ebook img

Tracing the origin of the AGN fuelling reservoir in MCG–6-30-15 PDF

20 Pages·2016·2.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tracing the origin of the AGN fuelling reservoir in MCG–6-30-15

MNRAS464,4227–4246(2017) doi:10.1093/mnras/stw2635 AdvanceAccesspublication2016October13 (cid:2) Tracing the origin of the AGN fuelling reservoir in MCG–6-30-15 S. I. Raimundo,1† R. I. Davies,2 R. E. A Canning,3,4 A. Celotti,5,6,7 A. C. Fabian8 and P. Gandhi9 1DarkCosmologyCentre,NielsBohrInstitute,UniversityofCopenhagen,DK-2100CopenhagenØ,Denmark 2Max-Planck-Institutfu¨rextraterrestrischePhysik,Postfach1312,D-85741Garching,Germany 3KavliInstituteforParticleAstrophysicsandCosmology(KIPAC),StanfordUniversity,452LomitaMall,Stanford,CA94305-4085,USA 4DepartmentofPhysics,StanfordUniversity,452LomitaMall,Stanford,CA94305-4085,USA 5SISSA–ScuolaInternazionaleSuperiorediStudiAvanzati,ViaBonomea265,I-34135Trieste,Italy 6INFN–SezionediTrieste,viaValerio2,I-34127Trieste,Italy 7INAF–OsservatorioAstronomicodiBrera,viaBianchi46,I-23807Merate,Italy 8InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,CambridgeCB30HA,UK 9DepartmentofPhysicsandAstronomy,UniversityofSouthampton,Highfield,SouthamptonSO171BJ,UK D o w n Accepted2016October11.Received2016October10;inoriginalform2016August3 lo a d e d fro ABSTRACT m h The active galaxy MCG–6-30-15 has a 400 pc diameter stellar kinematically distinct core, ttp counter-rotatingwithrespecttothemainbodyofthegalaxy.Ourprevioushighspatialresolu- ://m n tion(0.1arcsec)H-bandobservationsofthisgalaxymappedthestellarkinematicsand[FeII] ras 1.64 µm gas dynamics though mainly restricted to the spatial region of the counter-rotating .ox fo core.Inthiswork,weprobethestellarkinematicsonalargerfieldofviewanddeterminethe rd jo ionizedandmoleculargasdynamicstostudytheformationofthecounter-rotatingcoreandthe u rn implicationsforactivegalacticnucleus(AGN)fuelling.Wepresentintegralfieldspectroscopy als .o observations with SINFONI in the H and K bands in the central 1.2 kpc and with VIMOS rg HR-blue in the central 4 kpc of the galaxy. Ionized gas outflows of vout ∼ 100kms−1 are at U/ tracedbythe[CaVIII]2.32µmcoronallineandextendouttoatleastaradiusof r∼140pc. niv Themoleculargas,tracedbytheH22.12µmemission,isalsocounter-rotatingwithrespectto ers themainbodyofthegalaxy,indicatingthattheformationofthedistinctcorewasassociated ity o with inflow of external gas into the centre of MCG–6-30-15. The molecular gas traces the f C a availablegasreservoirforAGNfuellingandisdetectedascloseasr∼50–100pc.External m b gasaccretionisabletosignificantlyreplenishthefuellingreservoirsuggestingthattheevent rid g e whichformedthecounter-rotatingcorewasalsothemainmechanismprovidinggasforAGN o n fuelling. Ja n u a Keywords: galaxies:active–galaxies:individual:MCG–6-30-15–galaxies:kinematicsand ry 1 dynamics–galaxies:nuclei–galaxies:Seyfert. 2, 2 0 1 7 accretioniscurrentlyoneofthemostimportantquestionsinAGN 1 INTRODUCTION andgalaxyevolutionstudies. Theobservedcorrelationsbetweenpropertiesofsupermassiveblack TounderstandthephysicsofAGNfuelling,itisessentialtostudy holesandtheirhostgalaxies(Magorrianetal.1998;Ferrarese& notonlytheblackholeaccretionphysicsbutalsotheenvironment Merritt2000;Gebhardtetal.2000;Marconi&Hunt2003;Ha¨ring ofthehostgalaxies,inparticulartheircentralregions.Duetothe & Rix2004) suggest a co-evolution in which the active galactic higherspatialresolutionachievable,severalsignaturesoffuelling nucleus (AGN) phase may play a central role in regulating gas havebeenobservedinthelow-redshiftUniverse,providingthebest accretionandstarformationinthegalaxy.Understandinghowthe laboratorytostudyAGNfuelling.ThemoleculargassurveyNUclei host galaxy fuels the AGN and how the AGN in turn affect gas ofGAlaxies(NUGA)forexamplehasfoundawidevarietyoffu- ellingtracersontheformofdynamicalperturbationsintherange 0.1–1 kpc in lower luminosity AGN (Seyferts and low-ionization nuclear emission-line regions, LINERs; e.g. Garc´ıa-Burillo et al. (cid:2)BasedonobservationscollectedattheEuropeanOrganisationforAstro- 2003;Garc´ıa-Burillo&Combes2012).Theionizedgasinthecen- nomicalResearchintheSouthernhemisphere,Chile,duringprogramme tral kiloparsec also seems to be more disturbed in Seyfert host 093.B-0734andonobservationsmadewithESOTelescopesattheLaSilla ParanalObservatoryunderprogramme073.B-0617. galaxies than in inactive galaxies (Dumas et al. 2007). For even †E-mail:[email protected] smallerphysicalscales,Hicksetal.(2013)andDaviesetal.(2014) (cid:3)C 2016TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 4228 S.I.Raimundoetal. comparedfivepairsofmatchedactiveandinactivegalaxiesatares- ingisolatedgalaxies(Katkov,Sil’chenko&Afanasiev2014)which olutionof∼50pcusinginfraredintegralfieldspectroscopy.They is consistent with an external origin for the counter-rotating gas foundthatatthescalesof<200–500pc,wherethedynamicaltime (Bertola, Buson & Zeilinger 1992). Pizzella et al. (2004) argue approachestheAGNactivitytime-scale,therearesystematicdif- that the formation of counter-rotating gas discs is favoured in S0 ferencesbetweenpropertiesofstarsandgasforactiveandinactive galaxiesduetotheirlowgasfraction.Inspiralgalaxieswhichare galaxies,associatedwiththeblackholefuellingprocess.Theactive more gas rich, the acquired external gas can be swept away due galaxiesintheirsampleshowanuclearstructureinstarsandgas, to the interactions with the pre-existing gas which would make composedofarelativelyyoungstellarpopulationandofasignif- thecounter-rotatingdiscobservableonlywhenitsmassishigher icantgasreservoir,whichcouldcontributetofueltheblackhole. than the one of the pre-existing gas. The difference between the This nuclear structure is not observed in the quiescent galaxies. fractionofS0galaxieswithobservedcounter-rotatinggasandob- Thepresenceofcircumnucleardiscsofmoleculargasseemstobe servedcounter-rotatingstarsmaybeduetotheinherentdifficulty requiredfornuclearactivity,withgasinflowsandoutflowsbeing ofdetectingsmallnumbersofcounter-rotatingstars(e.g.Bureau& detectedonlyinactivegalaxies.Gasinflow/outflowstructuresare Chung2006). commonlydetectedintheinnerregionsofAGNhostgalaxies(e.g. The presence of large kinematic misalignments of counter- Storchi-Bergmann et al. 2007 ; Davies et al.2009, 2014 ; Mu¨ller- rotatinggas,inparticularinS0galaxies,hasbeentakenasstrong Sa´nchez et al. 2011), and usually most of the inflow and outflow evidenceoftheexternaloriginofthegas(e.g.Bertolaetal.1992; massisintheformofmoleculargas.Athigherspatialresolution,the Davis&Bureau2016).Ifthegasoriginatesfromstellarmasslossin D o AtacamaLargeMillimeter/submillimeterArrayhasalsoprovided thegalacticdisc,thenstarsandgasareexpectedtocorotate.Inter- w n anewviewofthesmallspatialscalesaroundtheAGN,withtracers nalphysicalprocessessuchasweakbarsorspiralscancausemild lo a d ofmoleculargasinflowandoutflowbeingdetectedinmostofthe kinematicmisalignmentsbetweengasandstars(uptoanangular e d AGNobserved(e.g.Combesetal.2013,2014;Garc´ıa-Burilloetal. difference (cid:4) PA (cid:2) 55 deg; Dumas et al. 2007). However, large fro 2014;Smajic´etal.2014).Consideringtherecentworkinthisfield, kinematicmisalignmentsorcounter-rotatinggas((cid:4)PA=180deg) m h ithasbecomeclearthatthecentralhundredsofparsecsofgalaxies wouldrequireasignificantamountofenergytochangetheangular ttp areessentialtounderstandtheAGNfuellingprocess. momentumofthecorotatinggas,whichisunlikelytobeprovided ://m TheS0galaxyMCG–6-30-15isanarrow-lineSeyfert1galaxy, byinternalprocesses,especiallyforlargegasmasses(e.g.Dumas nra with an AGN luminosity of LX(2–10keV)∼4×1042 erg s−1 etal.2007;Daviesetal.2014).Simulationsofinternaldynamical s.ox (Vasudevan et al. 2009; Winter et al. 2009) and a total bolomet- perturbations, for example of nuclear spirals generated by asym- fo ricluminosityof∼3×1043ergs−1(Liraetal.2015).Thisgalaxy metriesinthegalacticpotential(Maciejewski2004)orgasflowin rdjo u hasbeenparticularlytargetedbyX-raystudies,sinceitwasthefirst barredspiralgalaxies(Regan,Sheth&Vogel1999),donotseemto rn sourceforwhichthebroadenedFeKαemissionlinewasobserved, generatecounter-rotatinggasstructures. als .o showingthatthislinewasbeingemittedfromtheveryinnerregions ThemaintheoriesfortheformationofKDCsinvolvetheinflow rg of the accretion disc (Tanaka et al. 1995). Our study of the inner ofmaterial(stars/gas)withadistinctangularmomentumintothe a/ 500 pc of MCG–6-30-15 in Raimundo et al. (2013) was the first centreofthegalaxy.However,thereismorethanonemechanism t U n integralfieldspectroscopystudyonthisgalaxy.Duetotheunprece- thancandrivethismaterialinwardstoproducetheKDCsandcan ive dentedspatialresolutionreached(0.1arcsec∼16pcintheHband), result in two different KDC populations. In optical wavelengths, rsity wediscoveredapreviouslyunknownstellarkinematicallydistinct McDermidetal.(2006)foundthatthereisonepopulationofKDCs o core (KDC) in the centre of MCG–6-30-15 counter-rotating with whicharetypicallylarge(diameter≥1kpc)witholdstellarpopu- f C a respecttothemainbodyofthegalaxy.Wefirstestimatedasizeof lations(age≥10Gyr)foundinslow-rotatingearly-typegalaxies. mb R∼125pcforthedistinctcoreduetothelimitedfieldofviewofour Inthiscase,thestellarpopulationwithintheKDCandinthemain rid g initialobservations;wewillshowinthisworkthatthedistinctcore body of the galaxy show little or no difference. This can be ex- e o hasasizeofR∼200pc.Theageofthestarsinthecounter-rotating plained if the distinct core was formed a long time ago and the n J a corewasestimatedtobe<100Myr(Raimundoetal.2013),which differencesinoriginhavealreadybeendilutedoriftheKDCisa nu a isinlinewiththefindingsofBonattoetal.(2000),whodetermined superposition of stellar orbits and caused by the geometry of the ry that>35percentofthestellarpopulationistheresultofburstsof galaxy.Ithasbeensuggested(e.g.Hernquist&Barnes1991)and 12 , 2 starformationdistributedinagebetween2.5and75Myr. shownfromsimulations(Boisetal.2011;Tsatsietal.2015)that 0 1 Stellar KDCs such as the one in MCG–6-30-15 are character- theselargeKDCscanbeformedbyhighmassratiomergers(1:1 7 izedbythepresenceofastellarcorewithkinematicsandangular or 2:1) between disc galaxies with prograde or retrograde orbits. momentumdistinctfromthemainbodyofthegalaxy.KDCscan Anon-mergerscenariohasalsobeensuggestedfromsimulations, be defined by an abrupt change of more than 30 deg in the local wherecounter-rotatingstellardiscsareformedearlyinthehistory kinematic orientation of the galaxy (e.g. McDermid et al. 2006; ofthegalaxyfromtheinfallofgaswithmisalignedspinthrough Krajnovic´ et al.2011), with counter-rotating cores having angles large-scalefilaments(Algorryetal.2014).Thesecondpopulationof of180deg.TheATLAS3D projectfoundthatKDCsarepresentin KDCsfoundbyMcDermidetal.(2006)consistsofsmallerstruc- a small fraction (∼ 7 per cent) of early-type galaxies (Krajnovic´ tures (diameter < 1 kpc), found mostly in fast rotators, typically et al. 2011), and seem to be more common in slow rotators than closetocounter-rotatinginrelationtotheouterpartsofthegalaxy in fast rotators (Emsellem et al. 2011). In spiral galaxies, stellar andshowingyoungerstellarpopulations.TheseKDCswerelikely counter-rotating discs are present in < 8 per cent of the galaxies formedbyrecentaccretionofgaswhichthenformedstarsinsitu. andarerarerthancounter-rotatinggasdiscs(<12percent;Pizzella ThefactthatthedistinctcorehasananglePA ∼180◦inrelation kin etal.2004).InS0galaxiessuchasMCG–6-30-15,itisestimated totheouterpartsofthegalaxymayindicatethatinfactdissipation that <10 per cent host counter-rotating stars (Kuijken, Fisher & processesareimportantintheformationofthesesmallerKDCs. Merrifield1996)and∼25–40percenthostacounter-rotatinggas MCG–6-30-15isoneofthegalaxieswithhigherAGNluminosity disc(Kuijken et al. 1996; Kannappan &Fabricant 2001; Pizzella amongthegalaxieswithknownstellardistinctcores,andtherefore etal.2004;Bureau&Chung2006),or∼70percentifconsider- weareinterestedinunderstandingtheimpactwhichtheformation MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4229 oftheKDCmayhaveonAGNfuelling.Daviesetal.(2014)studied Thepointspreadfunction(PSF)isdeterminedfromtheintensity asampleofS0galaxiesandfoundthattheoneswithAGNtypically ofthebroadcomponentoftheatomichydrogenBrackettrecombi- have gas detected on large scales (> 1 kpc), while the inactive nationlines.Thebroad-lineregionwheretheselinesareproduced ones do not. They also find a fraction of sources with counter- isunresolvedinourobservationsandthereforethelinewidthofthe rotatinggasconsistentwithwhatisexpectedforexternalaccretion. broad hydrogen emission provides a method to estimate the PSF. TheseobservationssuggestthatinS0galaxies,AGNaretypically SeveraltransitionsofthisBrackettseriesareobservedbothintheH fuelledbyexternalaccretion.Theyhavealsoshownthatintwoof andKbands.IntheHband,therearefivestronglineswhichweuse thegalaxiestheyobserved(IC5267andNGC3368),theexternal tomeasurethePSFandalsolaterinthissectiontoremovetheAGN counter-rotatinggascanreachtheinnertensofparsecsofthegalaxy. contributionfromthespectra.IntheKband,weusethestrongest In our previous work (Raimundo et al. 2013), we studied the lineofthe(7–4)λ=2.166µmtransition(Brγ).Wefittheselines stellar kinematics out to r < 250 pc in MCG–6-30-15. Since our withadoubleGaussian(onenarrowGaussiantomodelthecoreand datawerelimitedtotheHbandandtoa3arcsec× 3arcsecfield onebroaderGaussiantomodeltheextendedemission),toempiri- ofview,weonlyhadonetracerfortheionizedgasontheformof callymodelthePSF.Thefullwidthhalf-maximumofeachofthe [FeII]1.64µmemission,mainlyrestrictedtothespatialregionof GaussiansisfortheHband(FWHM=3.6pixels∼0.4arcsec)and thecounter-rotatingcore.Inthepresentwork,ourgoalisforemost (FWHM=6.7pixels∼0.8arcsec)andfortheKband(FWHM= to probe the dynamics of the molecular gas, for which there are 3.9pixels∼0.5arcsec)and(FWHM=8.6pixels∼1arcsec).Asa no previous observations. In this work, we will investigate if the secondcheck,wealsousetheunresolvednon-stellarcontinuumto D o formationofthecounter-rotatingcoreisassociatedwithinflowof determinethePSF.TheFWHMoftheGaussiansforthenon-stellar w n gasintothecentralregionsofthegalaxyandifthisgascancreate continuumis,asexpected,similartowhatwasdeterminedwiththe lo a orreplenishthemoleculargasreservoirforAGNfuelling.Wewill broadBrackettemission:Hband(FWHM=3.3pixels∼0.4arc- de d firstdescribetheSINFONIandVIMOSobservationsandthedata sec) and (FWHM = 5.4 pixels ∼0.7 arcsec); K band (FWHM = fro reductionandanalysis.Wewillthenpresenttheresultsonthestellar, 3.9pixels∼0.5arcsec)and(FWHM=8.7pixels∼1.1arcsec). m h ionizedandmoleculargaspropertiesinthegalaxy.Usingthestellar Theinstrumentalbroadeningiscalculatedbyselectingandmea- ttp andgasdynamics,wesetnewconstraintsontheblackholemass. suringthespectralbroadeningofanunblendedskyemissionline. ://m Finally,wewilldiscuss,basedontheseobservations,theoriginof Thebroadeningvariesasafunctionofwavelengthandspatialpo- nra thestellarcounter-rotatingcoreanditseffectonAGNfuelling. sitioninourdatacube;therefore,weselectskylinesclosetothe s.o 70Wkmesa−d1oMptpcth−e1, (cid:5)stamnd=ar0d.2c7oasmndol(cid:5)og(cid:6)ic=al0p.7a3ra.mTehteersscaoleffHor0ou=r twhaisveclaelncgutlhatoiofninftoerressktyfolrinoeusrcmloesaesutoretmheenwtsa.vFeolernthgethKobfatnhde,[wSeiVdIo] xfordjo measurements is approximately 0.158 kpc arcsec−1 at a redshift 1.963 µm, Brγ 2.166 µm, 1–0 S(1) H2 2.1218 µm and [Ca VIII] urn z=0.0077(Fisheretal.1995valuequotedattheNASA/IPACEx- 2.3211 µm emission lines for every spaxel in the sky emission als .o tragalacticDatabase).ThedistancetoMCG–6-30-15usedinthis cube.Theinstrumentalbroadeningatthewavelengthofeachline rg paperis33.2Mpc(Wright2006). isdeterminedbydoingafield-of-viewspatialaverageofthebest- a/ fittingGaussianσ.Weobtainvalueswhichvarybetweenσ ∼42 t U inst n and48kms−1 intheKband.Thespectralresolutionatthewave- ive 2 DATA ANALYSIS lengthofthe1–0S(1)H2emissionisHalfwidthathalfmaximum rsity (HWHM)∼3.3Å.FortheHband,weobtainvaluesofσ ∼44– o 2.1 SINFONIdatareduction 54kms−1whichatthewavelengthofthe[FeII]1.644µminesmt ission f Ca TheSINFONI/VLTH-banddatawithR∼3000weretakenonthe correspondstoHWHM∼3.2ÅandaresolutionofR∼2500. mb nightof2014June2withapixelscaleof0.25arcsec×0.125arcsec, Asmentionedabove,thebroadhydrogenrecombinationlinesof rid g samplingafieldofviewof8arcsec×8arcsec.Eachexposurewas the Brackett series are present in both the H and K bands. In the e o n of 300 s, in an object (O) and sky (S) sequence of OSO. The Hband,severaloftheselinesoverlapwithstellarabsorptionlines J a total on-source exposure time was 55 min. The SINFONI/VLT of interest and therefore it was necessary to remove them before nu a K-band data with R∼4000 were taken on four nights (2014 June determining the stellar kinematics. The procedure was similar to ry 4, 12 and July 2, 3) with a pixel scale 0.25 arcsec×0.125 arcsec theonedescribedinRaimundoetal.(2013),wherethebroademis- 12 and also sampling a field of view of 8 arcsec× 8 arcsec. Each sionlineswerefittedsimultaneously,whilefixingtheirrest-frame , 20 1 exposure was of 300 s, in an object (O) and sky (S) sequence of wavelengths to a common redshift and relative intensities to the 7 OSO.Thetotalon-sourceexposuretimewas2h30min.Thedata ones predicted theoretically using as an approximation Hummer reductionwasdonewiththeEuropeanSouthernObservatory(ESO) & Storey (1987) for case B recombination. In the K band, only pipeline for SINFONI ESOREX version 3.10.2 and complemented twobroademissionlineswereobservedandtheydidnotoverlap with independent IDL routines. The two main extra routines used withthewavelengthrangeoftheCOstellarabsorptionlinesorthe weretheimplementationoftheskyemissionsubtractiondescribed emissionlines.FortheKband,itwasnotnecessarytoremovethe in Davies et al. (2007) and a bad pixel removal routine for 3D AGNbroadhydrogenemissionpriortotheanalysisofthestellar datacubes(Daviesetal.2010)–a3DversionofLAcosmic(van properties. Dokkum2001).Fortheanalysis,thecubeswereshiftedconsidering Thefluxcalibrationisdoneusingthe2MASSmeasuredfluxes theoffsetsrecordedintheirheaders,combinedandre-sampledtoa in the H band and Ks band for a 5 arcsec diameter aperture. To spatialscaleof0.125arcsec×0.125arcsec.Theobservationswere determinethe2MASSfluxes,weusethezero-magnitudecalibra- taken with a rotation angle of 25 deg to obtain a better spatial tionsinCohen,Wheaton&Megeath(2003).Wethencomparethe sampling along the major axis of the galaxy. In the plots in this 2MASS fluxes with the median number counts of the integrated paper,thex-axiswillbeparalleltothemajoraxisofthegalaxy.The spectrainourdatacubes,forthesameaperture.Inourdatacubes, compassineachoftheplotsindicatestherelativepositioninthe themediannumbercountsaredeterminedwithinthewavebandof sky.Amoredetaileddescriptionofthetypicaldatareductionsteps [1.504–1.709] µm for the H band and [1.989–2.316] µm for the fortheHbandcanbefoundinRaimundoetal.(2013). Kband.Thesewavebandscorrespondtothewavelengthsatwhich MNRAS464,4227–4246(2017) 4230 S.I.Raimundoetal. thetransmissioninthe2MASSfiltersishigherthan0.2.Byusing component and a more spatially extended narrow component is differentaperturesin2MASS,wedeterminethatourcalibrationis also detected. Stellar absorption lines albeit with a lower signal- consistentto∼20percent. to-noise ratio (S/N) are also observed. The broad Hβ component originatesfromtheAGNandisthereforeunresolvedinourdata. WeuseitsfluxdistributiontoobtainanestimateforthePSFand 2.2 VIMOSdatareduction thespatialresolution.FittingthebroadHβfluxspatialdistribution Toinvestigatetheemissionintheopticalwavelengths,weanalysed withacircularGaussian,wefindFWHM=1.7pixelwhichforour archivalIntegralFieldUnit(IFU)dataofMCG–6-30-15from2004 scaleof0.67arcsecpixel−1correspondstoFWHM=1.1arcsec. usingVIMOS/VLT.ThedataweretakenwiththeoldHR-bluegrism (replacedbyanewsetofgrismsin2012)withawavelengthrange 2.3 AGNandstellarcontinuum 4200–6150Åandapixelscaleof0.67arcsecpixel−1 inafieldof viewof27arcsec×27arcsec.Wereducedthedataineachofthe Theobservednear-infrared(near-IR)continuumisacombinationof four quadrants using the ESO VIMOS pipeline and the standard stellarandnon-stellarcontributions.Toevaluatethecontributionof recipesfordoingthebiassubtractionandflat-fieldcorrection,bad eachofthesecomponentstothetotalcontinuumintheHband,we pixelremoval,wavelengthcalibrationandrelativefluxcalibration usetheequivalentwidthoftheCO(4–1)1.578µmstellarabsorption withvmbias,vmifucalib,vmifustandardandvmifuscience.Inquad- line, while in the K band we use the 12CO (3–1) 2.323 µm line rantthree,weobservedthattherewerezig-zaggingpatternsonits (Fig.1).ClosetotheAGN,thestellarabsorptionlinewillbediluted Do w reconstructedimageaftervmifusciencewhichiscausedbyafibre andweexpecttheequivalentwidthtodecreaseasthedistancefrom n misidentificationduringvmifucalib.Thishasbeenobservedinother the AGN decreases. In the regions further away from the centre loa d datasets(e.g.Rodr´ıguez-Zaur´ınetal.2011).Tosolvethisproblem, of the galaxy (r (cid:3) 1.3 arcsec), where the AGN contribution is ed we did not use a fibre identification file but ran the recipe with a negligible,theequivalentwidthwillbeduetostellarprocessesonly fro m ‘firstguess’fibreidentificationmethod;specifically,thearclamp and determines the intrinsic line equivalent width (Wintr; Davies h linesareidentifiedusingmodelsofthespectraldistortionsasfirst et al. 2007; Burtscher et al. 2015). The plots in Fig. 1 give us ttp guesses.Doingsuchafibreidentificationimprovedtheresultbut theobservedequivalentwidthasafunctionofradius(W ).The ://m obs n didnotcompletelysolvetheproblem.Wethendecidedtochange fractionofthecontinuumwhichisduetonon-stellarprocesseswill ra s themaximumpercentageofrejectedpositionsinthefibrespectra thenbe .o x tpriaxceilngpotsoitaiocnosnwsearsvamtiovreevtahlaune,1i7.ep.ewrhceenntt,htehefraficbtrioenwoafsrflejaegcgteedd fAGN(r)=1− WWobs(r), (1) fordjo as ‘dead’. As we only have one exposure for each quadrant, this intr urn a resultsinsomefibresbeingexcluded(havingnoassociateddata) and we can determine the AGN contribution to the continuum at ls .o in the final data cube which is not ideal but preferable to having eachradialposition.Thetotalcontinuumateachpositionofthefield rg mvieiswidaenndtitfiheedfifinablrecsu.bTehweerfienoabltareinceodnsbtyruccotmedbiinminaggethoefrethdeucfieedlddaotaf otifnuvuiemwiisscfiatltceudlautseidngbyamseuclotinpdly-dineggrteheeptootlaylncoomnitainl.uTuhmebAyGfANGNco(rn)-. at Un/ onthefourquadrantsusingvmifucombineandvmifucombinecube, Thestellarcontinuum isdeterminedfromthedepthofthestellar ive respectively.Finalfibre-to-fibretransmissioncorrectionsweredone absorptionlinespresentinourspectra.Thecontinuumdecompo- rsity vtuheseirnisfgykydtheldeiniwceaaotvefed[leOIDnLgI]trhoλuc5ta5iln7ibe7sraÅatni.odTnhthaenesdfiatmboreed-esttokey-rfimlbiinrneeeiwnthtaeesgiranalsstteorduumflsueedxntitanol snaiotsinmo-nsatleflolrlreagrthicoeonnHctilnoaunseudmtKoitsbhaeansndsuoscciliseautseshdo(rww(cid:2)nithi0nt.h5Fe–i0gA..8G2aN.rcAassnedce)xi.spTelhicmeteisdtte,edltlhtaoer of Camb broadeningwhichisσ =22kms−1.Thescopeofouranalysisis continuumshowsamoreextendeddistribution. ridg e todeterminetherelativelineintensitymapandvelocityprofilefor o n the[OIII]emissionandthereforenoabsolutefluxcorrectionswere Ja 3 RESULTS AND DISCUSSION n done. Sky lines are observed in the spectra; however, as they are ua not confused with the object emission, they are not subtracted in IntheHband,aftersubtractingthebroadhydrogenemissionlines, ry 1 thedatacube. variousstellarabsorptionlinefeaturessuchastheCOabsorption 2, 2 Severalemissionlinesareobservedinthespectra:thestrongest bands,SiIandMgIareobservedinthespectra.Theonlyemission 01 emission is [O III] 5007 Å but Hβ 4861 Å with a nuclear broad lineobserved,apartfromthehydrogenrecombinationlines,isthe 7 Figure1. Left:equivalentwidthoftheCO(4–1)1.578µmlineintheHbandasafunctionofradius.Right:equivalentwidthofthe12CO(3–1)2.3227µm lineasafunctionofradius.ThecentreindicatesthepositionoftheblackholeandismeasuredfromthepeakofthebroadhydrogenBrackettemission.The equivalentwidthsaremeasuredinannuliof1pixel(0.125arcsec)width.Theredlinesineachoftheplotsarethebest-fittingGaussiancurvestothedata points.TheyareusedinthesubsequentdecompositionofAGNandstellarcontinuumfortheHandKbands. MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4231 Figure2. Non-stellarandstellarcontinuummapsafterthecontinuumdecompositionbasedonthestellarabsorptionlines’equivalentwidths.Thetwoplots ontheleftshowtheH-bandcontinuumandthetwoplotsontherightshowtheK-bandcontinuum.ThepositionoftheAGNisindicatedbytheblackcross. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a Figure4. Spectrumofthenuclearregionintegratedina0.625arcsecradius ls aperture.Theinnerr<0.25arcsecareexcluded.Theregionsingreyindicate .org thepresenceofresidualsfromthetelluricabsorptioncorrection. a/ t U n method,andofouranalysis,istorecovertheline-of-sightvelocity ive distribution from the stellar absorption features of our observed rsity spectra.Thismethodassumesaparametrizationforthestellarline- o Figure 3. H2 2.1218 µm emission from four regions of 5 × 5 pixels of-sightvelocitydistributionontheformofaGauss–Hermiteseries f Cam (0.625arcsec× 0.625 arcsec) in the field of view. From top to bottom: expansion, with thefirsttwo moments being thevelocity and the b north-east,south-west,south-eastandnorth-westfromthenucleus.Relative velocity dispersion (V, σ). It then uses a set of stellar templates rid g totheimagesinFig.2,theseregionsarelocatedattheleft,right,topand andapolynomialcomponenttoaccountfortheAGNcontinuum, e o bottomoftheAGNposition.ThewavelengthrangeintheplotshowstheH2 to find the best-weighted template combination and line-of-sight n J a gasemissionline.TheemissionattheSEandNWofthenucleusshowsa velocitydistributiontofittheinputgalaxyspectra.Duetothelimited nu clearredshiftandblueshift.Theverticaldashedlinesindicatetheposition S/Nofourdata,weonlyfitthefirsttwomomentsofthevelocity ary ofthepeakoftheemissionineachofthesetworegions.Thex-axisisthe 1 distribution. 2 observedwavelength. , 2 In the H band, we use the stellar templates of Le et al. (2011) 0 1 at a resolution of R ∼ 5000. This library contains only 10 G, K 7 [FeII]1.64µmemissionline.IntheKband,wedetectseveralstellar and M giant stars, but as described in Raimundo et al. (2013), K absorptionfeatures,includingtheCOabsorptionbandswhichare andMstarsprovideagoodmatchtoourstellarabsorptionfeatures. thestrongestabsorptionlinesinourspectra.TherovibrationalH 2 IntheKband,weusethestellartemplatesfromWinge,Riffel& 2.12 µm emission is also detected and a tracer of the molecular Storchi-Bergmann(2009)inthenear-IRwavelengthrangeof2.24– gasdistribution(Fig.3).Inaddition,therearethreeotheremission 2.43 µm, at a resolution of R = 5900 obtained with GNIRS. We linesfromionizedgaswhichareobserved([SiVI]1.963µm,Brγ convolvethesespectrawithaGaussianofσ =2.3Åtomatchthem 2.166 µm and [Ca VIII] 2.3211 µm) and will be analysed in the tothelowerresolutionofourdata. followingsections.ThenuclearspectrumofMCG–6-30-15inthe ThestellarkinematicsfromboththeHandKbandsareconsistent KbandshowingtheBrγ andcoronalemissionlinescanbeseenin withwhatwasfoundinRaimundoetal.(2013).InRaimundoetal. Fig.4.H2isnotsignificantlydetectedinthenuclearregion. (2013),weonlyhadH-banddataina3arcsec×3arcsecfieldof view,whichallowedustodiscoverthecounter-rotatingcorebutnot tostudythemainbodyofthegalaxyextensively.Withthelarger 3.1 Stellarkinematics field of view of our new H - andK-band observations (8arcsec× Thestellarkinematicsareobtainedbyfittingtheobservedgalaxy 8arcsec), we are able to probe larger distances from the nucleus. spectrausingthePenalizedPixel-Fitting(pPXF)method(vander Fig.5showsthefittotheintegratedemissionintheHandKbands. Marel&Franx1993;Cappellari&Emsellem2004).Thegoalofthis Theblacklineshowstheintegratedgalaxyspectrumandtheredline MNRAS464,4227–4246(2017) 4232 S.I.Raimundoetal. Figure5. Data(blackline),best-fittingmodel(redline)andresiduals(bottomgreyspectrumshiftedbyaconstantfactortobevisibleintheplot)forthe galacticspectrumfitwithpPXF.Left:H-bandintegratedemissioninanr<2arcsecregion,excludingtheinnerr<0.5arcsec.Right:K-bandintegrated D emissioninanr<2.5arcsecregionexcludingthecentralr<0.25arcsec.Theverticalshadedbandsindicatethewavebandsexcludedfromthefit.Thex-axis ow istherest-framewavelengthaftercorrectingforthesystemicvelocityofthegalaxy. nlo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o f C a m b rid g e o n J a n u a Figure6. Stellarline-of-sightvelocityandvelocitydispersionmapsfortheHband(top)andKband(bottom).Left:line-of-sightvelocityfieldcorrectedfor ry 1 thegalaxy’ssystemicvelocityof2410kms−1.Right:velocitydispersioncorrectedfortheinstrumentalbroadening.ThemapwasbinnedtoaminimumS/N 2, 2 of5.ThecentralregionsweremaskedoutduetothelowS/Nofthestellarabsorptionfeaturesandtheouterregionsweremaskedoutduetoacombinationof 0 1 lowfluxandlowS/N. 7 showsthebest-fittingmodelfrompPXF.Theresidualsareshown of-sightvelocityandvelocitydispersionfortheHandKbandsare inlightgreyatthebottomoftheplot.Regionswithemissionlines showninFig.6.TheKDC,characterizedbyachangeintherotation andtelluricsubtractionresidualsweremaskedoutofthefitandare directionofthevelocityfield,isclearlyobservedinthecentreof identifiedbytheverticalshadedbars. boththevelocityfieldmaps.DespitethelowerS/NintheKband, EachspatialpixelwasthenfittedusingpPXFinasimilarpro- theK-bandvelocityandvelocitydispersionmaps(Fig.6,bottom ceduretowhatwasdonefortheintegratedspectruminFig.5.The panels)areconsistentwiththeonesfortheHbandconsideringthat mapswerefirstbinnedtoaminimumS/N∼5betweenthedepthof the velocities measured in the K band have larger error bars (see theCOstellarabsorptionlinesandthenoiseinaline-freeregionof below).Althoughforthefinalresultsweonlyfitforthefirsttwo thespectrausingtheVoronoibinningtechniquedescribedinCap- momentsofthevelocitydistribution,wetestedadeterminationof pellari&Copin(2003).ThestellarfeaturesintheKbandareweaker theparameterh3,whichisassociatedwithasymmetricdeviations andthemaphastobemoresignificantlybinnedtoachievethetarget from a Gaussian shape for the line-of-sight velocity distribution. S/N;furthermore,theinnerregionsshowahighnoiseleveldueto Theh3mapshowedananti-correlationwiththevelocitystructure thepresenceoftheAGNemission,andthereforeweremaskedout. ofthedistinctcore. The outer regions of both maps where the flux is low (less than UsingMonteCarlosimulationswherethewavelengthrangesfor 1percentofthepeakflux)werealsomaskedout.Themapsofline- thefitandinitialparametersarechangedrandomly,weestimatethe MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4233 starsprovidetheonlyexcitationmechanismforBrγ (e.g.Panuzzo etal.2003;Valenciaetal.2012;Smajic´etal.2014).Inthecaseof MCG–6-30-15,thespatialdistributionofBrγ whencomparedwith thestellardistributionprofileleadsustobelievethatthisemission is mainly associated with the AGN, although some smaller con- tributionfromstarformationisalsopossible.AsnotedbySmajic´ etal.(2014),assumingthatallofthecentralBrγ emissionisdue tostarformationisanunlikelyscenarioforaSeyfertgalaxy.We canhoweverusetheequivalentwidthofthenarrowBrγ linetoset upperlimitsonthestarformation.Intheintegratedcentralregionof 0.625arcsec×0.625arcsec,thewidthofthenarrowlineis∼15Å. Thisisalowvalue(similarvalueshavebeenfoundforotherSeyfert galaxies;Daviesetal.2007),whichindicatesthatthereislittlestar Figure7. FittothehydrogenBrackettemissionlineintheKbandwhich formationongoinginthisgalaxy.Ifstarformationisoccurring,it consists of two components: a broad one associated with the AGN and ispossiblyintheformofshortbursts,inlinewithwhatisobserved a narrow one which may have a contribution from star formation. The emissionintheplotcorrespondstoanintegratedregionof5×5pixels intheultravioletspectra(Bonattoetal.2000). (0.625arcsec×0.625arcsec)centredatthespatialpositionoftheAGN. Do w Thex-axisistherest-framewavelength. 3.2.2 [FeII]emission nlo a errorsintheH-bandvelocitymaptobetypically6kms−1exceptin Theforbidden[FeII]emissionlineat1.644µmwasfirstdetected ded thecentralregionsclosetotheblackholewhereitreaches13kms−1. in the H-band observations in Raimundo et al. (2013), extending fro Theerrorsinthevelocitydispersionare∼7and15kms−1 inthe outtoaradiusofr<0.8arcsec.Withthenewdatainthepresent hm centre.IntheK-bandmap,weestimatetheerrorinthevelocityand workcoveringawiderfieldofviewandatahigherS/N,wewere ttp velocitydispersiontobe<10kms−1outtor<2arcsec.Theouter abletostudythedistributionofionizedgasfurtheroutinthegalaxy ://m regions(r>2arcsec)andthecentralmaskedregionhaveerrorsof (Fig.8,secondrow).Fortheanalysisoftheionizedgasemission, nra ∼20–25kms−1inbothvelocityandvelocitydispersion. we use the code LINEFIT (appendix B of Davies et al. 2011 ) to s.o x The systemic velocity and position angle (PA) are determined fit the emission line at each spatial position of our field of view. fo usingthemethodoutlinedinKrajnovic´etal.(2006).Thekinematic LINEFITusesaskyemissionlineobservedclosetothewavelengthof rdjo u PA for the distinct core is determined from the H-band velocity interestasatemplatefortheemission,andthenconvolvesitwitha rn a maplimitedtotheregionofr<1.1arcsec.WefindPA=118± Gaussiankerneltomatchtheobservedlineprofile.Theinstrumental ls .o 22deg(3σ error)measuredfromnorthtoeast.Theregionoutside broadeningisthereforeautomaticallyaccountedforwhenfittingthe rg wtheefidnisdtinPAct=cor1e1i2s±mo8ddeellged(3sσetetirnrogrr).>Th1e.2siamndilarr<ity3b.5etawrecesenct,haensde alinndest.hIenrdmivsidnuoaislepoixfetlhsewciotnhtiSn/uNum<)3w(ebreetwmeaesnketdheopuetaokftohfethimealignee. at Un/ angles combined with the observation of the shift in the velocity Weobservethatthe[FeII]linefluxdoesnotpeakattheposition ive fieldindicatethatthedistinctcoreismisalignedfromthemainbody of the nucleus but at a position north-west of the nucleus, as in rsity o(1f8t0hedeggalsahxiyftwiniththaenveolroiecnittyatoiornienctoantisoisntewntithwirtehspceocutnttoert-hroetamtiaoinn tmheapfiirnstditcimateesitawnaosvdeeratellctbeudlk(Rroaitmatiuonndaolvetelaolc.i2ty01d3i)r.ecTthioenvseilmociiltayr of Ca m bodyofthegalaxy). totheoneofthestellarcounter-rotatingcore,albeitwithahigher b rotationalvelocity[−70,60]kms−1.Wecannowdistinguishfurther rid g structureinthevelocitydispersionmap.Theforbiddentransition e o 3.2 Ionizedgas of [Fe II] is excited by electron collisions. To achieve the right n Ja 3.2.1 HydrogenBrγ emission conditionsforthislineemission,itisnecessarytohaveazoneof nua partiallyionizedhydrogenwhereFe+ ande− coexist.InAGNin ry BclroosaedtohtyhderoAgGeNn,Barnγdi2t.i1s6s6paµtimalleymuinsrseiosonlviseddebtyecotuerddiantat.hTehreegBiorγn tphaertciceunltarra,l[AFeGINI]eomribsysisohnoccaknsb(ceaguesneedrabtyedthbeyipnhteortaocitoionnizaotfiornadbiyo 12, 20 1 emissionalsoshowsanarrowcomponentwhichcanbeseparated jetswiththemedium,bynuclearmassoutflowshockswithambient 7 fromtheunderlyingbroadcomponent.Fig.7showstheintegrated cloudsorbysupernova-drivenshocks;Mouri,Kawara&Taniguchi emission in a region of 0.625 arcsec × 0.625 arcsec centred at 2000;Rodr´ıguez-Ardilaetal.2004).Correlationshavebeenfound thenucleus.Thislineshowsablueshiftof∼100–150kms−1 with betweentheradiopropertiesofSeyfertsandthepresenceof[FeII] respecttothesystemicvelocityofthegalaxy,asfoundinReynolds (Forbes&Ward1993;RamosAlmeidaetal.2006;Riffel,Storchi- etal.(1997).ThebroadBrackettemissionwasusedtodeterminethe Bergmann&Nagar2010)whichindicatesthatshocksassociated instrumentalPSFandthecentreofthePSFistakenasthespatial with radio jets may be the main excitation mechanism in some position of the AGN. Although the narrow emission may have a active galaxies. Mundell et al. (2009) analysis of radio data on contribution from star formation, it is not detected significantly MCG–6-30-15 find a possible elongation in the extended radio outsidethePSFregion.Thevelocity,dispersionandfluxmapsare emissionapproximatelyperpendiculartotheorientationofthe[OIII] showninFig.8(toprow).Fig.9showsthestellarandgasemission emissionwhichmayindicatethepresenceofajet-likeordiscwind velocityprofilesalongthemajoraxisofthegalaxy,averagedina component.However,the[FeII]emissionhasasimilarorientationto pseudo-slitof3pixel(∼0.4arcsec)width.ThekinematicsofBrγ the[OIII]emissionandthereforeitisunlikelythatshocksassociated resemblearotationpatternandisverysimilartotheoneofthestars withapossibleradiojetarethemainexcitationmechanismfor[FeII] intermsofthevelocitygradientandlowdispersion. emissioninthisgalaxy. The Brγ narrow-line flux can be used to estimate the star for- Inourpreviouswork(Raimundoetal.2013),wehypothesized mation rate or to determine upper limits for it in galaxies where that the [Fe II] emission was caused mainly by supernova shocks MNRAS464,4227–4246(2017) 4234 S.I.Raimundoetal. D o w n lo a d e d fro m h ttp ://m n ra s .o x fo rd jo u rn a ls .o rg a/ t U n iv e rs ity o f C Figure8. Velocity,velocitydispersionandfluxmapsoftheionizedgasemissionlinesinourspectra.Toptobottom:narrowBrγ,[FeII],[SiVI]and[CaVIII]. am TThheevwehloitceiteilelsipwseeriencthoerretocptepdafnoerltihnedsicyastteesmtihcevseilzoecoitfytohfetshteelglaarlaKxDyCan.dinstrumentalbroadening.MinimumS/Nis3.0.ThecrossindicatestheAGNposition. bridg e o n J a n u a ry 1 2 , 2 0 1 7 Figure9. HorizontalcutsalongthemajoraxisofthegalaxytomeasuretheionizedgasandtheH-bandmeasuredstellardynamicsasafunctionofradius fromtheAGNposition.Left:velocity.Right:velocitydispersion. fromapreviousstarformationeventandournewobservationssup- in our data, the dynamics of [Fe II] resembles a rotation pattern portthisscenario.Thespatialdistributionofthe[FeII]coincides andisdistinctfromthe[CaVIII]dynamics(Fig.9).Thefollowing with the region where we see the strongest S/N in the stellar ab- additionalindicationsarepresentinthedata.First,weobservethat sorption features and although we detect an AGN-driven outflow the [Fe II] emission extends further out than the [Si VI] and Brγ MNRAS464,4227–4246(2017) TheAGNfuelling reservoirinMCG–6-30-15 4235 D o w n lo a d e d Figure10. H22.12µmdistributionanddynamics.Topleft:velocitymap.Topright:velocitydispersion.Bottomleft:fluxmap.Bottomright:fluxresiduals from acthfoteuesnretsecure-bnrtotrrtaaaclttipinnigxgeceloslrlweip.etTircehaemlmiassoakppehdwoaotesustb.oiTnfnhtehedeHtiom2aarogmtea.itnioimnudmireSc/tNionofi5s.tIhnetshaemceenatsraflorregthioencso,uthneteHr-2roetmatiisnsgiocnoirse.nTothdeestepcatteiadlaetxatesnigtnoifficthaentHS2/Nislelavregle;rthtehraenfotrhee, http://m n ra s emission(Fig.8). Secondly, the [FeII] emissionis not centred at .ox thenucleusandseemstotraceasimilardistributiontowhatisseen ford forthemoleculargas(tracedbytheH emissioninFig.10),which jo 2 u would be expected if both these lines originate from regions of rn a star formation. Thirdly, the velocity dispersion map shows peaks ls.o ithnevlaorcioaulsdyrengaimonicssoafntdhebe[FaessIoI]cieamteidsswiointhwlohcicahtiocnosulodfbmeatjroarcisnug- at Urg/ pernovaevents.Thegeneral[FeII]velocitydispersionprofilealong niv themajoraxis,ascanbeseenintheright-handpanelofFig.9,is ers lowerthanforthestarsortheotherionizedspecies,butcloserto ity o thedispersionprofileofH2,furtherindicatingthatthesetwolines f C maybetracingthesameregionsofstarformationandsupernova a m events. It would be expected that if [Fe II] and H2 are being ex- brid cshitoewdimnothreedsiasmtuerbreedgikoinnse,mthaeticiosn(ihziegdhegrasvetrloacceitdybdyisp[FeersiIIo]nw)othualdn Figure 11. [Ca VIII] emission integrated in a 1arcsec × 1arcsec region ge o n theItmisoloefcucloaurrgseaslitkraeclyedthbaytHA2G.Nphotoionizationalsocontributes cshenowtresdthaetotbhseenrvuecdlesupsecatsruamfuinncbtliaocnk,otfhreetsot-tafrlalmineefiwta(vreeldelnignteh).aTndhethfiegtuwroe Janua to the [Fe II] emission, even if it is not the dominant mechanism Gthaeuvseslioancitcyombipnosnuesnetdsfoofrththeefitto(mbolugeraapnhdygarneeanly)s.iTsh(e−v1e2r5ti,c−al2l5in,e+s2i5n,d+ic1a2t5e ry 12 (Rodr´ıguez-Ardilaetal.2004).The[FeII]emissionwillthenpro- and+190kms−1).Thenumbers1to4indicatethecorrespondingpanelsof , 2 videanupperlimitforthenumberofsupernovaevents.Withour Fig.12. 017 newobservations,wecanprobethe[FeII]emissionwithinthefull extent of the KDC and improve the [Fe II] flux measurement in hasalowerionizationpotential(IP=127eV),anditisobserved Raimundoetal.(2013).Integratingfortheregionswithemission S/N>3,weobtainF =3.0×10−15ergs−1cm−2andL = atahigherS/Nthan[SiVI].Itsemissioniscompactbutresolved, [Feii] [Feii] 4×1038ergs−1. slightly more extended than [Si VI] and asymmetric with its flux emissionpeaknorth-westofthenucleus.Theshapeofthe[CaVIII] emissionlineiscomplex,ascanbeseeninFig.11.Thisplotshows thelineprofileintegratedina1arcsec×1arcsecregioncentredat 3.2.3 Coronallineemission thenucleus.TheemissionlinecanbefittedusingtwoGaussians, Twohigh-ionizationcoronallinesaredetectedintheK-bandobser- andthatholdstrueformostofthepixelsinthemapwithobserved vations:[SiVI]1.963µmand[CaVIII]2.321µm.Theselinesarea emission.Thetwolinesareblueshiftedandredshiftedwithrespect goodtracerofAGNactivityduetotheirhighionizationpotential tothesystemicvelocityofthegalaxyandobservedsimultaneously (IP > 100 eV). [Si VI] (IP = 167 eV) is mainly detected in the ateachspatialposition,whichisanindicationthatweareseeingthe nucleuswithaspatialextentoftheorderoftheinstrumentalPSF. approachingandrecedingsidesofasingleionizationcone.Tobetter ThevelocityandvelocitydispersionmapswithaminimumS/N∼3 understandthepropertiesofthisemission,wemeasuredthefluxat arepresentedinFig.8(thirdrow).Theregionswithfluxlessthan variousvelocitybins(‘velocitytomography’)andplottheresultin 5percentofthatofthepeakweremaskedoutofthemaps.[CaVIII] Fig.12.Wecanseethatthe[CaVIII]dynamicsisdominatedbyan MNRAS464,4227–4246(2017) 4236 S.I.Raimundoetal. Figure12. Velocitytomographyofthe[CaVIII]line.Velocityintervalsindicatedatthebottomcorrespondtodeviationsfromthesystemicvelocityofthe galaxyandcorrespondtotheregions(1to4)delimitedbytheverticallinesinFig.11.ThespatialscaleisarcsecandtheorientationisthesameasinFig.8. Thefirstandthirdpanelsshowtheblueshiftedandredshiftedcomponentsoftheoutflow,respectively.Thissuggeststhatweareseeingtheapproachingand recedingsidesofaone-sidedionizationcone. D Table1. Theradialextentismeasuredinradiusfromthenucleus. inMCG–6-30-15fromX-raystudiesofwarmabsorbers(Sakoetal. o w 2003;Blustinetal.2005;Chiang&Fabian2011).Theseoutflows nlo Spatialextentofthecoronallineemissionregion present blueshifted velocities of vout = −1900 and −150kms−1 ade [[ESCmiaiVsVIs]IIiIo1]n.29l.63i3n2e1µmµm 11IP2677eeVV 00E..x97teaanrrcctss(eeraccd((i∼∼al11)4100ppcc)) aaamtlctachdyeoilsbuetergaahnatcisniestgosicwsoiafintneo0ddt.0(wcB3l6iletuahsarttnihindfeet[5thC.ae7al.tpV2wcI0IoI0]f5rooo)uu.mttTflflhoothewweosauntatuflsrcecolaweplueasssra,totrfosefmrsp<tahelelc1ts4iscv0aaemllpeyecs, http://md from othuetfloouwtfl.oTwheatfiurspttpolo−t1o2n5thkemlesf−t1m.Taphsetnhuecbleluaerschoimftepdonceonmtpisosneeenntoinf waAhsdsiicurehmcwtincegootnhbnasetectrthvioeenfianbsettehtwrisoeuwetnfloorskuw;chahtoarw∼leavr0ge.er0,3riat6nipsgcedwiofofifucpluhdlytlsotiosceaelvsetsalcobacllieistsyh. nras.ox ItshneeeFnsiegicn.o8tnh,dewptheloisrtdhforpwolomtthftehroermelestufhtletasnleodfftt,hfiwettsiintthrgovntehgleorce[CidtsiaehsVifIutIeIp]dteocmo1im2ss5piooknnmewns−titi1hs. taosrietpprroodpuacgeattehse,oitustvfleolwocwityeowbosuelrdvehainve[CtoadVeIIcI]reaatsre∼as1v4o0utp∝c.r−0.4 fordjourn a asingleGaussianline.Althoughtheshapeoftherealemissionis ls .o mredosrehicftoemdpcloemx,ptohneesnetmoauptflsorweflinegctatthveedloycniatimesic∼s1o0f0thkemdso−m1.inating 3.2.4 Opticalemissionlines arg/ The [Si VI] emission could also have a redshifted outflowing IntheVIMOSdatacube,wedetecttwostrongemissionlines:[OIII] t Un component,asthevelocitiesnorth-westofthenucleusareslightly 5007andHβ 4861Å(withanuclearbroadcomponentandaspa- ive higher than expected based solely on rotation and the dispersion tiallyextendednarrowcomponent).Tostudythegasdynamics,we rsity ishigherthanthatobservedinthenarrowBrγ emission(Fig.9). firstusethestellarabsorptionlinestodeterminethegalaxy’ssys- o However,duetoitshigherionizingpotential,thisoutflowingcom- temic velocity. We integrate the data cube spatially in the region f C a m ponentisnotasstrongasin[CaVIII].Thevelocitytomographyfor of the field of view with highest contribution from the galaxy to b [Si VI] shows a very centrally concentrated emission, which does determineanintegratedspectrum.WethenusepPXFandasetof ridg notextend beyondthePSF.Theextent ofthecoronallineregion stellaropticaltemplates(Vazdekis1999)todeterminethesystemic e o n forboththeselinesisshowninTable1.Wedefinetheextentofthe velocity.Thisvelocityisthenusedasareferenceforthestudyofthe J a coronallineregionatthepositionwherethefluxofthelinedrops gasdynamics.ToanalysetheHβ narrowcomponent,wesubtract nu a to5percentofitspeakvalue. thebroadHβcomponentfromthespectra.Asnotedpreviouslyby ry Whencomparingtheprofilesoftheionizedgasemissionwiththe Reynoldsetal.(1997),thebroadHβlinecanbefittedbytwocom- 12 oneofthestars,weseeclearlythatnarrowBrγ hasaprofilesimilar ponents,withthestrongestfluxbeinginacomponentblueshifted , 20 1 tothestars.[SiVI]and[CaVIII]showaredshiftinrelationtothe by ∼150–200kms−1 with respect to the systemic velocity of the 7 stellarrotation.Theredshiftofthe[SiVI]issmallanditisclosetothe galaxy.InFig.13,weshowthelineemissionmapsforthe[OIII]and rangeoferrorsexpectedforthestellarvelocity.[CaVIII]hasaclearly thenarrowHβ.PixelswithS/N<5betweenthepeakoftheline distinctvelocityprofile,dominatedbytheredshiftedcomponentof andthenoiseinaline-freeregionofthecontinuumweremasked theoutflow.Althoughalsoslightlydistinctfromthestellar,theBrγ out.TheHβemissionextendsouttor∼400pc,significantlymore and the [Si VI] profiles, the velocity gradient of [Fe II] is clearly extendedthanthecoronallinesdetectedinthenear-IR.Itsvelocity differentfrom[CaVIII]whichisanotherindicationthatthe[FeII] map shows a rotation pattern counter-rotating with respect to the emissionisnotpartoftheAGNoutflowbuttracingstarformation mainbodyofthegalaxy. inthedisc.ThestudyofRodr´ıguez-Ardilaetal.(2006)onthesize The[OIII]emissionisthemostextendedgasemissionwedetect. ofthecoronallineregioninMCG–6-30-15showsthatthe[FeVII] Thelineisdetectedouttor<10arcsec∼1.5kpcaboveaS/Nof5. linewithanionizationpotentialofIP=100eVclosetotheoneof Thedynamicsintheregiontothesouth-eastofthenucleusmatch [CaVIII](IP=127eV)showsanextentof(cid:2)140pc(afterconverting what we observe in the molecular gas (in terms of the rotational to our cosmological parameters) similar to the spatial extent we velocity expected and counter-rotation). To the north-west of the observeinourstudy(Table1).Rodr´ıguez-Ardilaetal.(2006)also nucleus,thevelocitydispersionincreasesandthevelocitydoesnot findthatthebroadcomponentof[FeVII]isblueshiftedandhasa match the rotational pattern. We are likely observing the large- FWHM∼670kms−1,whichhasbeeninterpretedassignatureof scale counterpart of the gas outflow observed in [Ca VIII]. In this anoutflowingwind.Blueshiftedoutflowshavealsobeendetected region to the north-west of the nucleus, we observe velocities of MNRAS464,4227–4246(2017)

Description:
implications for active galactic nucleus (AGN) fuelling. We present integral fuelling. Key words: galaxies: active – galaxies: individual: MCG–6-30-15 – galaxies: kinematics and dynamics – galaxies: nuclei – galaxies: Seyfert. Tsatsi A., Macci`o A. V., van de Ven G., Moster B. P., 2015,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.