes, but Scourie paleo- sag phase (Windplain Group) to a rift stage (Mooloogool Group) magnetic remanences have been reset by Laxfordian (ca. 1.7Ga) thatisonlyconstrainedtobeolderthan1.84Ga(Rasmussenand metamorphism(Beckmann,1976;Piper,1979).Superialayatlow Fletcher, 2002; Pirajno et al., 2004). Despite the uncertainty of paleolatitudesat2.45Ga,aswelldocumentedbydatafromtheMat- associatingpreservedepicratonicstratawithanorthernYilgarnrift achewandykes(summarizedbyEvansandHalls,2010),butboth margin,thatmarginmusthavebeenestablishedpriortoaccretion YilgarnandZimbabwelackpaleomagneticresultsfromthatolder oftheNarracoota/Dalgaringaarc(perhapsalsothePilbaracraton) age. intheearlystagesofthe2.0–1.95GaGlenburghorogeny(Pirajno TheVaalbarasupercratonhasrecentlybeenquantifiedforthe etal.,2004;Johnsonetal.,2011).BoththeYerridaandMagondi 2.8–2.7Ga interval (de Kock et al., 2009). It is likely that Vaal- successionscontaincarbonate–evaporiteplatformscharacterized barawaspaleogeographicallyseparatedfromZimgarn,forseveral by the Lomagundi carbon-isotopic excursion; according to our reasons. First, basement ages and cover successions of Vaalbara model,theyarecorrelativesuccessionsalongacommoncratonic substantially differ from those of Zimgarn, including extensive margin (Fig. 7c), representing rifting of Zimgarn from other, carbonate platform development at 2.6Ga (reviewed by Knoll originallyconjoinedcratonsyettobeidentified(possiblySuperia, and Beukes, 2009), when Zimgarn was still undergoing final according to Söderlund et al., 2010). By 1.88Ga, Zimbabwe and 18 A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 a Sebanga VGP Widgie- m ooltha Zimbabwe 6 Z imbabwe Yilgarn Yilgarn 3 P aleo-Equator 2410Ma 2410 Ma b c Zimbabwe v v v v Zimbabwe v v Yilgarn v v 2690Ma v v 2100Ma Yilgarn paleolatitude and orientationunknown Fig.7. (a)Zimgarnsupercratonat2410Ma,achievedbyrotationofYilgarntoZimbabweaccordingtoEulerparameters(–47◦,077◦,+157◦),andpaleogeographicrestoration accordingtotheWidgiemoolthadykepaleomagneticpoledeterminedherein.Greenstonebeltsareshadedlightgray.GD=GreatDyke(paralleledbytheUmvimeelaand EastDykes),SPD=SebangaPoortDyke,BD=BinneringieDyke,JD=JimberlanaDyke.Youngermarginalbasinsandorogensarelabeledforreference,despiteanachronism. Presentnorthisindicatedforeachcraton.Intheright-sidepanel,polesareshownwiththeir95%uncertaintyregions.VGP=virtualgeomagneticpole.(b)Tectonicelements ofZimgarnat2690Ma.PaleolatitudesandorientationofZimbabweconformtotheReliancepole(Table3),withpolaritychosentominimizemotionbetween2690,2575,and 2410Ma.Yilgarnisdisplacedtorestorepost-2690-Masinistraloffsetonmajorterrane-boundingshearzones(simplifiedinthisillustrationbythegeneralizedshearcouple), thusbringingproposed2690-Mavolcanicarcs(JelsmaandDirks,2002;Czarnotaetal.,2010)nearertoalignment.(c)Proposedcontinuouspassivemarginextendingfrom theYerridamargin(Yilgarn)totheMagondimargin(Zimbabwe)atca.2100Ma.PaleolatitudeandorientationofZimgarnarenotconstrainedatthatage. Yilgarn were widely separated from each other, as indicated by is so widespread across Kaapvaal at 2.06Ga (Reischmann, 1995; the moderate versus low paleolatitudes, respectively implied by Cawthorn et al., 2006; Mapeo and Wingate, 2009; Prendergast, theMashonalandandFrerepoles(Table3). 2012), has not yet been recognized in Pilbara, suggesting that KaapvaalandPilbarasharesimilartectonostratigraphicrecords Vaalbara could have split prior to 2.06Ga. If so, then the 2.2Ga through much of the early Paleoproterozoic Era, such simi- maficeventsinKaapvaal(Cornelletal.,1996)andPilbara(Müller larity providing the original basis for the Vaalbara hypothesis et al., 2005) could document their initial separation. Unfortu- (Cheney, 1996). However, the Bushveld-related magmatism that nately,amongthefourcratonsdiscussedherein,onlyKaapvaalhas a b Vaalbara SPD Kalahari breakup craton Zimbabwe 50° Zimbabwe assembly SPD Kaapvaal Pilbara 40° Kaapvaal Yilgarn BD JD 30° WestAustralian craton 20° BDJD assembly Zimgarn Yilgarn breakup 10° 2050 Ma 1800 Ma Pilbara Fig.8. Kinematicsequenceofthetradingcratonicpartners.(a)VaalbaraandZimgarnintheearlystagesofbreakup,2050Ma.OnlyKaapvaalisconstrainedpaleomagnetically atthisage(Table3),butothercratonsarepositionedforconsistencyinthekinematicsequence.(b)KalahariandWestAustraliancratonsafterfinalassembly,1800Ma; paleolatitudesandorientationsofbothcratonsareconsistentwiththeca.1800MapoleslistedinTable3. A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 19 Table3 PaleomagneticpolesbearingonZimgarn,Vaalbara,andtheirtransitiontowardunitedKalahariandWestAustraliancratons. Craton/Paleomagnetic pole Age (Ma) (cid:3)p(◦N), p (◦E) (cid:3)r(◦N), r (◦E) A95(◦) 1234567 Q Test (cid:3)(cid:5)(◦) Reference Zimgarn: ZimbabweRef. Reliancemiddle-temp. 2690 44,128 44,128 17 10111015 f 21 YoshiharaandHamano(2004) GreatDykegrandmean 2575 24,057 24,057 9 11111005 C,c 37 SeeAppendixA SebangaPoortDyke(VGP) 2410 17,006 17,006 14 10011003 C 45 SeeAppendixA Widgiem oolth adike s 2410 −10, 159 06, 013 8 1111111 7 C ,c 50 This study Vaalbara: KaapvaalRef. Allanridge basaltcombined 2685 −70,346 −70,346 6 11111016 G 36 deKocketal.(2009) Rykoppies E-Wd ikesonly 2685 −63, 339 −63, 339 7 1111101 6 C 37 Lub nina et al. (2010) Woongarra /We eliWo lli 2450 −50, 220 −78, 235 5 1111100 5 g 11 Evans(2 00 7) (abstractonly) Ongeluklava 2220 −01, 101 −01, 101 5 1111101 6 G 17 Evans etal.(1 997) WaterbergUBS-I 2055 37,051 37,051 11 11111005 F,G 28 deKocketal.(2006) Bushveldcomplex 2050? 19,031 19,031 6 11111106 f 49 Lettsetal.(2009) Transitionalpoles: KaapvaalRef. WaterbergU BS-II ∼1950? −11,330 −11,330 10 01111105 c,g 33 deKocketal.(2006) BlackHills dikes ∼1900? 09, 352 09,3 52 5 0111110 5 C 42 Lub nina et al. (2010) Mashonaland+Mazowe 1880 07,338 18,016 7 11111106 C 48 Hansonetal.(2011) Waterbergsills&Soutp.lavas 1875 16,017 16,017 9 11111106 C 50 Hansonetal.(2004) Frereironf orm ati on(Yil garn) 1890 −45, 220 2 1110111 6 (f ) 10 William se ta l.(2004) Kalaharicraton: Soutpan sbergUBS-II ∼1800? 25,008 25,008 8 01111105 M 39 deKock(2007) WestAustraliancraton: Hame rsleyover printHP3 ∼1800? −35,212 −35,212 3 01101014 – 12 Lietal.(2000) +(cid:3)N1ro5(t◦e7N:◦ (cid:3))),,p rP((i◦◦lEbN)a):r, papa t(lo◦eEoK)ma: apapagvlneaeoatlmicina pgVonlaeeat rliboc atparoatel(edd iienn Kttoho ecthk reee frteearfele.n,re2cn0e c0fer9a ;fmr−aem5 9oe◦f ,itn2hd5ei2 cs◦aa,tm+e9dp3 lae◦b)d,o Zuvienm ietbasa.cbhw seecttoioKna. aRpovtaatailoinn ptahreatmraentesirtsi:o Ynialglaprenr itood Z(iHmabnasbownee tina lY.,il2g0a1rn1 ;(t−h6is9 s◦,tu0d5y1;◦ ,−−4379◦◦, )0.77◦, A95(◦): F isher’s (19 53) confi de nce cone radi us. 1–7andQ:reliabilitycriteriafromVanderVoo(1990).Thefourthcriterionofafieldstabilitytest,ifpositive,isabbreviatedasfollows:C=baked-contacttest,c=inverse baked-contacttest,F=soft-sedimentfoldtest,f=tectonicfoldtest,G=intraformationalconglomeratetest,g=conglomeratetest,M=magnetostratigraphytestofstratabound reversalsinsequence.Intheseabbreviations,uppercasesymbolsindicateprimarypaleomagneticremanence;lowercasesymbolsindicateancientremanencethatmightbe primarybutisnotyetdemonstratedassuch. (cid:3)(cid:5)(◦)=p aleo la titud ec omputedforre fer encelocalitiesintheLimpopobeltbetweenZimbabweandKaapvaal(−22◦N,029◦E)andintheCapricornorogenbetweenYilgarn andP il bara(−24◦N, 120◦E). reliablepaleomagneticpolesfromthe2.2to1.9Gainterval(Table3; AppendixA. Fig.8a). Followingthesebreakupevents,thefourcratons“tradedpart- DiscussionofsomepaleomagneticpoleslistedinTable3. ners”toreassembleintotheircurrentlypreservedaffinitieswithin GreatDykeandrelatedintrusions.TheGreatDyke(GD)wasone West Australian and Kalahari cratons (Fig. 8b). Yilgarn and Pil- ofthefirsttargetsforpaleomagneticstudyofPrecambrianrocks. baracollidedviasuturingintheCapricornorogen,mostlikelyat ThepioneeringworkofMcElhinnyandGough(1963)ontheGD abou t1.95Ga (Joh nsoneta l.,2 011 ).Zimbabw eandK aapva aljoin ed gene ratedame anpa leo pole(20.7◦ N,62 .6◦E,K =27.5, A =11 .7◦; 95 togetheracrosstheLimpopobelt,possiblyaslateasca.1.8Ga,by sevensites)corroboratedindependentlybyNairn(1963).Amore wayoflarge-scalesinistralshearingsuggestedbydiscordantpale- regional study by Jones et al. (1975) discovered partial remag- omagneticdatabetweenthetwocratonsat1.87Ga(Hansonetal., netizationonitssouthernandsoutheasternextensions.Southof 2011). the GD, the Msiningira Dyke generated a mean from four site- Ourhypothesizedtectonicmodel,albeitspeculativegiventhe gen erate dVG Psat20.4◦ N,52.1 ◦E,K=13.6 ,A =25 .8◦(Jo nes etal., 95 modestnumberofavailabledata,demonstratesthepossibilitythat 1975). Parallel to the GD, the East Dyke has also yielded robust supercratonshadrichtectonichistoriesofinteractionpriortotheir paleomagneticresults(McElhinnyandGough,1963;Jonesetal., amalgamationsintomorefamiliarcontinentalassociationsembed- 1975)withasimilar,assumed-primaryremanencedirection(mean dedwithinyoungersupercontinents.Decipheringthosehistories of three low-dispersion VGPs from sites 9, A, and X), yielding a will require continue defforttoobtain precisegeoc hrono logicand po le at 3 2.3◦N, 52.7◦E, K =182 .5, A =9.2 ◦. A more re cent pape r 95 reliablepaleomagneticdatafromthetectonicallystableinteriorsof byMushayandebvuetal.(1994)describedpaleomagneticresults exposed Archeanterrai ns.In tegra ted U–Pbbadde leyite datingan d fro m many new sit es in the Um vimeela D yke, ∼15km w est of paleomagneticstudyfromearliestProterozoicmaficdykesconsti- andparalleltotheGreatDykealongmostofitslength.Although tuteapowerfulapproachtoward“fulfillingWegener’slegacy”and Mushayandebvuetal.(1994)computedameanoflocalpaleomag- producingarobustglobalpaleogeographyfortheentirelatterhalf neticdirections(declinationandinclination),theca.550kmdyke ofEarthhistory(ErnstandBleeker,2010). lengthindicatesthatamoreaccurateapproachwouldbetoaverage theVG Pscalcula tedf ro meac hsite.Th isyieldsa positio n of (20.8◦N, Acknowledgments 61.8 ◦E; K =60.3, A95 =4.8 ◦), ca lcul ated from 1 6 well c on strained Umvimeelasites,includingthosefromearlierstudiesbutexclud- This research was funded by the David and Lucile Packard ingsitesUS(alsoexcludedbyitsauthorsduetolocationwithinthe Founda tion, and the N ational Scie nce Found ation . We th ank the def orme dn orthe rnendof the dy ke)and UM (e xcluded hereind ue Geological S urve y of Western Austral ia, the Unive rsity of W est- toits˛95 valueof2 3.3◦ ).T his mean isre gard edasaVG Pinit self, ernAustral ia,Mich ae lWingate ,MartinVa nKr anendonk, and Peter i.e ., n ot averagi ng out th e pal eosecu la r variatio n o f Earth ’s mag- Caw oodforlo gisticals upport.M ichaelW ing ate,DanfordM oor e,Ian neti cfie ld,because of itslo wdispersion ofdirecti on samong sites Rose,an dT aylorKili anprovid edassis tanceint hefield. Wetha nk separ atedb yasmuc ha s5 00k m.Resultsf ro mthePopo tekeGa bbro twoa nony mous review ersforth eirusefulc om me nts. arecitedb yW il sonet al .(19 87) andMu shaya nde bvuetal. (1994), 20 A.V.Smirnovetal./PrecambrianResearch224 (2013) 11–22 butarenotfullyreportedinthepublishedliterature.Wetherefore thegeochronologystudy,U–Pbbaddeleyiteupper-interceptages com put eth eme anpaleo ma gne ticpolefr omthefou rdy ke-mean ran ged from 2685. 5 ±9.3 Ma, to 2661.9 ±7. 7Ma (decay con stant resultsca lcul ateda bove(23.6◦N,5 7.4◦E ,K=1 07.6 ,A =8.9◦,N=4 uncerta inties includ ed in the qu oted er rors) . Th e youn gest age, 95 dykemeanscomprisingdatafrom219samplesdistributedamong however,derivesfromadykethatwasnotsampledbyLubninaetal. 30 sites), as the best representation of the time-averaged paleo- (2010)forpaleomagnetism;thereforetheolderrangeofages,atca. geography for Zimbabwe craton during emplacement of the GD 2685Ma,ispreferredforthepaleomagneticpole,whichincludes swarm.Jonesetal.(1975)foundthatregionalmetamorphicover- threedykesintheRykoppiesarea.Thebaked-contacttestforoneof printingfromtheLimpopobelt,tothesouthofthesitesdescribed thesedykesintograniticbasementappearspositive,thoughitisnot above,producedadifferentpaleomagneticmeandirection,which fullydescribedwithstatisticsofmeandirectionsfromthebakedor thusconstitutesaregionalinversebaked-contacttestfortheGD unbakedhostrocks.AfourthdykenearBarbertonhassimilarpale- pole,whichisthusolderthanca.2000Ma(Morgan,1985).Inaddi- omagnetic remanence to the type-Rykoppies dykes, and a strike tion, the remanence directions from sites in the Sebanga Poort similartothatofanESE-WNWdyke(BCD1-04)inthesamearea Dyke,asdescribedbelow,aredistinctfromthoseoftheGDswarm, thatwasdated—althoughwithlargeregressionerrors—byOlsson despite geographic proximity. This also argues against regional et al. (2010) of approximately Rykoppies age. Although Lubnina remagnetizationsubsequenttoemplacementoftheSebangaPoort etal.(2010)combinedtheirRykoppiesresultwiththatfromafifth Dykeatca.2410Ma(Söderlundetal.,2010).TheGDpoleisthus dykeinanisolatedexposuremorethan300kmtotheSouthofthe considered to be “key” for the Zimbabwe craton at ca. 2575Ma. typeRykoppiesarea,wesuggestthatsuchcorrelationismerelyten- Usingthe“Q”-scaleofreliability(VanderVoo,1990),theGDmean tative,especiallygiventhedyke’snearlyE–Wstrikethatishighly paleopoleonlyfailstosatisfythecriteriaofdualremanencepolarity oblique to the fanning array defined by dated Rykoppies dykes andsimilaritytoyoungerpaleopoles(1.2GaPremierkimberlites; (Klausenetal.,2010).Excludingthedual-polarityremanencedirec- DoppelhammerandHargraves,1994). tionfromthatsite,wecalculateameanoffoursingle-polarityVGPs SebangaPoor tDyk e.Thetype representativeoftheSebangaPoort at(– 63.0◦ N,33 8.7◦ E,K =162,A =7.2◦) . 95 Dyke (SPD) swarm has been studied paleomagnetically by both Ongeluklavas.Werejectthesinglesiteofoppositepolarityin Jones et al. (1975) and Mushayandebvu et al. (1995), and dated thedatasetofEvansetal.(1997)becauseithasaslightlydiscordant at 24 08 ±2 Ma, us ing U –Pb on baddele yite b y Söder lund et al. dire ctionan d anind et erm inate reversal st est. I talsode rivesfrom (2010). At more northerly sites in this intrusion, the SPD gave a anintrusionthatisonlyspeculativelycorrelatedasafeederdyke southeasterlyandupwardcharacteristicremanencedirectionthat forthelavas. is distinct from that of neighboring sites in the Great Dyke and FrereFormation.Althoughapositivefoldtestforthe‘A’com- EastDyke.Forthisreason,aswellastherecognizableoverprinting ponent is claimed by Williams et al. (2004) according to some by a ca. 2000-Ma Limpopo overprint of nearly opposite polarity statisticaltests,inspectionofthedatatablesandfiguresshowsvery inmoresoutherlysites(Mushayandebvuetal.,1995),wepropose similar levels of precision between the in situ and tilt-corrected thatthenortherlySPDsitescarryaprimarypaleomagneticrema- means.TheFrereFormationhasmorerecentlybeendatedtoca. nenc e.T hemeano ffou rVG Ps(17 .2 ◦N,6.1◦E ,K=42.5,A = 14.3◦) 1890M aby U–Pb oninterbe dde dvolc anicash units (Rasm us sen 95 is itself considered to be a VGP because it derives from a single etal.,2012). dyke.Jonesetal.(1975)alsoreporteddatafromtheCrystalSprings and B ubi D yk es, the fo rme r of whic h wa s dat ed at 2512 ±2Ma References bySöderlundetal.(2010).Unfortunately,thatdykewassampled forpaleomagnetisminasoutherlylocationthatappearstohave Bates, M.P., Jones, D.L., 1996. A palaeomagnetic investigation of the Mashona- lan ddo lerites, north -east Zim babwe.Geophy sicalJournal Inte rna tional126, been overprinted by the Limpopo orogeny at ca. 2000 Ma. Wilson 513– 524. et al. (1987) grouped the Crystal Springs, Bubi, and nearby NW- Beckmann,G.E.,1976.ApalaeomagneticstudyofpartoftheLewisiancomplex, str iki ngdyke sintoasw arm of“Seb angaDyk es”th atw eresupp osed north-w estS cotlan d. JournaloftheGe ologic alS ociet yo fLo ndon132, 45–59. to be fe eders t o th e Masho na land sills. Howev er, S öderl und et al. Blee9k9e–r,1 W34.., 20 03. The la te Arch ea n re cord: a pu zzle in ca . 35 piec es. L ithos 71, (2010)demonstratedthatthesedykesspanarangeinageofmore Bleeker,W.,Ernst,R.,2006.Short-livedmantlegeneratedmagmaticeventsandtheir than10 0millionyear s.Tw oso-c alled“ Seba ng a”dy kes we re stud- dyke sw arms: th ekey tounlockin gEarth ’spalaeog eographic record ba ckto ied p aleo magnet ically b y Ba tes and Jo nes (1996) . One, near t o but T2i.6m Ge aM. Ianr:k Herasn oskfiC, rEu.,s tMa leEr tvaonleunti,o Sn.., CR RämCöP,r eTs. ,s ,VTuaoyllloor, Ja. n(dEdFsr.a),n D ciysk,eL oSnw daornm,ps p–. spatiallydistinctfromtheSebangaPoortDyke,yieldedapaleomag- 3–26 . neticdirectionsimilartooverprintsfromtheLimpopobelt(shallow Buchan,K.L.,LeCheminant,A.N.,vanBreemen,O.,2009.PaleomagnetismandU–Pb south east-upw ardrem a nence)and anin con clusiveb aked -contact geoc hron ologyoftheLa cde Gras diabased yk eswar m,SlaveProvince ,Ca nada: implicationsfo rr elat ived rif tofS laveand Supe riorpro vince sintheP aleopro- nteusmt e(sriotue sSMDa1s)h. oTnhael aontdhesril, lslo,sctartiekde swNiEth(inno ttehteh iosudticsrtoinpc trieogniofnro mof Buchtearno,zKo.Lic.,. LCeaCn haedmi ainn aJonutr,nA a.Nl o.,fv Eaanr Bthre Secmi eennc,e Os .4,260, 31621.M –3a7ll9e.ydiab as edy kesofthe other so-c alled “Sebang a” dy kes) an d y ields a re manence d irec- Slav ecra ton,Canadian Shiel d:U –Pbage,p ale omagn etism, andimp licatio ns for contin entalr econstruc tionsin thee arly Paleoproterozoic. Can adianJourna lof (tdioynk eofs iotpepSoDsi2tei nptoruladriintyg rseillaltsiivtee tMo St1h5a)t. oAf tfuhlel ysipllo wsithiivceh bita kceudts- CawEtharotrhn S,Rci.Gen.,c Eeasl e4s9,,H 4.V35.,–W45al4r.a ve n,F. ,Uken ,R.,Watkeys,M.K. ,2006.The Bushve ld contac ttes tatt hatlocality isi ndic atedby ac ross- overofm agnetic Compl ex.In :John son,M .R.,Anhae us ser,C .R., Thomas,R .J.(E ds.),T heG eologyof SouthAfr ica. Geologic alSoc ietyofSouth Afr ica/Coun cilf orGeo scien ce,Joha n- directions at a reasonable distance of conductive heat loss from nesbu rg/Pret oria,pp.26 1–281. thedykeintoitscountryrock(BatesandJones,1996),indicating Cheney,E.S.,1996.S equ encestratigraphyandplatetectonicsignificanceofthe no remag neti zat ion of th e sil l since the time o f dyke emplace- Tran svaa lsucce ssionofso uthernAfrica andi tsequ ivalentin WesternAu str alia. me nt (positive inver se bake d-co ntact test for th e s ill) an d primary CornPerlelc,aDm.Hb.,ri Sacnh üRtetsee,aSr.cS h., 7E 9gl, i3n–g2to4n., B.L.,1 996. Th eOngeluk ba salticand esitefor- remanenceinthedyke(positivebaked-contacttest).Theantipodal mat ionin Griqual and West,Sout hAf rica:s ubm arinealt eration ina2222 Ma natureofth et wo direct ionsindic ateslikelypen econt emp oraneous Protero zoi csea.Precam brian Resea rch79, 101–123. emplac em en t age s between the two intrus ions, separated in time CondGieeo, lKo.gCi.c, KRreö cnoerrd , ,Av.,o 2l.040480. W.Gh eeonlo Dgiidca Pll aStoec iTeetcytoonficAsm Beergicina?( ESvpiedceianlceP afrpoemr, tphpe. byageomagneticfieldreversalbutnegligibleplatemotion. 281–294 ). RykoppiesDykes.Lubninaetal.(2010)studiedseveralareasof Czarnota,K.,Champion,D.C.,Goscombe,B.,Blewett,R.S.,Cassidy,K.F.,Henson,P.A., pre-Transvaa l (pre-2 .65Ga) ma fic dykes in the e astern K aapva al Groen ew ald,P.B.,20 10.G eodynamics of theeaste rnY ilgarnCra ton. Precamb rian Research183 ,175 –202 . pcriaetso”nD. yInk ethseiisr tehaestsearmnmeoasst tshtuatdyd aatreeda, bayn EO–lsWso snweatrmal. o(f2 “0R1y0k)o.pIn- de Knoectki,s Mm.Oo.f , Ethvea nlos,w De.Ar.tDw., oDournlcaonndf, oHr.mC.i,t Bye-buokuesn,d Ne.dJ., sGeuqtuzemnecre,s J.o, 2f0t0h6e. WPaaleteormbeagrg-

Description:
b Department of Physics, Michigan Technological University, Houghton, from Zimbabwe, allow for a direct connection between the Zimbabwe and Yilgarn . dykes (Pisarevsky et al., 2003; Wingate and Pidgeon, 2005) (Table 2; Klausen, M.B., Söderlund, U., Olsson, J.R., Ernst, R.E., Armoogam, M.,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.