Mon.Not.R.Astron.Soc.000,1–5(2007) Printed2February2008 (MNLaTEXstylefilev2.2) Tracking Down a Critical Halo Mass for Killing Galaxies through the Growth of the Red-Sequence ⋆ David G. Gilbank and Michael L. Balogh† 8 AstrophysicsandGravitationGroup,DepartmentofPhysics&Astronomy,UniversityofWaterloo,Waterloo,Ontario,CanadaN2L3G1 0 0 2 2February2008 n a J ABSTRACT 4 Red-sequence galaxies record the history of terminated star-formation in the Universe and 1 canthusprovideimportantcluestothemechanismsresponsibleforthistermination.Wecon- structcompositesamplesof publishedclusterandfield galaxyphotometryinordertostudy ] h the build-up of galaxies on the red-sequence, as parameterised by the dwarf-to-giant ratio p (DGR). We find thatthe DGR in clusters is higherthan thatof the field at all redshifts,im- - plyingthatthefaintendofthered-sequencewasestablishedfirstinclusters.Wefindthatthe o DGRevolveswithredshiftforbothsamples,consistentwiththe“down-sizing”pictureofstar r t formation. We examine the predictions of semi-analytic models for the DGR and find that s neitherthemagnitudeofitsenvironmentaldependencenoritsevolutioniscorrectlypredicted a [ in the models.Red-sequenceDGRs are consistentlytoo highin the models,the mostlikely explanation being that the strangulation mechanism used to remove hot gas from satellite 1 galaxiesis too efficient. Finally we presenta simple toy model includinga thresholdmass, v belowwhichgalaxiesarenotstrangled,andshowthatthiscanpredicttheobservedevolution 0 ofthefieldDGR. 3 9 Keywords: galaxies:clusters:general–galaxies:evolution–galaxies:general 1 . 1 0 8 1 INTRODUCTION galaxieswhichareredaretoohighincurrentsemi-analyticmodels. 0 Withtherecentabundanceofsurveystargetingred-sequencegalax- : Red-sequencegalaxiesareanimportantpopulationforunderstand- v iesboth in thecluster and thefield, the timeisnow ripe todraw i inggalaxyformationandevolutioningeneral.Theyrepresentsys- togethertheseworkstobuildapictureofthebuild-upofgalaxies X temswithverylittleornoon-goingstar-formationandthusarea onthered-sequenceasafunctionofenvironment andtoconfront r uniquetracerofthepastactivityofgalaxies.DeLuciaetal.(2004) a foundadeficitoffaintred-sequence galaxiesinclustersatz∼0.8 thesewithpredictionsofgalaxyformationmodels. relative to local clusters. This would suggest that star formation endedearlierforthemostluminous/massivegalaxiesathighred- shift and would support the “down-sizing” picture first proposed 2 OBSERVATIONALDATA byCowieetal.(1996),inwhichtheterminationofstar-formation progressesfromthemostmassivetotheleastmassivegalaxiesas We aim to construct the most uniform sample possible using theuniverseages.Similarresultsforclustersspanning arangeof colour-selected red-sequence galaxy data from the literature. To redshifts have been found by Tanakaetal. (2005), deLuciaetal. thisend,wetransformallourdataontothesamesystem.Asimpler (2007),Stottetal.(2007),Gilbanketal.(2007) andothers. Simi- quantity than the luminosity function (LF), which has been em- larly, surveys of field galaxies have attempted to characterise the ployed in thepast, isthe red-sequence dwarf-to-giant ratio, here- evolution of the red-sequence luminosity function. The relative after DGR. This is essentially just a LF reduced to two bins and contributions of passive evolution/termination of star-formation avoidsthecomplicationsofhavingtofitananalyticfunction(usu- andnumberdensityevolution/drymergingarestillopenquestions allywithdegeneracies between thefittedparameters) tothedata. (e.g.,Belletal.2004,Cimattietal.2006). Following DeLuciaetal. (2004), we define luminous, or giant, Red-sequence galaxies can thus place constraints on galaxy galaxiesasthosebrighterthanMV = −20.0andfaint,ordwarfs, formation prescriptions in theoretical models. Recent observa- asthosewith−20 < MV 6 −18.2(k-andevolution-corrected). tions in the local universe using SDSS data (Baldryetal. 2006; Where data are presented on a different photometric system, we Weinmannetal. 2006) have found that the fractions of satellite use Bruzual&Charlot (2003) stellar population models to calcu- late the transformation using a z = 3, Solar metallicity, single f stellar population with a Chabrier IMF. Where DGRs have been ⋆ Email:[email protected] given in the original paper using these limits (as is the case for † Email:[email protected] muchoftheclusterdata)weusethesenumbersandtheirassociated 2 Gilbank& Balogh. errorsdirectly.Forotherworks,wetaketheM⋆andαvaluesfrom errors. As found by e.g., Gilbanketal. (2007) and Hansenetal. theSchechterfunctionfit,transformtoMVandintegratethetrans- (2007),thefaintendslopeoftheclusterRSLFdependsoncluster formedLFtocalculateDGR.Weestimateconservativeerrorsusing richness/mass(atleastforz<∼0.5),inthesensethatlowmassclus- aMonteCarlomethodtakingtheerrorsinthefittedparametersand ters/richgroups areexpectedtohavesystematicallylowerDGRs. allowingfortheircovariancebyemployingtheerrorellipsegiven Inthis compilation, wehave attempted toutilisethe richest/most intheoriginal reference. In addition wepropagate a0.05 magni- massivesystemsateachredshiftfortheclustersample,tomaximise tudeuncertainty(discussedbelow)inthemagnitudelimitstoallow thedifferencebetweentheclustersandthefield.Insomuchas,on foranyresidualmismatchintheconvertedphotometricsystem. average,themostmassivesystemsatoneredshift evolveintothe For the field samples, we carefully examine all of the mostmassivesystemsatlowerredshift,suchaselectionisappro- Schechterfunctionfitsineachredshiftbinandonlyusemeasure- priateforevolutionarystudies.Ifweconsiderthethreedatapoints ments where the data fully cover the dwarf and giant range. For nearesttoz∼0.5,theseweredrawnfromverydifferentlyselected example,theBrownetal.(2007,NOAODWFS)datadoagoodjob samples:astatisticalsampleof54red-sequenceselectedclusters, of constrainingtheshape oftheLFoverthemagnitude rangewe havingrichnessescorrespondingtoamasslimitof>∼6×1013M⊙ require for z60.5 but at higher redshift are insufficiently deep to (Gilbanketal.2007);asampleof11clustersselectedviatheirun- constrainthenumberofdwarfs.Conversely,theZuccaetal.(2006, resolvedclusterlightfromshallowopticalimaging,havingvarious VVDS)data aresufficiently deep to measure thefaint end of the masses(deLuciaetal.2007);andasampleoftenofthemostX- LFathigherredshift,butatz60.6aresubjecttoconsiderableun- rayluminousclusters(Stottetal.2007).Thegoodagreementofthe certaintyaroundM⋆,presumablyduetotherelativelylimitedarea pointsfromtheseensembleclusterssuggeststhattheDGRisrela- ofthesurvey.Theremainderofourfieldsampleusespointsfrom tivelyinsensitivetomassorselectionmethodoverthismassrange. Baldryetal. (2004, SDSS), Belletal. (2003, SDSS), Belletal. Furthermore, it suggests that the evolution of the cluster DGR is (2004,COMBO-17),Driveretal.(2006,MillenniumGalaxyCata- likelynotduetoasystematicallychangingmasslimitwithredshift. logue)andScarlataetal.(2007,COSMOS).Fig.1showsDGRasa Additionally,thevirialradiusofaclusterdependsonitsmass functionofredshiftforthesesurveys.Wheretheredshiftrangesof roughly as r ∝ M1/3 (e.g., Carlbergetal. 1997), so using a vir differentsurveysoverlap,wefindgoodagreementinourmeasured fixedphysicalradiuswithinwhichtomeasureapropertyofaclus- DGRs(e.g.,VVDSandCOSMOSatz=0.7). terprobesadifferentfractionofthecluster’sextentdependingon Clusters show considerable scatter in their individual DGRs themassofthecluster.TheeffectofthisonDGRissmallascan (e.g., deLuciaetal. 2007) and so we only focus on works mea- beseenfromfig.5ofdeLuciaetal.(2007).Bylimitingthemass suring DGR from ensemble averages of clusters in each redshift range of the clusters to the most massive systems, we have min- bin (deLuciaetal. 2007, Stottetal. 2007, Gilbanketal. 2007, imisedthe possible impact of such aneffect, since thedifference Hansenetal.2007,Barkhouseetal.2007). between a fixed physical radius and a fixed fraction of the virial Tworesultsareimmediatelyapparentfromtheobservational radiusonlydependsonthemasstothe1/3power. data in Fig. 1: the DGR of field red-sequence galaxies is always lower than that of cluster galaxies at the same redshift, and the 2.2 Conflictingresults DGR of both samplesevolves withredshift. Weparameterise the evolution of the DGR with a fit of the form (1 + z)β finding Andreon(2007)recentlyargued,basedonasmallnumberofindi- β = −1.8±0.5 and β = −3.4±1.1 for the cluster and field vidualclusters,thattheclusterDGRdoesnotappeartoevolvewith samplesrespectively. redshift. Weindicate hisdatapoints onFig. 1,omitting thethree z>1clusters for which thedata do not bracket the 4000A˚ break. Alloftheindividualclustersareinreasonableagreementwiththe 2.1 Sourcesofsystematicerror ensemble averages, and with our best fit line, except for one at The first systematic to be addressed is that of transforming pub- z=0.89.Furthermore,hissampleonlycontainstwoz<0.5clus- lishedphotometryondifferentsystemstoauniformone.Mostof ters,oneofwhichisComa,forwhichtheDGRisingoodagree- the published cluster studies give rest-frame V magnitudes (e.g., ment with the deLuciaetal. (2007) value. Given the significant deLuciaetal.2007),andmostfieldstudiesgiverest-frameB(e.g., cluster-to-clusterscatter,theensemblesamplescompiledherepro- Belletal.2004).Thisisnotexclusivelythecase,however,andwe videabetterreflectionoftheglobalaverageinclusters,andallow find good agreement where different studies measured in differ- ustomeasuresignificantevolutionwithredshift. ent passbands inthesameenvironments atsimilarredshiftsover- Tanakaetal. (2005) and deLuciaetal. (2007) both con- lap(e.g.,Hansenetal.2007;Stottetal.2007).Thuswebelievethe structed composite samples of local SDSS clusters from the transformationisnot alargesourceof error.Wehavepropagated C4 cluster catalogue (Milleretal. 2005). However, Tanakaetal. agenerous0.05magnitudeerrorthroughouranalysistoallowfor (2005) found a low DGR, comparable withtheir two higher red- this.Thisalsoallowsforthedominant transformationuncertainty shiftclusterz=0.55andz=0.83)andthereforeconcludedthatthe which is that of the systematic calibration in the individual sur- clusterDGRmightnotevolvewithredshift.Bothoftheirhigher-z veys(e.g.,Hansenetal.2007quotetheircalibrationuncertaintyas individualclusterslieonthebest-fitrelationofFig.1,sothedis- 0.03mag).Infact,comparingHansenetal.(2007)andStottetal. crepancy arises from the z∼0 point. deLuciaetal. (2007) found (2007),themeasuredDGRsagreewithintheerrorsevenifthisad- a higher DGR (for their σ > 600 km s−1 sample) more consis- ditionaluncertaintyisneglected.So,webelievethatourerrorbars tentwiththeresultsofHansenetal.(2007)fortherichestclusters; areample. Stottetal. (2007) for the most X-ray luminous clusters; and also Theimportantothersystematicforfieldstudiesiscosmicvari- fortheregionsofhighestdensityintheSDSS(Baldryetal.2006) ance. The authors of thevarious works included here discuss the (opensquare). Wesuggest thatthereasonfor thelow DGRmea- size of this effect for their surveys, and this is not likely to be a suredbyTanakaetal.(2005) maybethat theirsamplewas dom- major contribution to the error bars in Fig. 1. Cluster studies re- inated by lower mass systems. We note that their measurement quire more care in the sample selection to minimise systematic is just consistent with the lowest DGR point at z∼0.1 in Fig. 1 Red-SequenceDwarf-to-GiantRatios 3 A A A A A A T A AAAT A T A 1.0 A R G D 1012M O Clusters (ensemble) • Field 1012.5MO Millennium clusters • Millennium field 1013M O 0.1 • 0.0 0.2 0.4 0.6 0.8 1.0 z Figure1.TheevolutionoftheDwarf-to-Giant ratio,DGR,forvarioussamplestakenfromtheliterature andconverted toauniformsystem,asdescribed inthetext.Filledcirclesandopendiamondsdenotecluster(Barkhouseetal.2007,deLuciaetal.2007,Gilbanketal.2007,Hansenetal.2007,Stottetal. 2007)andfield(Belletal.2003,Baldryetal.2004,Belletal.2004,Driveretal.2006,Zuccaetal.2006,Brownetal.2007,Scarlataetal.2007)samples respectivelyfromobservationaldata,andlinesshow(1+z)βfits.Horizontalerrorbarsindicatetheredshiftrangecoveredbythedata.Nakederrorbarsare measurementsforindividualclustersfromAndreon(2007)andTanakaetal.(2005),labelled‘A’and‘T’respectively. Onlyensembleclustersareincluded inthefit.ThefilledsquareshowsthehighestdensityregionsintheSDSSfromBaldryetal.(2006)whichagreeswellwiththeclusterdata.Asterisksand trianglesshowpredictionsfromtheBoweretal.(2006)semi-analyticmodel,connectedwithlinestoguidetheeye.Thedot-dashedlinesshowthepredicted evolutionofthefieldDGRifisolatedgalaxieshaveaconstantDGR=0andtheobservedtrendisduetotheincreasingabundanceofgroups(havingthesame DGRasclusters)abovethelabelledthresholdmass,M withcosmictime,asdescribedin§4. th whichcomesfromBarkhouseetal.(2007)andcomprisedasetof at agiven redshift. Themodel predicts approximately the correct 57Abellclustersoverarangeofrichnesses. DGRforclustersinthelocaluniverse,butthisDGRvaluethenre- mainsconstantouttoz∼1.Theseresultsareinsensitivetotheexact halomasschosentodefinetheclusters,ascanbeinferredfromthe similaritybetweentheclusterandfieldpointsateachredshift.i.e., 3 PREDICTIONSFROMTHEGALFORM theDGRisnotastrongfunctionofhalomassinthemodel. SEMI-ANALYTICMODELS WedrawsamplesfromtheMillenniumsimulationusingthesemi- analyticprescriptionofBoweretal.(2006),hereafterB06.Galax- iesareselectedbasedontheirhalomass(>1014 M⊙ forclusters) 4 DISCUSSION&CONCLUSIONS and their observed colours and magnitudes in this prescription. Red-sequence galaxies were selected by fittinga Gaussian to the Previousworkshavesuggestedthatthereappearstobelittleorno redpeakofthe(B−V)colourdistributionandlocatingthelocal evolution in the bright end of the RSLF, both in clusters and the minimumonthebluesidetoisolatetheextentofthered-sequence. field (e.g., Gilbanketal. 2007; Scarlataetal. 2007). If this is the Inordertocapturetheuncertaintiesinsamplingthesimulationin case, the evolution of the DGR can be attributed to the build-up thesamewayastheobservations,wevarytheslopeandnormali- offaintgalaxiesonthered-sequencewithincreasingcosmictime. sationofthisred-sequencelimit(by15%and3%respectively)as Thisimpliesthatstar-formationisterminatedingiantgalaxiesfirst well asthemagnitude limitsused todefineDGR (0.1 mags each and later in dwarf galaxies, inagreement with the“down-sizing” limit)andMonte-Carlotheresults.Thepointsforclustersandfield pictureofstar-formation.Furthermore,thelowervalueofDGRin inthreeredshiftbins(0.0,0.5,1.0)areshownasasterisksandtri- the field compared with clusters implies that star-formation was anglesrespectivelyinFig.1.Statisticalerrorsarenegligible,sothe completedinclustergalaxiesbeforefieldgalaxies. errorbarsreflectthissystematicvariation. PerformingasimilaranalysisontheB06semi-analyticmodel When confronted with the observational data, the semi- predictsanon-evolvingDGRouttoz=1,withlittledifferencebe- analytic model fails to reproduce either the redshift evolution of tweenclustersandthefield.Sucharesultsuggeststhatfaintgalax- the DGR or the relative difference between clusters and the field iesmoveontothered-sequence tooefficientlyinthemodel,with 4 Gilbank& Balogh. this build-up of the faint end of the red-sequence already having oftheclusterDGRwehavehadtoincludeinourmodelmayreflect beencompletedbytheearliestepochconsideredhere(z∼1). theeffectofastrangulationtimescale. Disentangling the effects of a timescale and threshold mass Themethodsavailableinthemodelsforthequenchingofstar- for thequenching of satellitegalaxies isacomplex observational formationinclude:feedbackfromsupernovaeorAGNandhothalo problem. The colour difference between central and satellitered- gas removal. This latter process only applies to galaxies which sequence galaxies may be a useful test of models. For example, are satellites (i.e. not the most massive, central object) in their in the B06 prescription, it is predicted that satellitered-sequence dark matter halo. The relative importance of the various quench- galaxiesaresignificantlyredderthancentralred-sequencegalaxies. ing mechanisms are summarised in fig. 4 of B06. At the bright vandenBoschetal.(2007)recentlymeasuredtheaveragecolours end of the red-sequence, most of the galaxies are the central ob- of satelliteand central galaxies in the local universe from an ap- jectintheirdarkmatterhaloandthusfeedbackfromAGNorsu- proximatelyhalomass-selectedsampleandfoundthattheformer pernovawindsarerequiredtoturnoffstar-formation.Atthefaint wereindeedonaverageredder. Theyalsoshowedthatmeasuring end(inthedwarfregime),red-sequencegalaxiesarepredominantly halomassesfromstatisticalsamplesfor∼1012M⊙systemsisnot satellites.Wehaveverifiedthatthisisstillthecaseforallthered- possible with high completeness and thus, if there is a threshold shifts we consider here. In most galaxy formation models (e.g., massfor strangulationaround thislimit,suchstudieswillrequire B06, DeLuciaetal. 2006), when any galaxy enters a more mas- detailedtargetedobservationsofgroups(e.g.,Wilmanetal.2005). sivedarkmatterhaloandbecomesasatellite,itinstantlyhasallof Analternativeapproachtogetatthetimescaleforstrangulationis itshotgasremovedinaprocessgenerallyreferredtoas‘strangula- thestudyofthestarformationhistoriesofindividualgalaxiesun- tion‘(Larsonetal.1980;Baloghetal.2000).Thus,onceithascon- dergoingtransformation(e.g.,Moranetal.2007).Itispossiblethat sumedthecoldgasalreadypresentinitsdisk,itsfuelcannolonger theobservationsinFig.1,coupledwithnewstrangulationprescrip- bereplenishedbyhotgasfromthehaloanditsstar-formationister- tionsinthesemi-analyticmodelsmayimproveconstraintsonthe minated.Thisprescriptionmaybetooefficient.Recentsimulations likelyvaluesofthethresholdmassandtimescaleforstrangulation. byMcCarthyetal.(2007)foundthattheremovaloftheinitialhot galactichalogasdoesnotoccurinstantaneously,butlikelytakes∼ 1Gyrtoremovethebulkofit,andthatasmuchas30%canstill remainafter10Gyr.Inaddition,themodelsofDekel&Birnboim ACKNOWLEDGMENTS (2006)predicttheexistenceofacriticalhalomass(∼1012M⊙)for haloes,belowwhichstrangulationmaynotoccur.Thus,weexpect Thisresearch wassupported byanEarlyResearcher Awardfrom additional parametersinvolving strangulation efficiency/timescale theprovinceofOntario,andbyanNSERCDiscoverygrant. and/or a threshold halo mass for strangulation to be important in tuningthemodelstoreproducetheobservationspresentedinFig.1. To illustratethe effect of a threshold halo mass for strangu- REFERENCES lation, we use the following toy model to predict the evolution of the field DGR. Field surveys do not just probe isolated (i.e. Andreon,S.2007,MNRASsubmitted,astro-ph/710.2737 non-group) galaxies.Indeed,theyaredominatedbygroups,espe- Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., ciallytoward lower redshift ascosmic structuregrows. Thusit is Nichol, R. C., Bamford, S. P., & Budavari, T. 2006, MNRAS, group-scalephysicswhichisimportantindeterminingtheproper- 373,469 tiesofgalaxiesinfieldsurveys.Weassumefurtherthatgalaxiesin Baldry,I.K.,Glazebrook,K.,Brinkmann,J.,Ivezic´,Zˇ.,Lupton, haloesbelowsome(group-size)thresholdmass,M ,havenored- R.H.,Nichol,R.C.,&Szalay,A.S.2004,ApJ,600,681 th sequence satellites, i.e. DGR = 0. We assume that haloes above Balogh,M.L.,Navarro,J.F.,&Morris,S.L.2000,ApJ,540,113 M haveaDGRgivenbythatoftheobservedclusterpopulation Barkhouse,W.,Yee,H.K.C.,&Lopez-Cruz,O.2007,submitted th at the same redshift (from the best-fit cluster line in Fig. 1). We Bell,E.F.,McIntosh,D.H.,Katz,N.,&Weinberg,M.D.2003, consider Mth = (1012,1012.5,1013) M⊙ and measure the frac- ApJS,149,289 tional contribution of haloes in the appropriate mass range from Bell, E. F., Wolf, C., Meisenheimer, K., Rix, H.-W., Borch, A., theMillenniumSimulation.Weoverplottheexpectedevolutionof Dye, S., Kleinheinrich, M., Wisotzki, L., & McIntosh, D. H. thefieldDGRforthedifferentthresholdmassesinFig.1.Itcanbe 2004,ApJ,608,752 seenthatboththeMth = 1012 and1012.5 M⊙ modelsgivegood Bower,R.G.,Benson,A.J.,Malbon,R.,Helly,J.C.,Frenk,C.S., agreementwiththeobservedfieldDGR.Inordertoreproducethe Baugh,C.M.,Cole,S.,&Lacey,C.G.2006,MNRAS,370,645 observations so well, our model requires both an increasing con- Brown,M.J.I.,Dey,A.,Jannuzi,B.T.,Brand,K.,Benson,A.J., tributiontothefieldbygroups due togrowth ofstructureand an Brodwin,M.,Croton,D.J.,&Eisenhardt,P.R.2007,ApJ,654, intrinsic evolution of the DGR in haloes above M . If either of 858 th thesefactorsisremoved(e.g.ifaconstantgroupfractionatallred- Bruzual,G.&Charlot,S.2003,MNRAS,344,1000 shifts or a constant cluster DGR at all redshifts is assumed) then Carlberg,R.G.,etal.1997,ApJ,485,L13 thepredictedevolutionofthefieldDGRistooflatwithrespectto Cimatti,A.,Daddi,E.,&Renzini,A.2006,A&A,453,L29 the observations. If groups do not exhibit exactly the same DGR Cowie,L.L.,Songaila,A.,Hu,E.M.,&Cohen,J.G.1996,AJ, as clusters, but instead are intermediate between clusters and the 112,839 field(thisiscurrentlyanopenquestion),thenthiswouldeffectively DeLucia,etal.2004,ApJ,610,L77 shiftourpredictedlinesdownandalowerM wouldthenrepro- DeLucia,G.,Springel,V.,White,S.D.M.,Croton,D.,&Kauff- th ducetheobservations.Ofcourse,ascenarioinwhichthetimescale mann,G.2006,MNRAS,366,499 fortheremovalofhotgasismuchlongermayfittheobservations deLucia,eta;.2007,MNRAS,374,809 equallywellandthisorsomealternativecombinationofthreshold Dekel,A.&Birnboim,Y.2006,MNRAS,368,2 mass/timescalecannotberuledout.Indeed,theobservedevolution Driver,S.P.,etal.2006,MNRAS,368,414 Red-SequenceDwarf-to-GiantRatios 5 Gilbank,D.G.,Yee,H.K.C.,Ellingson,E.,Gladders,M.D.,Loh, Y..,Barrientos,L.F.,&Barkhouse,W.A.2007,ApJaccepted, astro-ph/710.2351 Hansen,S.M.,Sheldon,E.S.,Wechsler,R.H.,&Koester,B.P. 2007,ApJsubmitted,astro-ph/710.3780 Larson,R.B.,Tinsley,B.M.,&Caldwell,C.N.1980,ApJ,237, 692 McCarthy,I.G.,Frenk,C.S.,Font,A.S.,Lacey,C.G.,Bower, R.G.,Mitchell,N.L.,Balogh,M.L.,&Theuns,T.2007,MN- RASaccepted,astro-ph/710.0964 Miller,C.J.,etal.2005,AJ,130,968 Moran, S. M., Loh, B. L., Ellis, R. S., Treu, T., Bundy, K., & MacArthur,L.A.2007,ApJ,665,1067 Scarlata,C.,etal.2007,ApJS,172,494 Stott,J.P.,Smail,I.,Edge,A.C.,Ebeling,H.,Smith,G.P.,Kneib, J..,&Pimbblet,K.A.2007,ApJ,661,95 Tanaka,M.,Kodama,T.,Arimoto,N.,Okamura,S.,Umetsu,K., Shimasaku, K.,Tanaka, I.,&Yamada, T. 2005, MNRAS,362, 268 vandenBosch,F.C.,Aquino,D.,Yang,X.,Mo,H.J.,Pasquali, A.,McIntosh,D.H.,Weinmann,S.M.,&Kang,X.2007,ArXiv e-prints,710 Weinmann,S.M.,vandenBosch,F.C.,Yang,X.,Mo,H.J.,Cro- ton,D.J.,&Moore,B.2006,MNRAS,372,1161 Wilman, D. J., Balogh, M. L., Bower, R. G., Mulchaey, J. S., Oemler, A., Carlberg, R. G., Morris, S. L., & Whitaker, R. J. 2005,MNRAS,358,71 Zucca,E.,etal.2006,A&A,455,879