DRAFTVERSIONJANUARY30,2017 PreprinttypesetusingLATEXstyleAASTeX6v.1.0 TRACINGINTERSTELLARMAGNETICFIELDUSINGVELOCITYGRADIENTTECHNIQUE: APPLICATIONTOATOMICHYDROGENDATA KAHOYUEN1,2,A.LAZARIAN1 1DepartmentofAstronomy,UniversityofWisconsin-Madison 2DepartmentofPhysics,TheChineseUniversityofHongKong 7 ABSTRACT 1 0 The advancement of our understanding of MHD turbulence opens ways to develop new techniques to probe 2 magnetic fields. In MHD turbulence, the velocity gradients are expected to be perpendicular to magnetic fieldsandthisfactwasusedbyGonza´lez-Casanova&Lazarian(2016)tointroduceanewtechniquetotrace n a magneticfieldsusingvelocitycentroidgradients. Thelattercanbeobtainedfromspectroscopicobservations. J WeapplythetechniquetoGALFAHIsurveydataandcomparethedirectionsofmagneticfieldsobtainedwith 7 our technique with the direction of magnetic fields obtained using PLANCK polarization. We find excellent 2 correspondencebetweenthetwowaysofmagneticfieldtracing, whichisobviousviavisualcomparisonand through measuring of the statistics of magnetic field fluctuations obtained with the polarization data and our ] A technique. This suggests that the velocity centroid gradients has a potential for measuring of the foreground magneticfieldfluctuationsandthusprovideanewwayofseparatingforegroundandCMBpolarizationsignals. G Keywords:ISM:general—ISM:structure—magnetohydrodynamics(MHD)—radiolines: ISM—turbu- . h lence p - o 1. INTRODUCTION neticfield. Thispropertyofvelocitygradientswasemployed r inGonza´lez-Casanova&Lazarian(2016,hereafterGL16)to t Turbulence is ubiquitous in astrophysics. The Big Power s introduce a radically new way of tracing magnetic fields us- a LawintheSky(Armstrongetal.1995;Chepurnov&Lazar- ingspectroscopicdata.Insteadofusingalignedgrainsorsyn- [ ian2010)showsclearevidencethatinterstellarturbulenceex- chrotronpolarization(seeDraine2011),GL16appliedveloc- tendsover10ordersofmagnitudeofscalesintheinterstellar 1 ity centroid gradients (henceforth VCGs) to synthetic maps media(ISM).TheISMismagnetizedandthereforetheturbu- v obtained via MHD simulations and obtained a good agree- 4 lenceismagnetohydrodynamic(MHD)innature,e.g. see(Li mentbetweentheprojectedmagneticfieldsandthedirections 4 etal.2014;Zhangetal.2014;Pillaietal.2015). traced by the VCGs. As the velocity centroids can be read- 9 The modern theory of turbulence has been developed on 7 the basis of the prophetic work by Goldreich, (1995, hence- ilyavailablefromspectroscopicobservations(seeEsquivel& 0 Lazarian2005),thisprovidedawaynotonlyforobservational forthGS95).Theoriginalideasweremodifiedandaugmented . tracing of magnetic fields but also for finding its strength 1 in subsequent theoretical and numerical studies (Lazarian & 0 Vishniac 1999; Cho & Vishniac 2000; Maron & Goldreich using the GL16 technique that is similar to the well-known 7 Chardrasechar-Fermimethod. 2000; Lithwick & Goldreich 2001; Cho et al. 2001; Cho & 1 Motivated by the GL16 study, in this paper we calculate Lazarian2002,2003;Kowal&Lazarian2010, seeBranden- v: burg&Lazarian2013foraareview).1 TheAlfvenicincom- theVCGsusingHIdatafromtheGALFAsurvey(Peeketal. i pressiblemotionsdominatethecascade. Thiscascadecanbe 2011) and compare the directions of the magnetic fields that X we trace using the gradients with the directions of magnetic visualized as a cascade of elongated eddies rotating perpen- ar dicular tothe local direction ofthe field.2 Naturally, thisin- fields that are available from the PLANCK polarization sur- vey (Adam et al. 2016).3 To do this, we first significantly ducesthestrongestgradientsofvelocityperpendiculartothe improvetheprocedureofcalculatingoftheVCGsandtestit magnetic field. Thus one can expect that measuring the gra- with numerical data. Our recipe for calculating the VCGs is dientinturbulentmediacanrevealthelocaldirectionofmag- presentedin§2, whilein§3, weapplythetechniquetotrace [email protected],[email protected] magneticfields. Wediscussourresultsin§4,andourconclu- 1 WedonotconsiderthemodificationsoftheGS95modelthatwerein- sionsarepresentedin§5. tendedtoexplainthespectrumk−3/2thatwasreportedinsomenumerical studies(e.g.Boldyrev(2006)).Webelievethatthereasonforthedeviations fromtheGS95predictionsisthenumericalbottleneckeffect,whichismore extendedintheMHDcomparedtohydroturbulence(Beresnyak&Lazarian 2. IMPROVEDPROCEDUREFORCALCULATING 2010). Thisexplanationissupportedbyhighresolutionnumericalsimula- VELOCITYGRADIENTS tionsthatcorrespondtoGS95predictions(seeBeresnyak&Andrey(2014)). ThesimulationsalsostronglysupporttheanisotropypredictedinGS95and ruleouttheanisotropypredictionintheaforementionedalternativemodel. 2 ThenotionofthelocaldirectionwasnotapartoftheoriginalGS95 3BasedonobservationsobtainedwithPlanck(http://www.esa.int/Planck), model.Itwasintroducedandjustifiedinmorerecentpublications(seeLazar- anESAsciencemissionwithinstrumentsandcontributionsdirectlyfunded ian&Vishniac1999;Cho&Vishniac2000;Maron&Goldreich2000). byESAMemberStates,NASA,andCanada. 2 GL16 established that the VCGs can trace magnetic field inMHDturbulence. However,thisexploratorystudylacksa criteriononjudgingonhowwellgradientscantracemagnetic fields. Thereforeitisdifficulttojudgewhatistheresolution requirementtotracemagneticfieldvectorsandandwhatare the uncertainties. Therefore our first goal is to introduce a more robust procedure of the VCGs calculation which is to returnthetracingthatisindependentontheresolutionofthe simulationsandonlydependsontheparametersofMHDtur- bulence. Weusedasinglefluid,operator-split,staggeredgridMHD Eulerian code ZEUS-MP/HK,4 a variant of the well-tested code ZEUS-MP (Norman 2000; Hayes et al. 2006), to set upathree-dimensional,uniform,isothermal,supersonic,sub- Alfvenic turbulent medium. We adopted periodic boundary conditions. The initial cube was set with a uniform den- sity, and an initial uniform field. Turbulence was injected solenoidallycontinuously,e.g. see(Ostrikeretal.2000),see alsoAppendixofOttoetal.(2017). Oursimulationshadthe resolution of 7923. We selected two cubes with sonic Mach number M = 5 andAlfvenic Machnumber M = 0.6 but s A differentinitialmagneticfieldorientation(onewasparallelto the z-axis, another is at the angle π/7 to the z-axis). Com- paredtotheGL16,weusedhigherresolutionsimulationsand studiedtheeffectofvaryingmagnetic-fielddirectionrelative tothelineofsight. To trace magnetic field we generated polarization maps by projecting our data cubes along the x-axis and assum- ing that the dust producing the polarization followed the gas and was perfectly aligned by the magnetic field. Let φ = tan−1(B /B ),whereB aretheyandzdirectionofmag- Figure1. (Upperfour)Thedistributionofabsoluteangle(red) y z y,z netic field. The intensity I, velocity centroid C and stokes and relative angle (blue) in a synthetic map of size 792x792 parametersQ,U werecomputedby: for sub-regions of size 33x33, 50x50, 99x99, 198x198, re- spectively. The Gaussian profile emerges when the patch is (cid:90) 1/8ofthetotallengthofthemap. Theprofileiswell-defined I(r)= ρ(r,x)dx when it is 1/4 of the map. (Lower four) The distributions of (cid:90) absolute angle (red) and relative angle (blue) from observa- C(r)=I−1 ρ(r,x)v (r,x)dx x tion data for sub-region of size 50x50, 100x100, 200x200, (cid:90) 300x300(relativetoGALFA-HIdataresolution)respectively. (1) Q(r)∝ ρ(r,x)cos2φdx (cid:90) totheSoberoperatorusedinSoleretal.(2013).Wesmoothed U(r)∝ ρ(r,x)sin2φdx ourdatawithaσ =2pixelsGaussiankernel. The statistical properties of gradient fields can determine themeandirectionofmagneticfieldsinasub-regionofinter- where r is the vector on the y − z plane. The polarization est. We divided our synthetic maps into sub-regions and ex- angleisgivenbyφ2d =0.5tan−1(U/Q). Polarizationtraces amined the statistical behavior of gradient vector orientation themagneticfieldprojectedalongthelineofsight. (hereafterabsoluteangle(AA))andrelativeangleφbetween WecalculatedvelocitycentroidsfollowingGL16butmod- gradientsandfields(hereafterrelativeangle(RA))withinthe ified the VCGs calculations to increase the accuracy of the region. The upper four panels of 1 shows what distributions procedure. In particular, we performed cubic spline interpo- oftheAAandRAlooklikewhensizeoftheblockdecreases. lation,whichusesathree-pointestimatetoprovidethemaps As the block size increases, the mean gradient direction be- forgradientstudy. Theresultingmapis10timeslargerthan comesmorewell-defined. Thealignmentbetweenthegradi- the original one. To search for maximum gradient direction entandmagneticfieldalsobecomesmoreclearasblocksize in each data point, we selected a neighborhood of the radius increases. Wefindthatastheblocksizearrivesat 100×100, vectorr ∈(0.9,1.1)pixelsintheinterpolatedmap.Theinter- asharpdistributionemergeswithwell-definedmeananddis- polationprocessisaccuratewitha3oerror,andiscomparable persion. BymeasuringthemeanoftheAAdistributions,we determine the mean magnetic field direction within the re- 4MaintainedbyOtto&Yuen,(https://bitbucket.org/cuhksfg/zeusmp-hk/) spectiveblock.TheRAdistributionstellsushowaccuratethis 3 Figure2. (Upper16panels)ThedistributionofAA(red)andRA(blue)inasyntheticmapfromrun-2withblocksize198×198. By detecting the peak of the AA distribution, we determined the mean magnetic field direction within the block. (Lower) The predictedmeanmagneticfieldvector(red)comparedwiththerealmagneticfieldvector(blue). Thebackgroundistheintensity ofthesyntheticmap. 4 prediction of magnetic fields is. We shall call this treatment High Frequency Instrument (HFI).5 We performed the same sub-block averaging in the following sections. Notice that, procedureasindicatedinSection2. WecheckedtheAAand sub-block averaging is not a smoothing method. It is used RA,asshowninthelower4panelsof1,topickanappropriate to increase the emphasis of important statistics and suppress blocksizeforagradientvector. Forthegivencase, a100× noise in a region, and provide an estimate on how accurate 100blocksatisfiestherequirementintherecipe. Thevelocity thisaveragingisbytheAA-RAdiagram. Ontheotherhand, gradientvectorsareplottedwithpolarizationvectorsinFigure smoothingdoesnotprovidesuchanestimate. Adetaileddis- 3. Inthisregion,mostofthegradientvectorsalignverywell cussion of how white noise affects the sub-block averaging withpolarizationvectors. Thedetailedstudyoftheobserved andsmoothingisprovidedinanextendedpaperbyLazarian deviationsfromtheperfectalignmentwillbeprovidedinour et al. (2017), where the a companion new measure, namely, subsequentpublication. synchrotronintensitygradientsarestudied. Following GL16 we provide a comparison with the align- ThebenefitsofourapproachcanbeseeninFigure2.Wedi- mentmagneticfieldastracedbypolarizationandtheintensity videdthewholesimulationdomaininto16blockswithequal gradients. Theemissionintensityofatomicisproportionalto size,andpredictedthemagneticfielddirectionineachblock. itscolumndensity.Thecolumndensitygradientswereshown Asonecanseefromthesefigures,theVCGstracewellmag- toactastracersofmagneticfieldsis(Soleretal.2013).Figure neticfields. Wealsoconfirmedthisforsyntheticobservations 5 shows the histograms of relative orientations between ve- whenthelineofsightwasatdifferentanglestothemeandi- locityandintensitygradientvectorstopolarization. Inagree- rectionofmagneticfield. ment with the theoretical expectations as well as the results Chandrasekhar & Fermi (1953, C-F) provides an expres- in GL16, our improved procedure of calculating the VCGs sionrelatingthestrengthofofplane-of-skymagneticfieldby shows that the latter are much better aligned with polariza- dispersionofturbulentvelocitiesδv andpolarizationvectors tioncomparedtotheintensitygradients. Indeed,nearly80% δθ in magnetized turbulence (For an improved C-F method, of the VCGs are within 45o deviation from the polarization seeFalceta-Goncalvesetal.2008): directioncomparedto61%oftheintensitygradients. (cid:112) δv 4. DISCUSSION δB ∼ 4πρ (2) δφ 4.1. Structurefunctionsofvelocitygradients Themeanmagneticfieldstrengthcanalsobecalculatedus- The structure functions of polarization and gradient fields ing the same concept in sub-block averaging.The dispersion can also allow us to study how well-aligned they are. As ofVCGsandthatofmagnetic-fielddirectionsarenotexactly the statistics of polarization are dependent on the Alfvenic thesame,butthedifferenceissmall. GL16introducedafac- MachnumberM (Falceta-Goncalvesetal.2008),theclose A torγ of∼1.29toaccountforthisdifference. Inourcase,us- relationship between rotated the VCGs and magnetic fields ingourimprovedprocedureofgradientcalculationwegetthe suggests that gradient statistics should have similar behavior dispersionoftheVCGsinblocksthatisjust1.07-timesthatof to the polarization statistics. To compare the VCGs to po- polarization. Thestandarddeviationoftheratioofthedisper- larization in synthetic maps, we extended the sub-block av- sionsis0.05. AsillustratedinGL16,thefactorγ varieswith eraging algorithm to every point of our map, and computed parameters of MHD turbulence. Elsewhere we shall provide the structure function in terms of the orientation θ of gradi- afittingexpressionforγasthefunctionofMsandMA. This ent/polarizationvectors: shouldfurtherincreasetheaccuracyofobtainingthevalueof SF (r)=(cid:104)(θ(r(cid:48))−θ(r(cid:48)+r))2(cid:105) (3) magneticfieldstrength. Moredetailsonthetechniqueofob- 2 taining magnetic field intensity using only spectroscopic in- Thestatisticsofdustpolarizationareimportantforstudying formation and no polarimetry will be provided in our forth- magneticfieldturbulence(Falceta-Goncalvesetal.2008)and comingpaper(Yuen&Lazarian,inpreparation). forcleaningtheCMBpolarizationmaps. Ifwewanttodothe sameusingVCGs,itisimportanttesttowhatextentthestatis- 3. APPLICATIONTOOBSERVATIONDATA ticsoftheVCGsaresimilartothoserevealedbypolarization. The left and the middle panels of 4 show the power spectra With the tested procedure in hand, we selected diffuse re- P (k) and second order structure functions SF (r), respec- gions from observation surveys. We acquired data from the φ 2 tively,oftheVCGsorientationandthepolarizationangle. In Galactic Arecibo L-Band Feed Array HI Survey (GALFA- termsofthespectra,bothVCGsorientationsandpolarization HI).WecomparetheVCGsdirectionstothePLANCKpolar- angles exhbitit a −2 slope. We also examined the structure ization data. In diffuse media, polarization of emitted radia- functionsforpolarizationandtheVCGdistributionsfromthe tionisperpendiculartolocalmagneticfielddirection(Lazar- observationdatausingthesameprocedure.Therightpanelof ian 2007; Andersson et al. 2015), i.e. the same way as the Figure4showsthestructurefunctioncomputedusingobser- VCGs. To adapt the difference of resolutions, we adjust the vationdata,the+1slopealsoemerged. block size used in Planck to reflect the same physical block GALFAisreferringto. 4.2. Comparisonwithothertechniquesandearlierpapers TheregionweselectedfromGALFA-HIsurveydataspans right ascension 15o to 35o and declination 4o to 16o. The 5 We use the planckpy module to extract polarization bin size along the velocity axis is 0.18 km/s. We analyzed data in a particular region with J2000 equatorial coordinate: 353GHz polarization data obtained by the Planck satellite’s (https://bitbucket.org/ezbc/planckpy/src) 5 Figure3. Rotated VCGs (Yellow) map obtained using GALFA-HI data. Red vectors are polarization directions obtained from thePLANCKdata. Thedirectionspresentedinthisfigureshowthedirectionbutnotthemagnitude. Thebackgroundshowsthe columndensityofatomichydrogen. ThispaperpresentsthefirstapplicationoftheVCGstoob- ploredbySoleretal.(2013).Thealignmentofthesegradients servational data arising from diffuse media. By comparing withmagneticfieldisalsoduetothepropertiesofturbulence. theresultsobtainedwiththeVCGsandPLANCKpolarimetry For instance, Beresnyak et al. (2005) showed that GS95 tur- data, we have demonstrated the practical utility of the VCG bulence can in some situations imprint its structure on den- for tracing of magnetic fields and obtaining statistical infor- sity. However,densitydoesnottraceturbulenceasdirectlyas mationaboutmagneticfieldinthisdiffuseregion. velocitydoes. Therefore, weexpectmoredeviationsofden- Thegradienttechniqueshavebigadvantageoverothertech- sity gradients from the magnetic field direction compared to niques for estimating magnetic field direction and strengths: thevelocitygradients. Ourstudyconfirmstheconclusionsin These techniques only require an easily available centroid. GL16 that the VCGs provide a better tracer. We expect that Unlike the PLANCK map, the VCG maps do not require thedensitygradientsarerelatedtothefilamentswhichalign uniquemulti-billiondollarsatellitesbutcanberoutinelyob- withmagneticfieldsasreportedinClarketal.(2015). There- tainedwiththeexistingspectroscopicsurveys. Byusingdif- foreweexpectthattheVCGstracemagneticfieldsbetterthan ferent species, one can distinguish and study separately dif- thefilaments. ferent regions along the line of sight. Combining the VCGs We,however,havetostressthatthisregionisonlyapartic- thattracemagneticfieldsindiffusegaswithpolarimetry,e.g. ularexampleonhowVCGworks,whichdoesnotrepresentit ALMA polarimetry, that traces magnetic fields in molecular isapplicableeverywherewithoutcautionsonthelimitations. clouds,onecanstudywhatishappeningwithmagneticfields One should understand that both density and velocity prop- asstarformationtakesplace.Thismaybeawaytotestdiffer- ertiesareimportantcomponentsofMHDturbulentcascades. ent predictions, e.g. the prediction of magnetic flux removal Therefore, the deviations of the gradients from the magnetic through the reconnection diffusion process (Lazarian & A. field direction are informative. For instance, we observe an 2005,2014;Lazarianetal.2012). adifferentbehaviorofVCGsanddensitygradientsinthere- The alignment of density gradients were previously ex- gions of strong shocks as well as in self-gravitating regions 6 Figure4. The power spectrum (Left) and second order structure function (Middle) of the sub-block averaged velocity gradient (blue) and polarization (red) from the synthetic map.. Both power spectra and structure functions show very similar behavior. Structurefunctions(Right)ofthesub-blockaveragedvelocitygradientsandpolarizationanglefromobservationdata. OurworkprovideapromisingexampleonhowtheVeloc- 1.0 ity Centroid Gradient (VCG) technique introduced in GL16 VCG tracesmagneticfieldsininterstellarmedia. Inthepaper: IG 0.8 1. We provide a new robust prescription for calculating the nt VCGsandtestthisnewapproachusingthesyntheticdataob- u o e c tainedwithMHDsimulations. ativ0.6 mul 2. We show that with the new prescription the estimates of u d c magneticfieldstrengthbasedontheC-Fapproachcanbeim- alize0.4 proved. m or n 3. We apply the VCGs to the available high latitude HI 0.2 GALFA data and demonstrate an excellent alignment of the direction of the VCGs and those measured by PLANCK po- 0.0 larization. 0 10 20 30 40 50 60 70 80 90 Relative pseudo-angle between VCG/IG to polarization (degrees) 4. We show that the statistics of the fluctuations measured Figure5.Acumulativehistogramshowingtherelativepseudo- by the VCGs and polarization have the same slope for both angle between sub-block averaged VCG and intensity gradi- synthetic and observational data, which suggests that VCGs ent(IG)topolarization. Totracethemagneticfielddirection, couldpotentiallybepromisingtoolforaccountingforpolar- werotatedgradientvectorsby90degrees. izedforegroundswithinCMBstudies. 5. Thedifferencesbetweenthedirectionsdefinedbythepo- larization, the VCGs and the intensity gradients carry infor- (Yuen&Lazarian,inprep.).Thereforethereisimportantsyn- mation about the turbulent interstellar medium and this calls ergyofthesimultaneoususeofVCGs,density/intensitygra- forthesynergeticuseofthethreemeasures. dientsandpolarimetry.Addingtothelistthenewlysuggested techniqueofsynchrotronintensitygradientsthatisdiscussed WethankSusanClarkforherhelpwithGALFAdata. We inanewpaperbyLazarianetal. (2017)increasesthewealth thankAviLoebandDiegoF.Gonzalez-Casanovausefuldis- oftheavailabletools.Thisopensnewwaysofexploringmag- cussions. WealsothankPaulLawforhisgeneroushelpwith neticfieldsinthemulti-phaseISM. PLANCK data. The stay of KHY at UW-Madison is sup- Wewouldalsoliketopointoutthatwhilethepolarimetry ported by the Fulbright-Lee Hysan research fellowship and directions in Figure 3 seem to be well aligned over signifi- DepartmentofPhysics,CUHK.ALacknowledgesthesupport cant patches of the sky, this does not mean that there is no theNSFgrantAST1212096,NASAgrantNNX14AJ53Gas turbulence there. The correspondence of the VCGs and po- well as a distinguished visitor PVE/CAPES appointment at larization directions can be understood only if the media is the Physics Graduate Program of the Federal University of turbulent. Thepowerlawbehaviorofthestatisticsrelatedto RioGrandedoNorte,theINCTINEspaoandPhysicsGradu- boththeVCGsandpolarizationdirectionsconfirmsthis. The ateProgram/UFRN. factthatthepowerlawdoesnotcorrespondtotheGS95slope isduetotheeffectsoftheemittingregiongeometryasitdis- REFERENCES cussedinCho&Lazarian(2002,2009). Adam,R.,Ade,P.A.R.,Aghanim,N.,etal.2016,Astronomy& 5. CONCLUSIONS Astrophysics,594,A8 7 Andersson,B.-G.,Lazarian,A.,&Vaillancourt,J.E.2015,Annu.Rev. Goldreich,P. &Sridhar,S.1995,TheAstronomicalJournal,438,763 Astron.Astrophys,53,501 Gonza´lez-Casanova,D.F.,&Lazarian,A.2016,ArXive-prints, Armstrong,J.W.,Rickett,B.J.,&Spangler,S.R.1995,TheAstrophysical arXiv:1608.06867 Journal,443,209 Hayes,J.C.,Norman,M.L.,Fiedler,R.A.,etal.2006,188 Beresnyak,A.2014,ApJL,784,L20 Kowal,G.,&Lazarian,A.2010,TheAstrophysicalJournal,Volume720, Beresnyak,A.,&Andrey.2014,TheAstrophysicalJournalLetters,Volume Issue1,pp.742-756(2010).,720,742 784,Issue2,articleid.L20,5pp.(2014).,784 Lazarian,A.2005,MAGNETICFIELDSINTHEUNIVERSE:From Beresnyak,A.,&Lazarian,A.2010,TheAstrophysicalJournalLetters, LaboratoryandStarstoPrimordialStructures.AIPConference Volume722,Issue1,pp.L110-L113(2010).,722,L110 Proceedings,Volume784,pp.42-53(2005).,784,42 Beresnyak,A.,Lazarian,A.,&Cho,J.2005,TheAstrophysicalJournal, Lazarian,A.2007,J.Quant.Spec.Radiat.Transf.,106,225 Volume624,Issue2,pp.L93-L96.,624,L93 —.2014,SpaceScienceReviews,181,1 Boldyrev,S.2006,PhysicalReviewLetters,96,115002 Lazarian,A.,Esquivel,A.,&Crutcher,R.2012,TheAstrophysicalJournal, Brandenburg,A.,&Lazarian,A.2013,SpaceScienceReviews,Volume Volume757,Issue2,articleid.154,20pp.(2012).,757 178,Issue2-4,pp.163-200,178,163 Lazarian,A.,&Vishniac,E.T.1999,TheAstrophysicalJournal,Volume Chandrasekhar,S.,&Fermi,E.1953,TheAstrophysicalJournal,118,116 517,Issue2,pp.700-718.,517,700 Chepurnov,A.,&Lazarian,A.2010,TheAstrophysicalJournal,Volume Li,Z.-Y.,Banerjee,R.,Pudritz,R.E.,etal.2014,arXiv.org,1401,2219 710,Issue1,pp.853-858(2010).,710,853 Lithwick,Y.,&Goldreich,P.2001,TheAstrophysicalJournal,Volume562, Cho,J.,&Lazarian,A.2002,PhysicalReviewLetters,vol.88,Issue24,id. Issue1,pp.279-296.,562,279 245001,88 Maron,J.,&Goldreich,P.2000,TheAstrophysicalJournal,Volume554, —.2003,MonthlyNoticesoftheRoyalAstronomicalSociety,Volume345, Issue2,pp.1175-1196.,554,1175 Issue12,pp.325-339.,345,325 Norman,M.L.2000,6,6 —.2009,TheAstrophysicalJournal,Volume701,Issue1,pp.236-252 Ostriker,E.C.,Stone,J.M.,&Gammie,C.F.2000,56 (2009).,701,236 Otto,F.,Ji,W.,&Li,H.-b.2017,arXiv:1701.01806 Cho,J.,Lazarian,A.,&Vishniac,E.2001,TheAstrophysicalJournal, Peek,J.E.G.,Heiles,C.,Douglas,K.A.,etal.2011,TheAstrophysical Volume564,Issue1,pp.291-301.,564,291 JournalSupplement,Volume194,Issue2,articleid.20,13pp.(2011)., Cho,J.,&Vishniac,E.T.2000,TheAstrophysicalJournal,Volume539, 194 Issue1,pp.273-282.,539,273 Pillai,T.,Kauffmann,J.,Tan,J.C.,etal.2015,74 Clark,S.E.,Hill,J.C.,Peek,J.E.G.,Putman,M.E.,&Babler,B.L.2015, Soler,J.D.,Hennebelle,P.,Martin,P.G.,etal.2013,16 PhysicalReviewLetters,115,1 Zhang,Q.,Qiu,K.,Girart,J.M.,etal.2014,1 Draine,B.T.2011,Physicsoftheinterstellarandintergalacticmedium (PrincetonUniversityPress),540 Falceta-Goncalves,D.,Lazarian,A.,&Kowal,G.2008,TheAstrophysical Journal,Volume679,Issue1,articleid.537-551,pp.(2008).,679