ebook img

Track-Based Alignment of the Inner Detector of ATLAS PDF

5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Track-Based Alignment of the Inner Detector of ATLAS

Track-Based Alignment of the Inner Detector of ATLAS AnaOvcharovaaonbehalfoftheATLASCollaboration LawrenceBerkeleyNationalLaboratory(LBNL),USA Abstract. ATLASisamultipurposeexperimentattheLHC.ThetrackingsystemofATLAS,embeddedina 2Tsolenoidalfield,iscomposedofdifferenttechnologies:siliconplanarsensors(pixelandmicrostrips)anddrift- 2 tubes.TheprocedureusedtoaligntheATLAStrackerandtheresultsofthealignmentusingdatarecordedduring 1 2010and2011usingLHCproton-protoncollisionrunsat7TeVarepresented.Validationofthealignmentis 0 2 performedbymeasuringthealignmentobservablesaswellasmanyotherphysicsobservables,notablyresonance invariantmassesinawidemassrange(KS, J/Ψ andZ).TheE/pdistributionsforelectronsfromZ → eeand n W → eν are also extensively used. The results indicate that, after the alignment with real data, the attained a precisionofthealignmentconstantsisapproximately5µm.Thesystematicerrorsduetothealignmentthatmay J affectphysicsresultsareunderstudy. 4 2 1 Introduction imizedisgivenby: ] t e (cid:88) d χ2 = r(τ,a)TV−1r(τ,a), TheATLASInnerDetector(ID),showninFig.1,iscom- s- posedofthePixel,theSemiconductorTracker(SCT)and Trks n theTransitionRadiationTracker(TRT).TheIDisdesigned whereV isthehitcovariancematrixandr(τ,a)isthevec- .i toachievethemomentum andvertexresolutionsrequired toroftrackresiduals,whichareafunctionofboththetrack s c forhigh-precisionmeasurements[1].Toensurethatthere- parameters, τ, and the alignment constants, a. ID align- i sulting requirements on track reconstruction are met, the ment implements two flavors of χ2-based algorithms: the s y position and orientation of each active detector element Global χ2 and the Local χ2. In the Global χ2 approach, h mustbeknownwithsufficientaccuracysuchthattrackpa- a simultaneous minimization with respect to all track pa- p rameterresolutionisdegradedbylessthan20%ofthede- rameters and alignment constants is done. This approach [ sign values. The following is an outline of the procedure, ensures that full correlation between alignable objects in- resultsandsomeofthechallengesofthealignmentofthe tersected by a common track is retained. In the Local χ2 1 v ID. minimization, module correlations are discarded, render- 1 ing alignment less computationally intensive. However, it 6 isnecessarytoperformmultipleiterationstoreachconver- 9 gence. The alignment uses isolated high-p tracks to re- 2 Alignment strategy T 4 ducetheimpactofpatternrecognitionambiguitiesandof . 1 multiple scattering. Both collision and cosmic ray tracks 0 The alignment is derived by minimizing track residuals are used to maximize long-distance correlations between 2 which are defined as the difference between the expected detectorelements.IDalignmentisstagedatseverallevels 1 andthemeasuredhitpositions.Theχ2functiontobemin- of granularity, corresponding to the hierarchy of its me- v: chanicalstructure.Table1showsthesubstructuresandal- i a e-mail:[email protected] gorithmsusedatdifferentlevelsintheAutumn2010align- X ment.ThenumbersintheDoFcolumnrepresenttheprod- r uctofthenumberofsubstructuresandthealloweddegrees a of freedom for each. For example, at Level 2, the Pixel halfshellswereallowedallthreerotationsandthreetrans- lations, while the endcaps only two translations and one rotation [2]. In the latest alignment, discussed in Sec. 4, the Global χ2 was used at all levels but the wire-by-wire alignment of the TRT (approximately 700,000 DoF). The latterusedtheLocalχ2approachduetocomputationalre- strictions. 3 Alignment performance TheAutumn2010alignmentwasthefirsttouse7TeVcol- Fig.1.TheATLASInnerDetector. lision data in addition to pixel module wafer deformation EPJWebofConferences Table1.OverviewofthealignmentlevelsfortheAutumn2010 ×103 m alignmentasdescribedin[2]. µ Autumn 2010 Alignment ATLAS Preliminary Level Structures #DoF Method ks / 12 100 FSFWWprHiHnMMg //2220..331550== A11l21ig48n µµmmment TsR =T 7b aTrereVl PIX:whole n trac 80 Track pT > 15 GeV Level1 SCT:barrel+2endcaps 41 Globalχ2 s o 60 TRT:barrel+2endcaps Hit 40 PIX:halfshells+disks Level2 SCT:layers+disks 852 Globalχ2 20 TRT:modules+wheels PIX:modules -1 -0.5 0 0.5 1 Level3 SCT:modules 722104 Localχ2 Residual [mm] TRT:wires Fig. 4. Improvement in resolution in the direction transverse to theTRTwiresaftertheAutumn2010alignment. ×103 m µ Autumn 2010 Alignment ATLAS Preliminary Hits on tracks / 2 345000 FSFWWprHHinMMg //2220..331550== A91l 6iµg µmnmment PTsrixa =ec kl7 b pTaTer r>Ve l15 GeV [GeV]M +µµ 999468 ZSS pu→rmin mµgµ e2 rM0 21C011 a1l iaglnigmnemnetnt DaAtaT L∫2A 0L1S d1t,P =rs e0 l=i.m7 70i n Tfaber V1y 20 92 10 90 88 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 1.05 < η < 2.5 Local x residual [mm] 86 3 2 1 0 1 2 3 Fig.2.Improvementinresolutioninthedirectionofhighestgran- Positive muon φ ularityofthePixelmodulesaftertheAutumn2010alignment. Fig. 5. An indication of a weak mode misalignment present in theendcapAregion(black)andtheeffectofusingconstrained m ×103 alignmenttoremoveit(red). µ 90 Autumn 2010 Alignment ATLAS Preliminary n tracks / 4 678000 SFFWWprHHinMMg //2220..331550== A22l58ig µµnmmment TSsrCa =Tc k 7b paTTrer >Ve l15 GeV helicalformoftracksattheexpenseofbiasingthetrackpa- o rameters.Theyarecommonlyreferredtoas“weakmodes” Hits 50 andcanbeidentifiedbyexaminingthekinematicsofreso- 40 nancedecayssuchasZ → µµ, J/Ψ → µµand K → ππ. S 30 The bias introduced in the track momenta by such mis- 20 alignments violates the symmetries inherent in these de- 10 caysandtherebyresultsinunexpecteddependencesofthe reconstructedinvariantmassonvariouskinematicobserv- -0.2 -0.1 0 0.1 0.2 ables.AstrikingexampleisthedependenceoftheZinvari- Local x residual [mm] antmassontheφtrackparameterofthepositivemuon,see Fig.3.Improvementinresolutioninthedirectionofhighestgran- Fig. 5. The approach to correct such misalignments is to ularityoftheSCTmodulesaftertheAutumn2010alignment. constrain some parameters during the alignment, thereby, minimizingthepossibilityofretainingbiases.Someexam- ples of useful constraints are: momentum measurements inputfromtheproductionsurvey.Itwasalsothefirstwire- bytheMuonSpectrometer,vertexpositionconstraintand by-wireTRTalignment.Theimpactoftheseimprovements thecalorimeterderivedconstraint.Thecalorimeterderived isevidentinthereducedwidthoftheresidualdistributions constraint,orE/pconstraint,usesthefactthatthecalorime- in the barrel sections of all sub-detectors, the Pixel, SCT terresponseforpositronsandelectronsshouldbethesame. and TRT, shown in Figs. 2, 3 and 4, respectively. Simi- Differencesbetweentheratioofenergytomomentummea- lar trends are observed in the endcap regions, where the surement between electrons and positrons in Z → ee or large track statistics used in this alignment were particu- W → eν decays can then be attributed to mismeasure- larlyadvantageous.[2] ment of the momentum in the tracker and used to obtain corrections to the reconstructed track momenta in bins of azimuthalangleandpseudorapidity.Duringalignment,the 4 Weak modes and constrained alignment trackmomentaarethenconstrainedtothecorrectedvalue. TheE/pcorrectionhasresultedinthelatestsignificantim- There exist systematic detector deformations that cannot provementinthealignmentasevidencedbytheincreasein bedetectedusingtheoutlinedapproachastheyretainthe theZinvariantmassresolutionshowninFig.6. HadronColliderPhysicsSymposium,2011,PosterSession References V Ge 3000 Spring 2011 alignment ATLAS Preliminary ates / 1 2500 ZS u→m mµµe rM 2C011 alignment Data∫ 2 L0 1d1t ,= s0 .=7 07 fTbe 1V 1.CAETRLNALSarCgoelHlaabdorroatnioCno,lTlihdeerA,JTILNASSTE3xSp0er8i0m0e3n(t2a0t08th)e. did 2000 ID tracks 2. ATLAS Collaboration, Alignment of the ATLAS In- n Z ca 1500 11..0055 << ηηµµ+ << 22..55 nperortoDnetceocltloisrioTnrsacaktin√gsS=ys7temTeVw,itAhT2L0A1S0-CLHOCNFp-r2o0to1n1-- 1000 012,https://cdsweb.cern.ch/record/1334582(2011). 500 0 60 70 80 90 100 110 120 Mµ+µ [GeV] Fig.6.ImprovementintheZmassresolutionduetousingcon- strained alignment to remove weak mode misalignment in the endcapAregion LLeevveell 11 aalliiggnnmmeenntt m] X translation [µ 105 PSSSTTTRRRiCCCxTTTeTTT l BEEBEEannannrddrddrr eeCCCCllaaaapppp ACAC AApTril L- MAaSy 20p1r1eliminary Global 0 -5 -10 Cfaoiolulirneg Pocwuter Tesctohpnic. Coooflfing Traomropid. 179711079721579801479931879931980141980151380161480401080481180611480631680661480711082281482371282421482481682511682511982721682741782781783001383021183045 Run number Fig.7.Changesinthealignmentconstantsonarun-by-runbasis. Notetheimpactofincidentssuchasmagnetrampingandcooling interruptions. 5 Run-by-run alignment monitoring Significantchangesofthedetectoralignmentoccurdueto externalfactors.Someoftheidentifiedcausesincludetem- perature changes and magnet ramping. The time-ordered globalshiftsofselectedsubstructuresinthedirectiontrans- verse to the beam pipe are shown in Fig. 7. The largest changesobservedarelessthan10µm.Tomonitorandbet- ter understand this behavior, the Level 1 alignment con- stantsarenowrecomputedonarun-by-runbasis. Additionally, as resonances have been shown to be a powerful probe in uncovering weak-mode misalignments and,thereby,momentumbiases,plotsofthereconstructed mass as a function of various kinematic variables and the massitself(asinFigs.5and6)arealsoproducedautomat- ically for every run as a part of the ATLAS data quality monitoring. 6 Conclusion and outlook The current implementation of the alignment procedure hasbeenshowntobeeffectiveandwellsuitedforthechal- lengesposedbythealignmentoftheATLASID.Thenext stepistoevaluatethesystematicscausedbyresidualmis- alignments. It has already been seen that resonances are a powerful handle for tackling this problem and ongoing studieswillsoonprovidequantitativemeasuresofanyre- mainingbiases.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.