MNRAS464,4227–4246(2017) doi:10.1093/mnras/stw2635 AdvanceAccesspublication2016October13 (cid:2) Tracing the origin of the AGN fuelling reservoir in MCG–6-30-15 S. I. Raimundo,1† R. I. Davies,2 R. E. A Canning,3,4 A. Celotti,5,6,7 A. C. Fabian8 and P. Gandhi9 1DarkCosmologyCentre,NielsBohrInstitute,UniversityofCopenhagen,DK-2100CopenhagenØ,Denmark 2Max-Planck-Institutfu¨rextraterrestrischePhysik,Postfach1312,D-85741Garching,Germany 3KavliInstituteforParticleAstrophysicsandCosmology(KIPAC),StanfordUniversity,452LomitaMall,Stanford,CA94305-4085,USA 4DepartmentofPhysics,StanfordUniversity,452LomitaMall,Stanford,CA94305-4085,USA 5SISSA–ScuolaInternazionaleSuperiorediStudiAvanzati,ViaBonomea265,I-34135Trieste,Italy 6INFN–SezionediTrieste,viaValerio2,I-34127Trieste,Italy 7INAF–OsservatorioAstronomicodiBrera,viaBianchi46,I-23807Merate,Italy 8InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UK 9DepartmentofPhysicsandAstronomy,UniversityofSouthampton,Highfield,SouthamptonSO171BJ,UK D o w n Accepted2016October11.Received2016October10;inoriginalform2016August3 lo a d e d fro ABSTRACT m h The active galaxy MCG–6-30-15 has a 400 pc diameter stellar kinematically distinct core, ttp counter-rotatingwithrespecttothemainbodyofthegalaxy.Ourprevioushighspatialresolu- ://m n tion(0.1arcsec)H-bandobservationsofthisgalaxymappedthestellarkinematicsand[FeII] ras 1.64 µm gas dynamics though mainly restricted to the spatial region of the counter-rotating .ox fo core.Inthiswork,weprobethestellarkinematicsonalargerfieldofviewanddeterminethe rd jo ionizedandmoleculargasdynamicstostudytheformationofthecounter-rotatingcoreandthe u rn implicationsforactivegalacticnucleus(AGN)fuelling.Wepresentintegralfieldspectroscopy als .o observations with SINFONI in the H and K bands in the central 1.2 kpc and with VIMOS rg HR-blue in the central 4 kpc of the galaxy. Ionized gas outflows of vout ∼ 100kms−1 are at U/ tracedbythe[CaVIII]2.32µmcoronallineandextendouttoatleastaradiusof r∼140pc. niv Themoleculargas,tracedbytheH22.12µmemission,isalsocounter-rotatingwithrespectto ers themainbodyofthegalaxy,indicatingthattheformationofthedistinctcorewasassociated ity o with inflow of external gas into the centre of MCG–6-30-15. The molecular gas traces the f C a availablegasreservoirforAGNfuellingandisdetectedascloseasr∼50–100pc.External m b gasaccretionisabletosignificantlyreplenishthefuellingreservoirsuggestingthattheevent rid g e whichformedthecounter-rotatingcorewasalsothemainmechanismprovidinggasforAGN o n fuelling. Ja n u a Keywords: galaxies:active–galaxies:individual:MCG–6-30-15–galaxies:kinematicsand ry 1 dynamics–galaxies:nuclei–galaxies:Seyfert. 2, 2 0 1 7 accretioniscurrentlyoneofthemostimportantquestionsinAGN 1 INTRODUCTION andgalaxyevolutionstudies. Theobservedcorrelationsbetweenpropertiesofsupermassiveblack TounderstandthephysicsofAGNfuelling,itisessentialtostudy holesandtheirhostgalaxies(Magorrianetal.1998;Ferrarese& notonlytheblackholeaccretionphysicsbutalsotheenvironment Merritt2000;Gebhardtetal.2000;Marconi&Hunt2003;Ha¨ring ofthehostgalaxies,inparticulartheircentralregions.Duetothe & Rix2004) suggest a co-evolution in which the active galactic higherspatialresolutionachievable,severalsignaturesoffuelling nucleus (AGN) phase may play a central role in regulating gas havebeenobservedinthelow-redshiftUniverse,providingthebest accretionandstarformationinthegalaxy.Understandinghowthe laboratorytostudyAGNfuelling.ThemoleculargassurveyNUclei host galaxy fuels the AGN and how the AGN in turn affect gas ofGAlaxies(NUGA)forexamplehasfoundawidevarietyoffu- ellingtracersontheformofdynamicalperturbationsintherange 0.1–1 kpc in lower luminosity AGN (Seyferts and low-ionization nuclear emission-line regions, LINERs; e.g. Garc´ıa-Burillo et al. (cid:2)BasedonobservationscollectedattheEuropeanOrganisationforAstro- 2003;Garc´ıa-Burillo&Combes2012).Theionizedgasinthecen- nomicalResearchintheSouthernhemisphere,Chile,duringprogramme tral kiloparsec also seems to be more disturbed in Seyfert host 093.B-0734andonobservationsmadewithESOTelescopesattheLaSilla ParanalObservatoryunderprogramme073.B-0617. galaxies than in inactive galaxies (Dumas et al. 2007). For even †E-mail:[email protected] smallerphysicalscales,Hicksetal.(2013)andDaviesetal.(2014) (cid:3)C 2016TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 4228 S.I.Raimundoetal. comparedfivepairsofmatchedactiveandinactivegalaxiesatares- ingisolatedgalaxies(Katkov,Sil’chenko&Afanasiev2014)which olutionof∼50pcusinginfraredintegralfieldspectroscopy.They is consistent with an external origin for the counter-rotating gas foundthatatthescalesof<200–500pc,wherethedynamicaltime (Bertola, Buson & Zeilinger 1992). Pizzella et al. (2004) argue approachestheAGNactivitytime-scale,therearesystematicdif- that the formation of counter-rotating gas discs is favoured in S0 ferencesbetweenpropertiesofstarsandgasforactiveandinactive galaxiesduetotheirlowgasfraction.Inspiralgalaxieswhichare galaxies,associatedwiththeblackholefuellingprocess.Theactive more gas rich, the acquired external gas can be swept away due galaxiesintheirsampleshowanuclearstructureinstarsandgas, to the interactions with the pre-existing gas which would make composedofarelativelyyoungstellarpopulationandofasignif- thecounter-rotatingdiscobservableonlywhenitsmassishigher icantgasreservoir,whichcouldcontributetofueltheblackhole. than the one of the pre-existing gas. The difference between the This nuclear structure is not observed in the quiescent galaxies. fractionofS0galaxieswithobservedcounter-rotatinggasandob- Thepresenceofcircumnucleardiscsofmoleculargasseemstobe servedcounter-rotatingstarsmaybeduetotheinherentdifficulty requiredfornuclearactivity,withgasinflowsandoutflowsbeing ofdetectingsmallnumbersofcounter-rotatingstars(e.g.Bureau& detectedonlyinactivegalaxies.Gasinflow/outflowstructuresare Chung2006). commonlydetectedintheinnerregionsofAGNhostgalaxies(e.g. The presence of large kinematic misalignments of counter- Storchi-Bergmann et al. 2007 ; Davies et al.2009, 2014 ; Mu¨ller- rotatinggas,inparticularinS0galaxies,hasbeentakenasstrong Sa´nchez et al. 2011), and usually most of the inflow and outflow evidenceoftheexternaloriginofthegas(e.g.Bertolaetal.1992; massisintheformofmoleculargas.Athigherspatialresolution,the Davis&Bureau2016).Ifthegasoriginatesfromstellarmasslossin D o AtacamaLargeMillimeter/submillimeterArrayhasalsoprovided thegalacticdisc,thenstarsandgasareexpectedtocorotate.Inter- w n anewviewofthesmallspatialscalesaroundtheAGN,withtracers nalphysicalprocessessuchasweakbarsorspiralscancausemild lo a d ofmoleculargasinflowandoutflowbeingdetectedinmostofthe kinematicmisalignmentsbetweengasandstars(uptoanangular e d AGNobserved(e.g.Combesetal.2013,2014;Garc´ıa-Burilloetal. difference (cid:4) PA (cid:2) 55 deg; Dumas et al. 2007). However, large fro 2014;Smajic´etal.2014).Consideringtherecentworkinthisfield, kinematicmisalignmentsorcounter-rotatinggas((cid:4)PA=180deg) m h ithasbecomeclearthatthecentralhundredsofparsecsofgalaxies wouldrequireasignificantamountofenergytochangetheangular ttp areessentialtounderstandtheAGNfuellingprocess. momentumofthecorotatinggas,whichisunlikelytobeprovided ://m TheS0galaxyMCG–6-30-15isanarrow-lineSeyfert1galaxy, byinternalprocesses,especiallyforlargegasmasses(e.g.Dumas nra with an AGN luminosity of LX(2–10keV)∼4×1042 erg s−1 etal.2007;Daviesetal.2014).Simulationsofinternaldynamical s.ox (Vasudevan et al. 2009; Winter et al. 2009) and a total bolomet- perturbations, for example of nuclear spirals generated by asym- fo ricluminosityof∼3×1043ergs−1(Liraetal.2015).Thisgalaxy metriesinthegalacticpotential(Maciejewski2004)orgasflowin rdjo u hasbeenparticularlytargetedbyX-raystudies,sinceitwasthefirst barredspiralgalaxies(Regan,Sheth&Vogel1999),donotseemto rn sourceforwhichthebroadenedFeKαemissionlinewasobserved, generatecounter-rotatinggasstructures. als .o showingthatthislinewasbeingemittedfromtheveryinnerregions ThemaintheoriesfortheformationofKDCsinvolvetheinflow rg of the accretion disc (Tanaka et al. 1995). Our study of the inner ofmaterial(stars/gas)withadistinctangularmomentumintothe a/ 500 pc of MCG–6-30-15 in Raimundo et al. (2013) was the first centreofthegalaxy.However,thereismorethanonemechanism t U n integralfieldspectroscopystudyonthisgalaxy.Duetotheunprece- thancandrivethismaterialinwardstoproducetheKDCsandcan ive dentedspatialresolutionreached(0.1arcsec∼16pcintheHband), result in two different KDC populations. In optical wavelengths, rsity wediscoveredapreviouslyunknownstellarkinematicallydistinct McDermidetal.(2006)foundthatthereisonepopulationofKDCs o core (KDC) in the centre of MCG–6-30-15 counter-rotating with whicharetypicallylarge(diameter≥1kpc)witholdstellarpopu- f C a respecttothemainbodyofthegalaxy.Wefirstestimatedasizeof lations(age≥10Gyr)foundinslow-rotatingearly-typegalaxies. mb R∼125pcforthedistinctcoreduetothelimitedfieldofviewofour Inthiscase,thestellarpopulationwithintheKDCandinthemain rid g initialobservations;wewillshowinthisworkthatthedistinctcore body of the galaxy show little or no difference. This can be ex- e o hasasizeofR∼200pc.Theageofthestarsinthecounter-rotating plained if the distinct core was formed a long time ago and the n J a corewasestimatedtobe<100Myr(Raimundoetal.2013),which differencesinoriginhavealreadybeendilutedoriftheKDCisa nu a isinlinewiththefindingsofBonattoetal.(2000),whodetermined superposition of stellar orbits and caused by the geometry of the ry that>35percentofthestellarpopulationistheresultofburstsof galaxy.Ithasbeensuggested(e.g.Hernquist&Barnes1991)and 12 , 2 starformationdistributedinagebetween2.5and75Myr. shownfromsimulations(Boisetal.2011;Tsatsietal.2015)that 0 1 Stellar KDCs such as the one in MCG–6-30-15 are character- theselargeKDCscanbeformedbyhighmassratiomergers(1:1 7 izedbythepresenceofastellarcorewithkinematicsandangular or 2:1) between disc galaxies with prograde or retrograde orbits. momentumdistinctfromthemainbodyofthegalaxy.KDCscan Anon-mergerscenariohasalsobeensuggestedfromsimulations, be defined by an abrupt change of more than 30 deg in the local wherecounter-rotatingstellardiscsareformedearlyinthehistory kinematic orientation of the galaxy (e.g. McDermid et al. 2006; ofthegalaxyfromtheinfallofgaswithmisalignedspinthrough Krajnovic´ et al.2011), with counter-rotating cores having angles large-scalefilaments(Algorryetal.2014).Thesecondpopulationof of180deg.TheATLAS3D projectfoundthatKDCsarepresentin KDCsfoundbyMcDermidetal.(2006)consistsofsmallerstruc- a small fraction (∼ 7 per cent) of early-type galaxies (Krajnovic´ tures (diameter < 1 kpc), found mostly in fast rotators, typically et al. 2011), and seem to be more common in slow rotators than closetocounter-rotatinginrelationtotheouterpartsofthegalaxy in fast rotators (Emsellem et al. 2011). In spiral galaxies, stellar andshowingyoungerstellarpopulations.TheseKDCswerelikely counter-rotating discs are present in < 8 per cent of the galaxies formedbyrecentaccretionofgaswhichthenformedstarsinsitu. andarerarerthancounter-rotatinggasdiscs(<12percent;Pizzella ThefactthatthedistinctcorehasananglePA ∼180◦inrelation kin etal.2004).InS0galaxiessuchasMCG–6-30-15,itisestimated totheouterpartsofthegalaxymayindicatethatinfactdissipation that <10 per cent host counter-rotating stars (Kuijken, Fisher & processesareimportantintheformationofthesesmallerKDCs. Merrifield1996)and∼25–40percenthostacounter-rotatinggas MCG–6-30-15isoneofthegalaxieswithhigherAGNluminosity disc(Kuijken et al. 1996; Kannappan &Fabricant 2001; Pizzella amongthegalaxieswithknownstellardistinctcores,andtherefore etal.2004;Bureau&Chung2006),or∼70percentifconsider- weareinterestedinunderstandingtheimpactwhichtheformation MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4229 oftheKDCmayhaveonAGNfuelling.Daviesetal.(2014)studied Thepointspreadfunction(PSF)isdeterminedfromtheintensity asampleofS0galaxiesandfoundthattheoneswithAGNtypically ofthebroadcomponentoftheatomichydrogenBrackettrecombi- have gas detected on large scales (> 1 kpc), while the inactive nationlines.Thebroad-lineregionwheretheselinesareproduced ones do not. They also find a fraction of sources with counter- isunresolvedinourobservationsandthereforethelinewidthofthe rotatinggasconsistentwithwhatisexpectedforexternalaccretion. broad hydrogen emission provides a method to estimate the PSF. TheseobservationssuggestthatinS0galaxies,AGNaretypically SeveraltransitionsofthisBrackettseriesareobservedbothintheH fuelledbyexternalaccretion.Theyhavealsoshownthatintwoof andKbands.IntheHband,therearefivestronglineswhichweuse thegalaxiestheyobserved(IC5267andNGC3368),theexternal tomeasurethePSFandalsolaterinthissectiontoremovetheAGN counter-rotatinggascanreachtheinnertensofparsecsofthegalaxy. contributionfromthespectra.IntheKband,weusethestrongest In our previous work (Raimundo et al. 2013), we studied the lineofthe(7–4)λ=2.166µmtransition(Brγ).Wefittheselines stellar kinematics out to r < 250 pc in MCG–6-30-15. Since our withadoubleGaussian(onenarrowGaussiantomodelthecoreand datawerelimitedtotheHbandandtoa3arcsec× 3arcsecfield onebroaderGaussiantomodeltheextendedemission),toempiri- ofview,weonlyhadonetracerfortheionizedgasontheformof callymodelthePSF.Thefullwidthhalf-maximumofeachofthe [FeII]1.64µmemission,mainlyrestrictedtothespatialregionof GaussiansisfortheHband(FWHM=3.6pixels∼0.4arcsec)and thecounter-rotatingcore.Inthepresentwork,ourgoalisforemost (FWHM=6.7pixels∼0.8arcsec)andfortheKband(FWHM= to probe the dynamics of the molecular gas, for which there are 3.9pixels∼0.5arcsec)and(FWHM=8.6pixels∼1arcsec).Asa no previous observations. In this work, we will investigate if the secondcheck,wealsousetheunresolvednon-stellarcontinuumto D o formationofthecounter-rotatingcoreisassociatedwithinflowof determinethePSF.TheFWHMoftheGaussiansforthenon-stellar w n gasintothecentralregionsofthegalaxyandifthisgascancreate continuumis,asexpected,similartowhatwasdeterminedwiththe lo a orreplenishthemoleculargasreservoirforAGNfuelling.Wewill broadBrackettemission:Hband(FWHM=3.3pixels∼0.4arc- de d firstdescribetheSINFONIandVIMOSobservationsandthedata sec) and (FWHM = 5.4 pixels ∼0.7 arcsec); K band (FWHM = fro reductionandanalysis.Wewillthenpresenttheresultsonthestellar, 3.9pixels∼0.5arcsec)and(FWHM=8.7pixels∼1.1arcsec). m h ionizedandmoleculargaspropertiesinthegalaxy.Usingthestellar Theinstrumentalbroadeningiscalculatedbyselectingandmea- ttp andgasdynamics,wesetnewconstraintsontheblackholemass. suringthespectralbroadeningofanunblendedskyemissionline. ://m Finally,wewilldiscuss,basedontheseobservations,theoriginof Thebroadeningvariesasafunctionofwavelengthandspatialpo- nra thestellarcounter-rotatingcoreanditseffectonAGNfuelling. sitioninourdatacube;therefore,weselectskylinesclosetothe s.o 70Wkmesa−d1oMptpcth−e1, (cid:5)stamnd=ar0d.2c7oasmndol(cid:5)og(cid:6)ic=al0p.7a3ra.mTehteersscaoleffHor0ou=r twhaisveclaelncgutlhatoiofninftoerressktyfolrinoeusrcmloesaesutoretmheenwtsa.vFeolernthgethKobfatnhde,[wSeiVdIo] xfordjo measurements is approximately 0.158 kpc arcsec−1 at a redshift 1.963 µm, Brγ 2.166 µm, 1–0 S(1) H2 2.1218 µm and [Ca VIII] urn z=0.0077(Fisheretal.1995valuequotedattheNASA/IPACEx- 2.3211 µm emission lines for every spaxel in the sky emission als .o tragalacticDatabase).ThedistancetoMCG–6-30-15usedinthis cube.Theinstrumentalbroadeningatthewavelengthofeachline rg paperis33.2Mpc(Wright2006). isdeterminedbydoingafield-of-viewspatialaverageofthebest- a/ fittingGaussianσ.Weobtainvalueswhichvarybetweenσ ∼42 t U inst n and48kms−1 intheKband.Thespectralresolutionatthewave- ive 2 DATA ANALYSIS lengthofthe1–0S(1)H2emissionisHalfwidthathalfmaximum rsity (HWHM)∼3.3Å.FortheHband,weobtainvaluesofσ ∼44– o 2.1 SINFONIdatareduction 54kms−1whichatthewavelengthofthe[FeII]1.644µminesmt ission f Ca TheSINFONI/VLTH-banddatawithR∼3000weretakenonthe correspondstoHWHM∼3.2ÅandaresolutionofR∼2500. mb nightof2014June2withapixelscaleof0.25arcsec×0.125arcsec, Asmentionedabove,thebroadhydrogenrecombinationlinesof rid g samplingafieldofviewof8arcsec×8arcsec.Eachexposurewas the Brackett series are present in both the H and K bands. In the e o n of 300 s, in an object (O) and sky (S) sequence of OSO. The Hband,severaloftheselinesoverlapwithstellarabsorptionlines J a total on-source exposure time was 55 min. The SINFONI/VLT of interest and therefore it was necessary to remove them before nu a K-band data with R∼4000 were taken on four nights (2014 June determining the stellar kinematics. The procedure was similar to ry 4, 12 and July 2, 3) with a pixel scale 0.25 arcsec×0.125 arcsec theonedescribedinRaimundoetal.(2013),wherethebroademis- 12 and also sampling a field of view of 8 arcsec× 8 arcsec. Each sionlineswerefittedsimultaneously,whilefixingtheirrest-frame , 20 1 exposure was of 300 s, in an object (O) and sky (S) sequence of wavelengths to a common redshift and relative intensities to the 7 OSO.Thetotalon-sourceexposuretimewas2h30min.Thedata ones predicted theoretically using as an approximation Hummer reductionwasdonewiththeEuropeanSouthernObservatory(ESO) & Storey (1987) for case B recombination. In the K band, only pipeline for SINFONI ESOREX version 3.10.2 and complemented twobroademissionlineswereobservedandtheydidnotoverlap with independent IDL routines. The two main extra routines used withthewavelengthrangeoftheCOstellarabsorptionlinesorthe weretheimplementationoftheskyemissionsubtractiondescribed emissionlines.FortheKband,itwasnotnecessarytoremovethe in Davies et al. (2007) and a bad pixel removal routine for 3D AGNbroadhydrogenemissionpriortotheanalysisofthestellar datacubes(Daviesetal.2010)–a3DversionofLAcosmic(van properties. Dokkum2001).Fortheanalysis,thecubeswereshiftedconsidering Thefluxcalibrationisdoneusingthe2MASSmeasuredfluxes theoffsetsrecordedintheirheaders,combinedandre-sampledtoa in the H band and Ks band for a 5 arcsec diameter aperture. To spatialscaleof0.125arcsec×0.125arcsec.Theobservationswere determinethe2MASSfluxes,weusethezero-magnitudecalibra- taken with a rotation angle of 25 deg to obtain a better spatial tionsinCohen,Wheaton&Megeath(2003).Wethencomparethe sampling along the major axis of the galaxy. In the plots in this 2MASS fluxes with the median number counts of the integrated paper,thex-axiswillbeparalleltothemajoraxisofthegalaxy.The spectrainourdatacubes,forthesameaperture.Inourdatacubes, compassineachoftheplotsindicatestherelativepositioninthe themediannumbercountsaredeterminedwithinthewavebandof sky.Amoredetaileddescriptionofthetypicaldatareductionsteps [1.504–1.709] µm for the H band and [1.989–2.316] µm for the fortheHbandcanbefoundinRaimundoetal.(2013). Kband.Thesewavebandscorrespondtothewavelengthsatwhich MNRAS464,4227–4246(2017) 4230 S.I.Raimundoetal. thetransmissioninthe2MASSfiltersishigherthan0.2.Byusing component and a more spatially extended narrow component is differentaperturesin2MASS,wedeterminethatourcalibrationis also detected. Stellar absorption lines albeit with a lower signal- consistentto∼20percent. to-noise ratio (S/N) are also observed. The broad Hβ component originatesfromtheAGNandisthereforeunresolvedinourdata. WeuseitsfluxdistributiontoobtainanestimateforthePSFand 2.2 VIMOSdatareduction thespatialresolution.FittingthebroadHβfluxspatialdistribution Toinvestigatetheemissionintheopticalwavelengths,weanalysed withacircularGaussian,wefindFWHM=1.7pixelwhichforour archivalIntegralFieldUnit(IFU)dataofMCG–6-30-15from2004 scaleof0.67arcsecpixel−1correspondstoFWHM=1.1arcsec. usingVIMOS/VLT.ThedataweretakenwiththeoldHR-bluegrism (replacedbyanewsetofgrismsin2012)withawavelengthrange 2.3 AGNandstellarcontinuum 4200–6150Åandapixelscaleof0.67arcsecpixel−1 inafieldof viewof27arcsec×27arcsec.Wereducedthedataineachofthe Theobservednear-infrared(near-IR)continuumisacombinationof four quadrants using the ESO VIMOS pipeline and the standard stellarandnon-stellarcontributions.Toevaluatethecontributionof recipesfordoingthebiassubtractionandflat-fieldcorrection,bad eachofthesecomponentstothetotalcontinuumintheHband,we pixelremoval,wavelengthcalibrationandrelativefluxcalibration usetheequivalentwidthoftheCO(4–1)1.578µmstellarabsorption withvmbias,vmifucalib,vmifustandardandvmifuscience.Inquad- line, while in the K band we use the 12CO (3–1) 2.323 µm line rantthree,weobservedthattherewerezig-zaggingpatternsonits (Fig.1).ClosetotheAGN,thestellarabsorptionlinewillbediluted Do w reconstructedimageaftervmifusciencewhichiscausedbyafibre andweexpecttheequivalentwidthtodecreaseasthedistancefrom n misidentificationduringvmifucalib.Thishasbeenobservedinother the AGN decreases. In the regions further away from the centre loa d datasets(e.g.Rodr´ıguez-Zaur´ınetal.2011).Tosolvethisproblem, of the galaxy (r (cid:3) 1.3 arcsec), where the AGN contribution is ed we did not use a fibre identification file but ran the recipe with a negligible,theequivalentwidthwillbeduetostellarprocessesonly fro m ‘firstguess’fibreidentificationmethod;specifically,thearclamp and determines the intrinsic line equivalent width (Wintr; Davies h linesareidentifiedusingmodelsofthespectraldistortionsasfirst et al. 2007; Burtscher et al. 2015). The plots in Fig. 1 give us ttp guesses.Doingsuchafibreidentificationimprovedtheresultbut theobservedequivalentwidthasafunctionofradius(W ).The ://m obs n didnotcompletelysolvetheproblem.Wethendecidedtochange fractionofthecontinuumwhichisduetonon-stellarprocesseswill ra s themaximumpercentageofrejectedpositionsinthefibrespectra thenbe .o x tpriaxceilngpotsoitaiocnosnwsearsvamtiovreevtahlaune,1i7.ep.ewrhceenntt,htehefraficbtrioenwoafsrflejaegcgteedd fAGN(r)=1− WWobs(r), (1) fordjo as ‘dead’. As we only have one exposure for each quadrant, this intr urn a resultsinsomefibresbeingexcluded(havingnoassociateddata) and we can determine the AGN contribution to the continuum at ls .o in the final data cube which is not ideal but preferable to having eachradialposition.Thetotalcontinuumateachpositionofthefield rg mvieiswidaenndtitfiheedfifinablrecsu.bTehweerfienoabltareinceodnsbtyruccotmedbiinminaggethoefrethdeucfieedlddaotaf otifnuvuiemwiisscfiatltceudlautseidngbyamseuclotinpdly-dineggrteheeptootlaylncoomnitainl.uTuhmebAyGfANGNco(rn)-. at Un/ onthefourquadrantsusingvmifucombineandvmifucombinecube, Thestellarcontinuum isdeterminedfromthedepthofthestellar ive respectively.Finalfibre-to-fibretransmissioncorrectionsweredone absorptionlinespresentinourspectra.Thecontinuumdecompo- rsity vtuheseirnisfgykydtheldeiniwceaaotvefed[leOIDnLgI]trhoλuc5ta5iln7ibe7sraÅatni.odTnhthaenesdfiatmboreed-esttokey-rfimlbiinrneeeiwnthtaeesgiranalsstteorduumflsueedxntitanol snaiotsinmo-nsatleflolrlreagrthicoeonnHctilnoaunseudmtKoitsbhaeansndsuoscciliseautseshdo(rww(cid:2)nithi0nt.h5Fe–i0gA..8G2aN.rcAassnedce)xi.spTelhicmeteisdtte,edltlhtaoer of Camb broadeningwhichisσ =22kms−1.Thescopeofouranalysisis continuumshowsamoreextendeddistribution. ridg e todeterminetherelativelineintensitymapandvelocityprofilefor o n the[OIII]emissionandthereforenoabsolutefluxcorrectionswere Ja 3 RESULTS AND DISCUSSION n done. Sky lines are observed in the spectra; however, as they are ua not confused with the object emission, they are not subtracted in IntheHband,aftersubtractingthebroadhydrogenemissionlines, ry 1 thedatacube. variousstellarabsorptionlinefeaturessuchastheCOabsorption 2, 2 Severalemissionlinesareobservedinthespectra:thestrongest bands,SiIandMgIareobservedinthespectra.Theonlyemission 01 emission is [O III] 5007 Å but Hβ 4861 Å with a nuclear broad lineobserved,apartfromthehydrogenrecombinationlines,isthe 7 Figure1. Left:equivalentwidthoftheCO(4–1)1.578µmlineintheHbandasafunctionofradius.Right:equivalentwidthofthe12CO(3–1)2.3227µm lineasafunctionofradius.ThecentreindicatesthepositionoftheblackholeandismeasuredfromthepeakofthebroadhydrogenBrackettemission.The equivalentwidthsaremeasuredinannuliof1pixel(0.125arcsec)width.Theredlinesineachoftheplotsarethebest-fittingGaussiancurvestothedata points.TheyareusedinthesubsequentdecompositionofAGNandstellarcontinuumfortheHandKbands. MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4231 Figure2. Non-stellarandstellarcontinuummapsafterthecontinuumdecompositionbasedonthestellarabsorptionlines’equivalentwidths.Thetwoplots ontheleftshowtheH-bandcontinuumandthetwoplotsontherightshowtheK-bandcontinuum.ThepositionoftheAGNisindicatedbytheblackcross. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a Figure4. Spectrumofthenuclearregionintegratedina0.625arcsecradius ls aperture.Theinnerr<0.25arcsecareexcluded.Theregionsingreyindicate .org thepresenceofresidualsfromthetelluricabsorptioncorrection. a/ t U n method,andofouranalysis,istorecovertheline-of-sightvelocity ive distribution from the stellar absorption features of our observed rsity spectra.Thismethodassumesaparametrizationforthestellarline- o Figure 3. H2 2.1218 µm emission from four regions of 5 × 5 pixels of-sightvelocitydistributionontheformofaGauss–Hermiteseries f Cam (0.625arcsec× 0.625 arcsec) in the field of view. From top to bottom: expansion, with thefirsttwo moments being thevelocity and the b north-east,south-west,south-eastandnorth-westfromthenucleus.Relative velocity dispersion (V, σ). It then uses a set of stellar templates rid g totheimagesinFig.2,theseregionsarelocatedattheleft,right,topand andapolynomialcomponenttoaccountfortheAGNcontinuum, e o bottomoftheAGNposition.ThewavelengthrangeintheplotshowstheH2 to find the best-weighted template combination and line-of-sight n J a gasemissionline.TheemissionattheSEandNWofthenucleusshowsa velocitydistributiontofittheinputgalaxyspectra.Duetothelimited nu clearredshiftandblueshift.Theverticaldashedlinesindicatetheposition S/Nofourdata,weonlyfitthefirsttwomomentsofthevelocity ary ofthepeakoftheemissionineachofthesetworegions.Thex-axisisthe 1 distribution. 2 observedwavelength. , 2 In the H band, we use the stellar templates of Le et al. (2011) 0 1 at a resolution of R ∼ 5000. This library contains only 10 G, K 7 [FeII]1.64µmemissionline.IntheKband,wedetectseveralstellar and M giant stars, but as described in Raimundo et al. (2013), K absorptionfeatures,includingtheCOabsorptionbandswhichare andMstarsprovideagoodmatchtoourstellarabsorptionfeatures. thestrongestabsorptionlinesinourspectra.TherovibrationalH 2 IntheKband,weusethestellartemplatesfromWinge,Riffel& 2.12 µm emission is also detected and a tracer of the molecular Storchi-Bergmann(2009)inthenear-IRwavelengthrangeof2.24– gasdistribution(Fig.3).Inaddition,therearethreeotheremission 2.43 µm, at a resolution of R = 5900 obtained with GNIRS. We linesfromionizedgaswhichareobserved([SiVI]1.963µm,Brγ convolvethesespectrawithaGaussianofσ =2.3Åtomatchthem 2.166 µm and [Ca VIII] 2.3211 µm) and will be analysed in the tothelowerresolutionofourdata. followingsections.ThenuclearspectrumofMCG–6-30-15inthe ThestellarkinematicsfromboththeHandKbandsareconsistent KbandshowingtheBrγ andcoronalemissionlinescanbeseenin withwhatwasfoundinRaimundoetal.(2013).InRaimundoetal. Fig.4.H2isnotsignificantlydetectedinthenuclearregion. (2013),weonlyhadH-banddataina3arcsec×3arcsecfieldof view,whichallowedustodiscoverthecounter-rotatingcorebutnot tostudythemainbodyofthegalaxyextensively.Withthelarger 3.1 Stellarkinematics field of view of our new H - andK-band observations (8arcsec× Thestellarkinematicsareobtainedbyfittingtheobservedgalaxy 8arcsec), we are able to probe larger distances from the nucleus. spectrausingthePenalizedPixel-Fitting(pPXF)method(vander Fig.5showsthefittotheintegratedemissionintheHandKbands. Marel&Franx1993;Cappellari&Emsellem2004).Thegoalofthis Theblacklineshowstheintegratedgalaxyspectrumandtheredline MNRAS464,4227–4246(2017) 4232 S.I.Raimundoetal. Figure5. Data(blackline),best-fittingmodel(redline)andresiduals(bottomgreyspectrumshiftedbyaconstantfactortobevisibleintheplot)forthe galacticspectrumfitwithpPXF.Left:H-bandintegratedemissioninanr<2arcsecregion,excludingtheinnerr<0.5arcsec.Right:K-bandintegrated D emissioninanr<2.5arcsecregionexcludingthecentralr<0.25arcsec.Theverticalshadedbandsindicatethewavebandsexcludedfromthefit.Thex-axis ow istherest-framewavelengthaftercorrectingforthesystemicvelocityofthegalaxy. nlo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o f C a m b rid g e o n J a n u a Figure6. Stellarline-of-sightvelocityandvelocitydispersionmapsfortheHband(top)andKband(bottom).Left:line-of-sightvelocityfieldcorrectedfor ry 1 thegalaxy’ssystemicvelocityof2410kms−1.Right:velocitydispersioncorrectedfortheinstrumentalbroadening.ThemapwasbinnedtoaminimumS/N 2, 2 of5.ThecentralregionsweremaskedoutduetothelowS/Nofthestellarabsorptionfeaturesandtheouterregionsweremaskedoutduetoacombinationof 0 1 lowfluxandlowS/N. 7 showsthebest-fittingmodelfrompPXF.Theresidualsareshown of-sightvelocityandvelocitydispersionfortheHandKbandsare inlightgreyatthebottomoftheplot.Regionswithemissionlines showninFig.6.TheKDC,characterizedbyachangeintherotation andtelluricsubtractionresidualsweremaskedoutofthefitandare directionofthevelocityfield,isclearlyobservedinthecentreof identifiedbytheverticalshadedbars. boththevelocityfieldmaps.DespitethelowerS/NintheKband, EachspatialpixelwasthenfittedusingpPXFinasimilarpro- theK-bandvelocityandvelocitydispersionmaps(Fig.6,bottom ceduretowhatwasdonefortheintegratedspectruminFig.5.The panels)areconsistentwiththeonesfortheHbandconsideringthat mapswerefirstbinnedtoaminimumS/N∼5betweenthedepthof the velocities measured in the K band have larger error bars (see theCOstellarabsorptionlinesandthenoiseinaline-freeregionof below).Althoughforthefinalresultsweonlyfitforthefirsttwo thespectrausingtheVoronoibinningtechniquedescribedinCap- momentsofthevelocitydistribution,wetestedadeterminationof pellari&Copin(2003).ThestellarfeaturesintheKbandareweaker theparameterh3,whichisassociatedwithasymmetricdeviations andthemaphastobemoresignificantlybinnedtoachievethetarget from a Gaussian shape for the line-of-sight velocity distribution. S/N;furthermore,theinnerregionsshowahighnoiseleveldueto Theh3mapshowedananti-correlationwiththevelocitystructure thepresenceoftheAGNemission,andthereforeweremaskedout. ofthedistinctcore. The outer regions of both maps where the flux is low (less than UsingMonteCarlosimulationswherethewavelengthrangesfor 1percentofthepeakflux)werealsomaskedout.Themapsofline- thefitandinitialparametersarechangedrandomly,weestimatethe MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4233 starsprovidetheonlyexcitationmechanismforBrγ (e.g.Panuzzo etal.2003;Valenciaetal.2012;Smajic´etal.2014).Inthecaseof MCG–6-30-15,thespatialdistributionofBrγ whencomparedwith thestellardistributionprofileleadsustobelievethatthisemission is mainly associated with the AGN, although some smaller con- tributionfromstarformationisalsopossible.AsnotedbySmajic´ etal.(2014),assumingthatallofthecentralBrγ emissionisdue tostarformationisanunlikelyscenarioforaSeyfertgalaxy.We canhoweverusetheequivalentwidthofthenarrowBrγ linetoset upperlimitsonthestarformation.Intheintegratedcentralregionof 0.625arcsec×0.625arcsec,thewidthofthenarrowlineis∼15Å. Thisisalowvalue(similarvalueshavebeenfoundforotherSeyfert galaxies;Daviesetal.2007),whichindicatesthatthereislittlestar Figure7. FittothehydrogenBrackettemissionlineintheKbandwhich formationongoinginthisgalaxy.Ifstarformationisoccurring,it consists of two components: a broad one associated with the AGN and ispossiblyintheformofshortbursts,inlinewithwhatisobserved a narrow one which may have a contribution from star formation. The emissionintheplotcorrespondstoanintegratedregionof5×5pixels intheultravioletspectra(Bonattoetal.2000). (0.625arcsec×0.625arcsec)centredatthespatialpositionoftheAGN. Do w Thex-axisistherest-framewavelength. 3.2.2 [FeII]emission nlo a errorsintheH-bandvelocitymaptobetypically6kms−1exceptin Theforbidden[FeII]emissionlineat1.644µmwasfirstdetected ded thecentralregionsclosetotheblackholewhereitreaches13kms−1. in the H-band observations in Raimundo et al. (2013), extending fro Theerrorsinthevelocitydispersionare∼7and15kms−1 inthe outtoaradiusofr<0.8arcsec.Withthenewdatainthepresent hm centre.IntheK-bandmap,weestimatetheerrorinthevelocityand workcoveringawiderfieldofviewandatahigherS/N,wewere ttp velocitydispersiontobe<10kms−1outtor<2arcsec.Theouter abletostudythedistributionofionizedgasfurtheroutinthegalaxy ://m regions(r>2arcsec)andthecentralmaskedregionhaveerrorsof (Fig.8,secondrow).Fortheanalysisoftheionizedgasemission, nra ∼20–25kms−1inbothvelocityandvelocitydispersion. we use the code LINEFIT (appendix B of Davies et al. 2011 ) to s.o x The systemic velocity and position angle (PA) are determined fit the emission line at each spatial position of our field of view. fo usingthemethodoutlinedinKrajnovic´etal.(2006).Thekinematic LINEFITusesaskyemissionlineobservedclosetothewavelengthof rdjo u PA for the distinct core is determined from the H-band velocity interestasatemplatefortheemission,andthenconvolvesitwitha rn a maplimitedtotheregionofr<1.1arcsec.WefindPA=118± Gaussiankerneltomatchtheobservedlineprofile.Theinstrumental ls .o 22deg(3σ error)measuredfromnorthtoeast.Theregionoutside broadeningisthereforeautomaticallyaccountedforwhenfittingthe rg wtheefidnisdtinPAct=cor1e1i2s±mo8ddeellged(3sσetetirnrogrr).>Th1e.2siamndilarr<ity3b.5etawrecesenct,haensde alinndest.hIenrdmivsidnuoaislepoixfetlhsewciotnhtiSn/uNum<)3w(ebreetwmeaesnketdheopuetaokftohfethimealignee. at Un/ angles combined with the observation of the shift in the velocity Weobservethatthe[FeII]linefluxdoesnotpeakattheposition ive fieldindicatethatthedistinctcoreismisalignedfromthemainbody of the nucleus but at a position north-west of the nucleus, as in rsity o(1f8t0hedeggalsahxiyftwiniththaenveolroiecnittyatoiornienctoantisoisntewntithwirtehspceocutnttoert-hroetamtiaoinn tmheapfiirnstditcimateesitawnaosvdeeratellctbeudlk(Rroaitmatiuonndaolvetelaolc.i2ty01d3i)r.ecTthioenvseilmociiltayr of Ca m bodyofthegalaxy). totheoneofthestellarcounter-rotatingcore,albeitwithahigher b rotationalvelocity[−70,60]kms−1.Wecannowdistinguishfurther rid g structureinthevelocitydispersionmap.Theforbiddentransition e o 3.2 Ionizedgas of [Fe II] is excited by electron collisions. To achieve the right n Ja 3.2.1 HydrogenBrγ emission conditionsforthislineemission,itisnecessarytohaveazoneof nua partiallyionizedhydrogenwhereFe+ ande− coexist.InAGNin ry BclroosaedtohtyhderoAgGeNn,Barnγdi2t.i1s6s6paµtimalleymuinsrseiosonlviseddebtyecotuerddiantat.hTehreegBiorγn tphaertciceunltarra,l[AFeGINI]eomribsysisohnoccaknsb(ceaguesneedrabtyedthbeyipnhteortaocitoionnizaotfiornadbiyo 12, 20 1 emissionalsoshowsanarrowcomponentwhichcanbeseparated jetswiththemedium,bynuclearmassoutflowshockswithambient 7 fromtheunderlyingbroadcomponent.Fig.7showstheintegrated cloudsorbysupernova-drivenshocks;Mouri,Kawara&Taniguchi emission in a region of 0.625 arcsec × 0.625 arcsec centred at 2000;Rodr´ıguez-Ardilaetal.2004).Correlationshavebeenfound thenucleus.Thislineshowsablueshiftof∼100–150kms−1 with betweentheradiopropertiesofSeyfertsandthepresenceof[FeII] respecttothesystemicvelocityofthegalaxy,asfoundinReynolds (Forbes&Ward1993;RamosAlmeidaetal.2006;Riffel,Storchi- etal.(1997).ThebroadBrackettemissionwasusedtodeterminethe Bergmann&Nagar2010)whichindicatesthatshocksassociated instrumentalPSFandthecentreofthePSFistakenasthespatial with radio jets may be the main excitation mechanism in some position of the AGN. Although the narrow emission may have a active galaxies. Mundell et al. (2009) analysis of radio data on contribution from star formation, it is not detected significantly MCG–6-30-15 find a possible elongation in the extended radio outsidethePSFregion.Thevelocity,dispersionandfluxmapsare emissionapproximatelyperpendiculartotheorientationofthe[OIII] showninFig.8(toprow).Fig.9showsthestellarandgasemission emissionwhichmayindicatethepresenceofajet-likeordiscwind velocityprofilesalongthemajoraxisofthegalaxy,averagedina component.However,the[FeII]emissionhasasimilarorientationto pseudo-slitof3pixel(∼0.4arcsec)width.ThekinematicsofBrγ the[OIII]emissionandthereforeitisunlikelythatshocksassociated resemblearotationpatternandisverysimilartotheoneofthestars withapossibleradiojetarethemainexcitationmechanismfor[FeII] intermsofthevelocitygradientandlowdispersion. emissioninthisgalaxy. The Brγ narrow-line flux can be used to estimate the star for- Inourpreviouswork(Raimundoetal.2013),wehypothesized mation rate or to determine upper limits for it in galaxies where that the [Fe II] emission was caused mainly by supernova shocks MNRAS464,4227–4246(2017) 4234 S.I.Raimundoetal. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o f C Figure8. Velocity,velocitydispersionandfluxmapsoftheionizedgasemissionlinesinourspectra.Toptobottom:narrowBrγ,[FeII],[SiVI]and[CaVIII]. am TThheevwehloitceiteilelsipwseeriencthoerretocptepdafnoerltihnedsicyastteesmtihcevseilzoecoitfytohfetshteelglaarlaKxDyCan.dinstrumentalbroadening.MinimumS/Nis3.0.ThecrossindicatestheAGNposition. bridg e o n J a n u a ry 1 2 , 2 0 1 7 Figure9. HorizontalcutsalongthemajoraxisofthegalaxytomeasuretheionizedgasandtheH-bandmeasuredstellardynamicsasafunctionofradius fromtheAGNposition.Left:velocity.Right:velocitydispersion. fromapreviousstarformationeventandournewobservationssup- in our data, the dynamics of [Fe II] resembles a rotation pattern portthisscenario.Thespatialdistributionofthe[FeII]coincides andisdistinctfromthe[CaVIII]dynamics(Fig.9).Thefollowing with the region where we see the strongest S/N in the stellar ab- additionalindicationsarepresentinthedata.First,weobservethat sorption features and although we detect an AGN-driven outflow the [Fe II] emission extends further out than the [Si VI] and Brγ MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4235 D o w n lo a d e d Figure10. H22.12µmdistributionanddynamics.Topleft:velocitymap.Topright:velocitydispersion.Bottomleft:fluxmap.Bottomright:fluxresiduals from acthfoteuesnretsecure-bnrtotrrtaaaclttipinnigxgeceloslrlweip.etTircehaemlmiassoakppehdwoaotesustb.oiTnfnhtehedeHtiom2aarogmtea.itnioimnudmireSc/tNionofi5s.tIhnetshaemceenatsraflorregthioencso,uthneteHr-2roetmatiisnsgiocnoirse.nTothdeestepcatteiadlaetxatesnigtnoifficthaentHS2/Nislelavregle;rthtehraenfotrhee, http://m n ra s emission(Fig.8). Secondly, the [FeII] emissionis not centred at .ox thenucleusandseemstotraceasimilardistributiontowhatisseen ford forthemoleculargas(tracedbytheH emissioninFig.10),which jo 2 u would be expected if both these lines originate from regions of rn a star formation. Thirdly, the velocity dispersion map shows peaks ls.o ithnevlaorcioaulsdyrengaimonicssoafntdhebe[FaessIoI]cieamteidsswiointhwlohcicahtiocnosulodfbmeatjroarcisnug- at Urg/ pernovaevents.Thegeneral[FeII]velocitydispersionprofilealong niv themajoraxis,ascanbeseenintheright-handpanelofFig.9,is ers lowerthanforthestarsortheotherionizedspecies,butcloserto ity o thedispersionprofileofH2,furtherindicatingthatthesetwolines f C maybetracingthesameregionsofstarformationandsupernova a m events. It would be expected that if [Fe II] and H2 are being ex- brid cshitoewdimnothreedsiasmtuerbreedgikoinnse,mthaeticiosn(ihziegdhegrasvetrloacceitdybdyisp[FeersiIIo]nw)othualdn Figure 11. [Ca VIII] emission integrated in a 1arcsec × 1arcsec region ge o n theItmisoloefcucloaurrgseaslitkraeclyedthbaytHA2G.Nphotoionizationalsocontributes cshenowtresdthaetotbhseenrvuecdlesupsecatsruamfuinncbtliaocnk,otfhreetsot-tafrlalmineefiwta(vreeldelnignteh).aTndhethfiegtuwroe Janua to the [Fe II] emission, even if it is not the dominant mechanism Gthaeuvseslioancitcyombipnosnuesnetdsfoofrththeefitto(mbolugeraapnhdygarneeanly)s.iTsh(e−v1e2r5ti,c−al2l5in,e+s2i5n,d+ic1a2t5e ry 12 (Rodr´ıguez-Ardilaetal.2004).The[FeII]emissionwillthenpro- and+190kms−1).Thenumbers1to4indicatethecorrespondingpanelsof , 2 videanupperlimitforthenumberofsupernovaevents.Withour Fig.12. 017 newobservations,wecanprobethe[FeII]emissionwithinthefull extent of the KDC and improve the [Fe II] flux measurement in hasalowerionizationpotential(IP=127eV),anditisobserved Raimundoetal.(2013).Integratingfortheregionswithemission S/N>3,weobtainF =3.0×10−15ergs−1cm−2andL = atahigherS/Nthan[SiVI].Itsemissioniscompactbutresolved, [Feii] [Feii] 4×1038ergs−1. slightly more extended than [Si VI] and asymmetric with its flux emissionpeaknorth-westofthenucleus.Theshapeofthe[CaVIII] emissionlineiscomplex,ascanbeseeninFig.11.Thisplotshows thelineprofileintegratedina1arcsec×1arcsecregioncentredat 3.2.3 Coronallineemission thenucleus.TheemissionlinecanbefittedusingtwoGaussians, Twohigh-ionizationcoronallinesaredetectedintheK-bandobser- andthatholdstrueformostofthepixelsinthemapwithobserved vations:[SiVI]1.963µmand[CaVIII]2.321µm.Theselinesarea emission.Thetwolinesareblueshiftedandredshiftedwithrespect goodtracerofAGNactivityduetotheirhighionizationpotential tothesystemicvelocityofthegalaxyandobservedsimultaneously (IP > 100 eV). [Si VI] (IP = 167 eV) is mainly detected in the ateachspatialposition,whichisanindicationthatweareseeingthe nucleuswithaspatialextentoftheorderoftheinstrumentalPSF. approachingandrecedingsidesofasingleionizationcone.Tobetter ThevelocityandvelocitydispersionmapswithaminimumS/N∼3 understandthepropertiesofthisemission,wemeasuredthefluxat arepresentedinFig.8(thirdrow).Theregionswithfluxlessthan variousvelocitybins(‘velocitytomography’)andplottheresultin 5percentofthatofthepeakweremaskedoutofthemaps.[CaVIII] Fig.12.Wecanseethatthe[CaVIII]dynamicsisdominatedbyan MNRAS464,4227–4246(2017) 4236 S.I.Raimundoetal. Figure12. Velocitytomographyofthe[CaVIII]line.Velocityintervalsindicatedatthebottomcorrespondtodeviationsfromthesystemicvelocityofthe galaxyandcorrespondtotheregions(1to4)delimitedbytheverticallinesinFig.11.ThespatialscaleisarcsecandtheorientationisthesameasinFig.8. Thefirstandthirdpanelsshowtheblueshiftedandredshiftedcomponentsoftheoutflow,respectively.Thissuggeststhatweareseeingtheapproachingand recedingsidesofaone-sidedionizationcone. D Table1. Theradialextentismeasuredinradiusfromthenucleus. inMCG–6-30-15fromX-raystudiesofwarmabsorbers(Sakoetal. o w 2003;Blustinetal.2005;Chiang&Fabian2011).Theseoutflows nlo Spatialextentofthecoronallineemissionregion present blueshifted velocities of vout = −1900 and −150kms−1 ade [[ESCmiaiVsVIs]IIiIo1]n.29l.63i3n2e1µmµm 11IP2677eeVV 00E..x97teaanrrcctss(eeraccd((i∼∼al11)4100ppcc)) aaamtlctachdyeoilsbuetergaahnatcisniestgosicwsoiafintneo0ddt.0(wcB3l6iletuahsarttnihindfeet[5thC.ae7al.tpV2wcI0IoI0]f5rooo)uu.mttTflflhoothewweosauntatuflsrcecolaweplueasssra,totrfosefmrsp<tahelelc1ts4iscv0aaemllpeyecs, http://md from othuetfloouwtfl.oTwheatfiurspttpolo−t1o2n5thkemlesf−t1m.Taphsetnhuecbleluaerschoimftepdonceonmtpisosneeenntoinf waAhsdsiicurehmcwtincegootnhbnasetectrthvioeenfianbsettehtwrisoeuwetnfloorskuw;chahtoarw∼leavr0ge.er0,3riat6nipsgcedwiofofifucpluhdlytlsotiosceaelvsetsalcobacllieistsyh. nras.ox ItshneeeFnsiegicn.o8tnh,dewptheloisrtdhforpwolomtthftehroermelestufhtletasnleodfftt,hfiwettsiintthrgovntehgleorce[CidtsiaehsVifIutIeIp]dteocmo1im2ss5piooknnmewns−titi1hs. taosrietpprroodpuacgeattehse,oitustvfleolwocwityeowbosuelrdvehainve[CtoadVeIIcI]reaatsre∼as1v4o0utp∝c.r−0.4 fordjourn a asingleGaussianline.Althoughtheshapeoftherealemissionis ls .o mredosrehicftoemdpcloemx,ptohneesnetmoauptflsorweflinegctatthveedloycniatimesic∼s1o0f0thkemdso−m1.inating 3.2.4 Opticalemissionlines arg/ The [Si VI] emission could also have a redshifted outflowing IntheVIMOSdatacube,wedetecttwostrongemissionlines:[OIII] t Un component,asthevelocitiesnorth-westofthenucleusareslightly 5007andHβ 4861Å(withanuclearbroadcomponentandaspa- ive higher than expected based solely on rotation and the dispersion tiallyextendednarrowcomponent).Tostudythegasdynamics,we rsity ishigherthanthatobservedinthenarrowBrγ emission(Fig.9). firstusethestellarabsorptionlinestodeterminethegalaxy’ssys- o However,duetoitshigherionizingpotential,thisoutflowingcom- temic velocity. We integrate the data cube spatially in the region f C a m ponentisnotasstrongasin[CaVIII].Thevelocitytomographyfor of the field of view with highest contribution from the galaxy to b [Si VI] shows a very centrally concentrated emission, which does determineanintegratedspectrum.WethenusepPXFandasetof ridg notextend beyondthePSF.Theextent ofthecoronallineregion stellaropticaltemplates(Vazdekis1999)todeterminethesystemic e o n forboththeselinesisshowninTable1.Wedefinetheextentofthe velocity.Thisvelocityisthenusedasareferenceforthestudyofthe J a coronallineregionatthepositionwherethefluxofthelinedrops gasdynamics.ToanalysetheHβ narrowcomponent,wesubtract nu a to5percentofitspeakvalue. thebroadHβcomponentfromthespectra.Asnotedpreviouslyby ry Whencomparingtheprofilesoftheionizedgasemissionwiththe Reynoldsetal.(1997),thebroadHβlinecanbefittedbytwocom- 12 oneofthestars,weseeclearlythatnarrowBrγ hasaprofilesimilar ponents,withthestrongestfluxbeinginacomponentblueshifted , 20 1 tothestars.[SiVI]and[CaVIII]showaredshiftinrelationtothe by ∼150–200kms−1 with respect to the systemic velocity of the 7 stellarrotation.Theredshiftofthe[SiVI]issmallanditisclosetothe galaxy.InFig.13,weshowthelineemissionmapsforthe[OIII]and rangeoferrorsexpectedforthestellarvelocity.[CaVIII]hasaclearly thenarrowHβ.PixelswithS/N<5betweenthepeakoftheline distinctvelocityprofile,dominatedbytheredshiftedcomponentof andthenoiseinaline-freeregionofthecontinuumweremasked theoutflow.Althoughalsoslightlydistinctfromthestellar,theBrγ out.TheHβemissionextendsouttor∼400pc,significantlymore and the [Si VI] profiles, the velocity gradient of [Fe II] is clearly extendedthanthecoronallinesdetectedinthenear-IR.Itsvelocity differentfrom[CaVIII]whichisanotherindicationthatthe[FeII] map shows a rotation pattern counter-rotating with respect to the emissionisnotpartoftheAGNoutflowbuttracingstarformation mainbodyofthegalaxy. inthedisc.ThestudyofRodr´ıguez-Ardilaetal.(2006)onthesize The[OIII]emissionisthemostextendedgasemissionwedetect. ofthecoronallineregioninMCG–6-30-15showsthatthe[FeVII] Thelineisdetectedouttor<10arcsec∼1.5kpcaboveaS/Nof5. linewithanionizationpotentialofIP=100eVclosetotheoneof Thedynamicsintheregiontothesouth-eastofthenucleusmatch [CaVIII](IP=127eV)showsanextentof(cid:2)140pc(afterconverting what we observe in the molecular gas (in terms of the rotational to our cosmological parameters) similar to the spatial extent we velocity expected and counter-rotation). To the north-west of the observeinourstudy(Table1).Rodr´ıguez-Ardilaetal.(2006)also nucleus,thevelocitydispersionincreasesandthevelocitydoesnot findthatthebroadcomponentof[FeVII]isblueshiftedandhasa match the rotational pattern. We are likely observing the large- FWHM∼670kms−1,whichhasbeeninterpretedassignatureof scale counterpart of the gas outflow observed in [Ca VIII]. In this anoutflowingwind.Blueshiftedoutflowshavealsobeendetected region to the north-west of the nucleus, we observe velocities of MNRAS464,4227–4246(2017)
Description: