Towards Viable Quantum Computation for Chemistry Citation Babbush, Ryan Joseph. 2015. Towards Viable Quantum Computation for Chemistry. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Permanent link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467325 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA Share Your Story The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story . Accessibility Towards Viable Quantum Computation for Chemistry A dissertation presented by Ryan Joseph Babbush to The Committee in Chemical Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Chemical Physics Harvard University Cambridge, Massachusetts May 2015 c 2015 - Ryan Joseph Babbush (cid:13) All rights reserved. Dissertation Advisor Author Al´an Aspuru-Guzik Ryan Joseph Babbush Towards Viable Quantum Computation for Chemistry Abstract Sinceitsintroductiononedecadeago,thequantumalgorithmforchemistryhasbeenamong the most anticipated applications of quantum computers. However, as the age of industrial quantum technology dawns, so has the realization that even “polynomial” resource over- heads are often prohibitive. There remains a large gap between the capabilities of existing hardware and the resources required to quantum compute classically intractable problems in chemistry. The primary contribution of this dissertation is to take meaningful steps to- wards reducing the costs of three approaches to quantum computing chemistry. First, we discusshowchemistryproblemscanbeembeddedinHamiltonianssuitableforcommercially manufacturedquantumannealingmachines. Weintroduceschemesformoreefficientlycom- piling problems to annealing Hamiltonians and apply the techniques to problems in protein folding, gene expression, and cheminformatics. Second, we introduce the first adiabatic quantum algorithm for fermionic simulation. Towards this end, we develop tools which embed arbitrary universal Hamiltonians in constrained hardware at a reduced cost. Finally, we turn our attention to the digital quantum algorithm for chemistry. By exploiting the locality of physical interactions, we quadratically reduce the number of terms which must be simulated. By analyzing the scaling of time discretization errors in terms of chemical properties, we obtain significantly tighter bounds on the minimum number of time steps which must be simulated. Also included in this dissertation is a protocol for preparing configuration interaction states that is asymptotically superior to all prior results and the details of the most accurate experimental quantum simulation of chemistry ever performed. iii Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Introduction 1 1.1 Quantum Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Adiabatic Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Digital Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . 10 I Quantum Annealing 14 2 Compiling Classical Optimization Problems for Quantum Annealing 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Optimal reduction gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Efficient encoding techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Lattice Protein Folding Using Quantum Annealing 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 The “Turn” Encoding of Self-Avoiding Walks . . . . . . . . . . . . . . . . . 48 3.3 The “Diamond” Encoding of SAWs . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Pseudo-boolean Function to W-SAT . . . . . . . . . . . . . . . . . . . . . . 72 3.5 W-SAT to Integer-Linear Programming . . . . . . . . . . . . . . . . . . . . 76 3.6 Locality Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.7 Example Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Bayesian Network Structure Learning Using Quantum Annealing 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3 Mapping BNSL to QUBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Penalty Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 iv 5 Training Robust Binary Classifiers Using Quantum Annealing 128 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.2 Cubic loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 Sixth-order loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.4 Explicit tensor construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 II Adiabatic Quantum Computation 154 6 Realizable Perturbative Gadgets for Encoding Quantum Problems 155 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.3 Improved Oliveira and Terhal subdivision gadget . . . . . . . . . . . . . . . 165 6.4 Parallel subdivision and k- to 3-body reduction . . . . . . . . . . . . . . . . 170 6.5 Improved Oliveira and Terhal 3- to 2-body gadget . . . . . . . . . . . . . . 179 6.6 Creating 3-body gadget from local X . . . . . . . . . . . . . . . . . . . . . . 188 6.7 YY gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 7 Adiabatic Quantum Simulation of Quantum Chemistry 214 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 7.2 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.3 Qubit Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 7.4 Hamiltonian Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 7.5 Example Problem: Molecular Hydrogen . . . . . . . . . . . . . . . . . . . . 236 7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 III Digital Quantum Computation 245 8 Scaling of Trotter-Suzuki Errors in Quantum Chemistry Simulation 246 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.2 Analysis of Trotter error operator . . . . . . . . . . . . . . . . . . . . . . . . 255 8.3 Improved simulation methods inspired by classical approaches . . . . . . . . 271 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 8.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 9 Exploiting Locality in Quantum Chemistry Simulation 291 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 9.2 Quantum energy estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 9.3 Using imperfect oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 9.4 Adiabatic computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 v 10 Quantum Chemistry Simulation in a Solid-State Spin Register 329 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 10.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 10.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Bibliography 343 vi Citations to previously published work Apart from minor modifications, Chapters 2-10 appeared as the following publications: “Resource Efficient Gadgets for Compiling Adiabatic Quantum Optimization Problems”. Ryan Babbush, Bryan O’Gorman, and Al´an Aspuru-Guzik. An- nalen der Physik. Volume 525, Number 10-11: 877-888. 2013. “Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing”. Ryan Babbush, Alejandro Perdomo-Ortiz, Bryan O’Gorman and Al´an Aspuru- Guzik. Advances in Chemical Physics. Volume 155, Chapter 5: 201-243. 2014. “Bayesian Network Structure Learning Using Quantum Annealing”. Bryan O’Gorman, Alejandro Perdomo-Ortiz, Ryan Babbush, Al´an Aspuru-Guzik and Vadim Smelyanskiy. European Physical Journal Special Topics. Volume 225, Number 1: 163-188. 2015. “Construction of Non-Convex Polynomial Loss Functions for Training a Binary Classifier with Quantum Annealing”. Ryan Babbush, Vasil Denchev, Nan Ding, Sergei Isakov and Hartmut Neven. arXiv preprint 1406.4203. 1-9. 2014. “Hamiltonian Gadgets with Reduced Resource Requirements”. Yudong Cao, Ryan Babbush, Jacob Biamonte, and Sabre Kais. Physical Review A. Volume 91, Number 1: 012315. 2015. “Adiabatic Quantum Simulation of Quantum Chemistry”. Ryan Babbush, Pe- ter Love and Al´an Aspuru-Guzik. Scientific Reports. Volume 4, Number 6603: 1-11. 2014. “Chemical Basis of Trotter-Suzuki Errors in Quantum Chemistry Simulation”. Ryan Babbush, Jarrod McClean, Dave Wecker, Al´an Aspuru-Guzik and Nathan Wiebe. Physical Review A. Volume 91, Number 2: 022311. 2015. “Exploiting Locality in Quantum Computation for Quantum Chemistry”. Jar- rod McClean, Ryan Babbush, Peter Love and Al´an Aspuru-Guzik. Journal of Physical Chemistry Letters. Volume 5, Number 24: 4368-4380. 2014. “Quantum Simulation of Helium Hydride in a Solid-State Spin Register”. Ya Wang, Florian Dolde, Jacob Biamonte, Ryan Babbush, Ville Bergholm, Sen Yang, Ingmar Jakobi, Philipp Neumann, Al´an Aspuru-Guzik, James D. Whit- field and Jørg Wrachtrup. arXiv preprint 1405.2696. 1-9. 2014. vii I contributed to two additional publications during the course of my doctorate which are not related to quantum computation and thus did not make it into this dissertation [17, 91]: “Force-Field Functor Theory: Classical Force-Fields which Reproduce Equilib- riumQuantumDistributions”. RyanBabbush,JohnParkhill,andAl´anAspuru- Guzik. Frontiers in Chemistry. Volume 1, Number 26: 1-10. 2013. “BayesianSamplingUsingStochasticGradientThermostats”. NanDing,Youhan Fang, Ryan Babbush, Changyou Chen, Robert Skeel and Hartmut Neven. Ad- vancesinNeuralInformationProcessingSystems. Number27: 3203-3211. 2014. viii Acknowledgments First and foremost, I would like to thank my advisor, teacher, and friend, Professor Al´an Aspuru-Guzik. Al´an’s infectious enthusiasm for science, his endless excitement and his unpretentious demeanor foster an environment where students learn because there are no stupid questions and where creativity abounds because discussing science is as much fun as it is serious. Working in Al´an’s lab provided me the opportunity to pursue the projects I found most interesting, work with the people from whom I could learn the most, and seek out opportunities (such as internships at Microsoft and Google) which advanced a non-academic scientific career. Though I’ve learned a lot of science from Al´an, by watching him I think I have learned even more about how to inspire people and be a good boss. Next, I thank three of my senior coauthors whose sustained mentorship has had very significant impact on my development as a scientist. During my second year, I worked closely with Professor John Parkhill (then a postdoc) who taught me much about program- ming, statistical mechanics, and research methods in general. While interning at Microsoft Research, I spent hours each day pestering Dr. Nathan Wiebe who responded by teaching me almost everything I know about universal quantum simulation. Last but not least, it has been a true privilege to work closely with Professor Peter Love for the last two years. Peter’s constant advice on everything from the politics of industry to the classification of Lie algebras has contributed substantially to my success in graduate school. I am also grateful for my affiliation with the Quantum A.I. Lab, which is joint between Google and NASA. Throughout my internship and collaborations with the group at Google I learned much about quantum annealing from my many conversations with Dr. Sergio Boixo, Dr. Masoud Mohseni, Dr. Alireza Shabani, Dr. Sergei Isakov, Dr. Hartmut Neven ix
Description: