PAPER • OPEN ACCESS Related content Towards synthetic molecular motors: a model -How molecular motors extract order from chaos (a key issues review) Peter M Hoffmann elastic-network study -The physics of biological molecular motors N Thomas and R A Thornhill To cite this article: Amartya Sarkar et al 2016 New J. Phys. 18 043006 -Fluctuating-friction molecular motors L Marrucci, D Paparo and M Kreuzer Recent citations View the article online for updates and enhancements. -Engineering molecular machines Burak Erman This content was downloaded from IP address 54.70.40.11 on 19/11/2017 at 12:37 NewJ.Phys.18(2016)043006 doi:10.1088/1367-2630/18/4/043006 PAPER Towardssyntheticmolecularmotors:amodelelastic-networkstudy OPENACCESS AmartyaSarkar1,HolgerFlechsig1,2,3andAlexanderSMikhailov1,2 RECEIVED 1 DepartmentofPhysicalChemistry,FritzHaberInstituteoftheMaxPlanckSociety,Faradayweg4-6,D-14195Berlin,Germany 25November2015 2 ResearchCenterfortheMathematicsonChromatinLiveDynamics(RcMcD)andDepartmentofMathematicalandLifeSciences, REVISED GraduateSchoolofScience,HiroshimaUniversity,1-3-1Kagamiyama,Higashi-Hiroshima,Hiroshima739-8526,Japan 16February2016 3 Authortowhomanycorrespondenceshouldbeaddressed. ACCEPTEDFORPUBLICATION 15March2016 E-mail:[email protected],holgerfl[email protected]@fhi-berlin.mpg.de PUBLISHED Keywords:molecularmotor,elasticnetwork,stochasticmodel,Brownianratchet,powerstroke,unidirectionaltransport,syntheticmotor 7April2016 Supplementarymaterialforthisarticleisavailableonline Originalcontentfromthis workmaybeusedunder thetermsoftheCreative Abstract CommonsAttribution3.0 licence. Proteinmolecularmotorsplayafundamentalroleinbiologicalcellsanddevelopmentoftheir Anyfurtherdistributionof syntheticcounterpartsisamajorchallenge.Here,weshowhowamodelmotorsystemwiththe thisworkmustmaintain attributiontothe operationmechanismresemblingthatofmusclemyosincanbedesignedattheconceptlevel,without author(s)andthetitleof addressingtheimplementationaspects.Themodelisconstructedasanelasticnetwork,similartothe thework,journalcitation andDOI. coarse-graineddescriptionsusedforrealproteins.Weshowbynumericalsimulationsthatthe designedsyntheticmotorcanoperateasadeterministicorBrownianratchetandthatthereisa continuoustransitionbetweensuchtworegimes.Themotoroperationunderexternalload, approachingthestallcondition,isalsoanalysed. Introduction Single-moleculemotorsplayafundamentalroleinbiologicalcells.Iftheirsyntheticanaloguesaredeveloped andimplemented,thismayleadtoexcitingtechnologicalapplications.Becauseoftheirimportance,protein motorsarecurrentlysubjectofintensiveexperimentalandtheoreticalinvestigations.High-precisionsingle- moleculeexperimentswithmyosin[1,2],kinesin[3,4],F1-ATPase[5,6],hepatitisCvirus(HCV)helicase[7–9] andothermotorproteinshavebeenperformed;theyhaveyieldedvaluableinformationaboutthedetailsoftheir operation.Sincechemicalstructuresofthesemoleculesareknown,theirbehaviourcanalsobestudiedbydirect all-atommoleculardynamics(MD)simulations.ThedifficultyinvolvedinMDsimulationsisthattheyare extremelytime-consumingand,fortypicalproteinmotors,onlythedynamicsonthescalesofuptoa microsecondcouldhavebeenresolvedinsuchsimulations.Takingintoaccountthatasingleturnovercycleofa molecularmotorwouldusuallytakeabout10ms,itisobviousthatfullMDsimulationsarestillfarfrom reproducingevensinglemotoroperationcycles(thoughtheycanindeedstronglycontributetoclarificationof thedetailsofsuchcycles). Therearetwowaystoovercomethisdifficulty.Ontheonehand,specialhardwareforacceleratedMD simulationsisbeingdeveloped.ByusingthespecializedANTONhardware,ithasalreadybecomepossibleto followthedynamicsofasmallprotein,thebovinepancreatictrypsininhibitor(BPTI),overthetimespanof1ms [10].Soon,suchsimulationsmayalreadybecomefeasibleforthelargerproteins.However,runninganall-atom simulationovermanyturnovercyclesforanactualmolecularmotor,withallreactioneventsincluded,and accumulatingthedataforstatisticalanalysisovermanysuchcycleswouldremainadistantchallengeforMD simulationseveninthefuture. Ontheotherhand,coarse-grainedproteinmodelscanbeemployedtospeedupthesimulations.While manyvariants,suchas,e.g.,theGo-model[11,12],areavailable,theattentionhasrecentlybecomefocusedon theclassofelastic-network(EN)models.IntheanisotropicENmodel,introducedbyI.Baharwithcoworkersin 2001[13],aproteinistreatedasanetworkofpointparticles(residues)withelasticinteractionsbetweennetwork neighbours.Thenetworkisbuiltbyusingtheexperimentalx-raydiffractioninformationabouttheequilibrium structureofaprotein. ©2016IOPPublishingLtdandDeutschePhysikalischeGesellschaft NewJ.Phys.18(2016)043006 ASarkaretal WhileENmodelsareempiricalandcouldnotsofarbederivedfromthefulldynamicalmodels,ithasbeen checkedthat,formanyproteins,theycorrectlyreproducethermalfluctuationsinthepositionsofresidues(B- factors)intheframeworkofthenormal-modeanalysis[14–19].Moreover,theycanbeusedtoexplore sensitivityoftheproteinstolocalperturbations,suchasbindingofaligand[20–22].TheENmodelshavebeen alreadyappliedtoprincipalmolecularmotors,suchasmyosinVorkinesin[23–27].DetailsofENapplications canbefoundinthereviewvolume[28]withtheforewordbyKarplus.Inarecentpublication[10],predictionsof anENmodelwerecomparedwiththedatafroma1msANTONsimulationfortheBPTIproteinandgood agreementhasbeenobserved.ImprovementsoftheoriginalelasticENmodelhavebeenproposedand investigated(see,e.g.,[29–32]). UsingreducedENdescriptions,italreadybecomespossibletotraceentireoperationcyclesofrealprotein machinesandmolecularmotors.Fortheenzymeadenylatekinase,completeturnovercyclesincludingthe solventeffectscouldbereproducedandstatisticalanalysisforthesequencesofmanysuchcyclescouldbe performed[33].ForthemolecularmotorHCVhelicase,singleturnovercyclescouldbetracedandinteractions ofthismotorwiththedouble-strandedDNAcouldberesolved[34],confirmingtheinchwormratchet mechanismdeducedfromtheexperiments[35]. Inadditiontostructurallyresolvedtheoreticalstudiesofproteinmotors,basedoneitherfullMDorreduced ENsimulations,therearealsoinvestigationswheretheinternaldynamicsofamolecularmotorisnotresolved. Instead,theentiremotorismodelledasaparticlemovinginaperiodicpotential.Thetheoreticalconceptofa molecularmotorasaBrownianratchethasattractedmuchattention[36–41] Differentkindsofsyntheticnanomotorshavebeenpreviouslyproposedandinvestigated.Sometimes, micrometer-sizeparticlesarereferredtoasthe‘motors’iftheycanpropelthemselvesthroughafluidduetothe imbalanceofsurfacetensionforces(see,e.g.,[42]).Ithasbeenconjecturedthatevensingleenzymemolecules, whencatalyticallyactive,cangeneratepropulsionforcesandactivelymoveinthesolution[43,44].Adifferent kindofmotorsareswimmersthatcanactivelymoveinfluids[45]andlipidbilayers[46]byactivelychanging theirconformationorbasedonothermolecularinteractions[47].Furthermore,relativelysmallmolecules operatedasswitchesareabletomoveactivelyandthustobehaveasmotorstoo(seereview[48]).Suchkindsof motors,however,differintheiroperationmechanismsfromproteinmachines. Theaimofthepresentstudyistwofold.First,wedemonstratehowamodelmolecularmotor,roughly resemblingthepropertiesofrealproteinmachinesand,inparticular,ofthemusclemyosin,canbeconstructed. Second,weperformextensivestatisticalanalysisofthismodelENmotor.Themeanpropagationvelocityasa functionofthetemperatureparameter,controllingtheintensityoffluctuationsisdetermined.Themotor operationunderloadismoreoverconsidered.Byvaryingtheparameters,weshowthatthesamemodelcanbe operatedintheweakandstrongcouplingregimeswhichcorrespondtodeterministicandBrownianratchets;the intermediateregimesarealsopossible.Investigationsofsuchmodelsystemcanhelptobetterunderstandthe operationofrealproteinmotorsand,furthermore,theycanassistinthefuturephysicalimplementationof syntheticmolecularmotorssimilarintheirfunctionalprinciplestotheiractualbiologicalcounterparts. Results Theelasticmachine Theproposedmodelmotorconsistsofacyclicallyoperatingmachinethatinteractswiththefilamentby employingaratchetmechanismwhichtransformscyclicmachinemovementsintothetranslationalmotionof thefilament.First,weexplainhowthemachineisdesigned.Itsinteractionswiththefilamentaredescribedinthe nextsection. TheENmachinewhichweusehasbeenproposedbyTogashiandMikhailov[23]andhaspreviouslybeen employedinotherapplications[49–51].Nonentheless,onlyabriefdescriptionofthemachinehassofarbeen provided[23].Ithasbeendesigned[23]byusingevolutionaryoptimizationmethods,insuchawaythatits conformationaldynamicsandligand-inducedinternalmotionscloselyresemblethoseofactualprotein machines.Particularly,itsequilibriumstates,withandwithouttheligand,havelargeattractionbasins,sothat evenafterlargeperturbationsthesystemreturnsbacktothem.Moreover,relaxationproceedsalongawell- definedpathintheconformationalspace. Themodelmachineismadeupoftworelativelyrigiddomainsconnectedbyaflexiblehingeregion (figure1).Asubstrateligandcanbindinabindingpocketsituatedinthehingeregionandinduceaclosing motionofthedomainsaboutthehinge.Furthermore,thesubstrateligandcangetconvertedtotheproductand getreleased,thusbringingaboutthereverseopeninghingemotion.Themachinehas64identicalparticles connectedbyasetofidenticalelasticlinks. 2 NewJ.Phys.18(2016)043006 ASarkaretal Figure1.Elasticnetworkofthemachine.Thenetworkisformedby64particles(greenandbluebeads)connectedbyelasticlinks. Additionally,theligand(redbead)anditslinkstothethreebindingnodesi=32,40,41(bluebeads)areshown. Theelasticenergyofthemachineisgivenby 1 64 (R) = k å A (d - d0)2. (1) ij ij ij 2 i=1,j>i HereR = {R}isthesetofallcoordinatesR oftheparticlesi = 1, 2,¼,64.κistheelasticconstantwhichis i i thesameforalltheelasticlinksinthenetwork.Thenetworkarchitectureisspecifiedbytheadjacencymatrix whoseelementsA areeither1or0dependingonwhetherabondexistsbetweenapairofparticlesiandj. ij Furthermore,d = ∣R - R∣isthedistancebetweenthepairofparticlesiandj,andd0 = ∣R0 - R0∣isthe ij i j ij i j equilibriumdistancebetweenthem;{R0}areequilibriumpositionsofallthenodes.Theequilibriumpositions i R0oftheparticlesandthematrixofconnectionsA aregivenin[23](seealsomethods). i ij Themachineoperatesinsideaviscousfluid.Itsdynamicsisoverdampedandisdescribedbytheequations dR ¶ i = -g , (2) dt ¶R i whereγisthemobilitycoefficient,thesameforallbeadsi = 1,¼,64.Later,thermalfluctuationswillbetaken intoaccountbyintroducingnoisetermsintosuchrelaxationequations.Notethatinertialeffectscanalsobe neglectedforrealproteinmachines,whenconformationalmotionsonthetimescaleslargerthanapicosecond areconsidered.Hydrodynamiceffectsarenottreatedinthepresentstudy,buttheycanbeincludedtoo[49]. Whentheligandbinds,itformselasticlinkswiththreebeads(i = 32, 40, 41)locatedinthehingearea.The liganditselfistreatedinourmodelasanadditionalparticle(i=65).Itisconvenienttointroduceabinary variableswhichtakesthevalues=1,iftheligandisattached,ands=0otherwise.Theexpressionfortheelastic energy,includingtheligandatthepositionR ,is 65 1 64 1 (R; s) = k å A (d - d0)2 + sk å (d - d0 )2. (3) ij ij ij i,65 i,65 2 2 i=1,j>i i=32,40,41 Thelastligandinteractiontermdependsonthedistancesd = ∣R - R ∣betweentheligandandthethree i,65 i 65 networkbeads.Moreover,d0 arethenaturallengthsofthethreeadditionallinks, i,65 d0 = d0 = d0 = d0.Forsimplicity,weassumethattheligandlinkshavethesameelasticconstantκas 32,65 40,65 41,65 lig theotherlinksinthenetwork.Whentheligandispresent,thenetworkdynamicsisgivenbyequations(2)where theexpression(3)fortheelasticenergyshouldbeused. Next,theconditionsatwhichbindingorreleaseoftheligandtakeplaceneedtobespecified.Moreover,the initialpositionoftheligandafterbindingshouldalsobedefined.Inthepresentstudy,weusetheligandbinding anddetachmentconditionswhichareslightlydifferentfromtheoriginalformulation[23]andaredefinedin termsofthehingeangle;suchconditionshavealreadybeenemployedinthestudyofmembranemachines[51]. Thehingeanglefisintroducedthroughtheequation 3 NewJ.Phys.18(2016)043006 ASarkaretal Figure2.Definitionofthehingeanglef.Here,cmdenotesthecentreofmassofthethreeligandbindingparticlesi=32,40,41. (R - Rcm) · (R - Rcm) cosf = 7 64 . (4) ∣R - Rcm∣∣R - Rcm∣ 7 64 WhereRcmisthecentreofmassofthethreebeadsi = 32, 40and41whichformtheligandbindingpocket 1 Rcm= (R + R + R ). (5) 32 40 41 3 Becausethetwoarmsofthemachinearefairlystiff,theanglefcanbeinterpretedastheanglebetweenthetwo arms(seefigure2). Intheequilibriumstateoftheligand-freenetworkthehingeangleisrelativelylarge(f = f )andwereferto 0 thisstateastheopenconformationofthemachine.Weassumethatbindingofthesubstrateligandispossible withinacertaininterval[f - D , f + D ]ofhingeanglesinthevicinityoftheopenconformation.Within 0 0 0 0 thisinterval,itcantakeplacewithsometransitionprobabilityw perunittime.Weassumethat,whentheligand 0 arrives,itbecomeslocatedinthecentreofmassofthebindingpocketformedbytheparticlesi = 32, 40, 41; hencewehaveR0 = Rcmatthemomentofbinding. 65 Theligand-networkcomplexwillundergorelaxationtoitsownequilibriumstate.Thisrelaxationprocess willbedescribedbyequations(2)wheretheexpression(3)fortheelasticenergywiths=1shouldbeused.Note that,whentheligandisattachedtothenetwork,itmoveslikeanyotherparticle;weassumeforsimplicitythatits mobilityγisthesame. Whendesigningthemachine,thenaturallengthsoftheligandlinksarechosentobeshorterthantheir typicalinitiallengths.Therefore,theselinkstendtoshrink.Notethat,throughtheligandlocatedinthehinge region,thetwoarmsbecomeadditionallylinked.Whentheligandlinksgetshorter,thetwoarmsmovecloser onetoanotherandthehingeangledecreases.Theequilibriumstateoftheligand-networkcomplexcorresponds thereforetoaclosedconformationofthemachinewhichischaracterizedbyarelativelysmallhinge anglef = f . 1 Figure3displaystheoperationcycleofthedesignedelasticmachine.Atthebeginningofthecycle (figure3(a))themachineisinanopenconformation.Thesubstrateligand(redparticle)arrivesintotheligand bindingpocketinthehingeregionandestablisheselasticlinks(figure3(b))tothreeneighbouringbeads(blue colour).Thisinducesatransitiontothetheclosedconformation(figure3(c))whichcorrespondstothe equilibriumstateoftheligand-machinecomplex.Nowtheligandisconvertedtotheproductparticlewhichis instantaneouslyreleased(figure3(d)).Afterthatthefreemachinereturnstoitsequilibriumopenconformation andthecyclecanberepeated.Thedetailedoperationofthemachinecanbeobservedinvideo1. Thereactionisintroducedbyassumingthatinthevicinityoftheclosedconformationthenatureofthe boundligandcansuddenlychange,sothatitgetstransformedtoaproductparticlewhichisimmediately released.Thistransitionoccurswiththeprobabilityw perunittimewithintheinterval[f - D, f + D]of 1 1 1 1 1 thehingeangle.Thereleaseoftheproductischaracterizedbysuddendisappearanceofthethreeelasticlinks betweentheligandandthenetwork.Afterthetransitiontheelasticenergyofthenetworkisdescribedby equation(3)withs=0.Asweassume,theproductisimmediatelyevacuatedandthereforethereversebinding oftheproducttothemachinecannotoccur.Wealsoneglectthepossibilitythatthesubstratedissociatesbeforeit getsconvertedtotheproduct. Interactionswiththefilament Ouraimistoimitatesomeaspectsofthefunctioningofarealmolecularmotor,themusclemyosin.Ineachofits cycles,themyosinperformsapowerstroke,inducedbybindingofATPandthehydrolysisreaction.Underthe powerstroke,themyosinheadisattachedtotheactinfilamentandgeneratesaforcetodragit.Afterthepower 4 NewJ.Phys.18(2016)043006 ASarkaretal Figure3.Operationcycleofthemachine. stroketheheadgetsdetachedandtheproteinreturnstoitsinitialconformation.Becausethemyosinholdsthe filamentduringtheforwardpartofthecycleandisdetachedfromitduringthebackwardpart,aratcheteffectis naturallyimplemented.Aswewillshow,similaroperationcanbeachievedbyusingtheelasticmachine describedintheprevioussection.Note,however,thatanimportantaspectofmyosinmotoroperationwould stillbeabsentinourmodel.Themyosinactivelygraspstheactinfilament,becauseoftheconformational changesintheactinbindingcleftthatareligand-induced.Ourmodelistooprimitivetoincorporatesucha mechanism.Instead,adifferentinteractionbetweenthemotorandthefilamentwillbeemployed. Beforeweproceedtothedetailedformulation,wewanttoshowhowthemotorwouldwork.Video2gives anexampleofthemotoroperationinabsenceofthermalfluctuations.Whentheligandbinds,apowerstrokeis executed.Asthemachinemovesforwardapproachingitsclosedconformation,theswingingarmcomesvery nearthefilamentandestablishesanattractivebondwithit,therebydraggingthefilamentforward.While holdingthefilament,itmovesforward,untiltheligandconversionintotheproductanditsreleaseoccur.Inthe secondpartofthecycle,whenthemachinereturnstoitsequilibriumopenconformation,theswingingarm movesalongapathfartherawayfromthefilamentandnoattractivebondisformed,sothemachineandthe filamentstaydetachedfromeachother. Figure4(a)illustratestheset-upofourmodel.Asshowninfigure4(a),thefilamentispositionedalongthex- axisofourchosencoordinatesystem.Itcanonlymovebackorforthalongthisaxis.Theswingingfreearmofthe elasticmachineisassumedtohaveaspecialnode(i=64)thatcaninteractwiththefilament.Theotherarmof themachineisimmobilizedbyfixingthenodes,i = 1, 2, and10atR = {x, y, z},R = {x, y, z } 1 1 1 1 2 2 2 2 andR = {x , y , z }. 10 10 10 10 Thetrajectoryoftheendparticle(i=64)ofthemachineasitundergoescyclicconformationalchangesis displayedinfigure4(b).Thetrajectoryoftheendparticleisanalmostplanarloop,lyingapproximatelyonthex- zplane.Figure5(a)showsthetimedependenceofthedistanceh oftheinteractingnodefromthefilament.For 64 thechosenpositionofthemachine,theendparticleremainsclosetothefilamentduringtheforwardpartofthe cycle(s=1)whileitisrelativelyfarawayduringthereversepart(s=0).Additionally,figure5(b)showsthe 5 NewJ.Phys.18(2016)043006 ASarkaretal a z b z s=1 4.0 s=0 3.0 2.0 1.0 x 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 x 0.2 0.3 0.4 y y Figure4.(a)Constructionofthemotorsystem.Threebeadsi=1,2,10areimmobilized.Thebeadi=64interactswiththe regularlyspacedforcecentresofthefilamentwhichisfreetomovealongthex-axis.(b)Thetrajectoryofthenodei=64forone operationcycle. Figure5.(a)Timedependenceofthedistanceh betweentheinteractingnodeandthefilament.(b)Timedependenceoftheposition 64 x oftheinteractingnodeonthex-axisalongthefilament.Distancesaremeasuredinunitsofa 4. 64 timedependenceofthepositionx oftheendparticlealongthefilament.Duringthepowerstroke(s=1),the 64 armmovesintheforwarddirection,whereasthereversemotionoccursduringtherestoftheoperationcyclefor themotor. Notethatthetimeofthepowerstrokeismuchshorterthanthetimeneededforthearmtoreturntoitsinitial position.Thisisbecause,duringthepowerstroke,additionalattractiveinteractionsbetweenthearmandthe headofthemachinearepresentthroughtheligandlocatedinthehinge. Realactinfilamentsareformedbyaperiodiclineararrangementofmonomersrepresentingsingleactin proteins.Inourmodelsystem,wedonotwanttoreproducesuchcomplexstructure.Instead,itisassumedthat thefilamentrepresentsarigidrodwhosemotionsareconstrainedtoalinechosenasthex-axisinourcoordinate frame.Alongthefilament,periodicallyspacedforcecentresarelocated.Theirpositionsare x (t) = X(t) + na, n = 0, 1, 2,,m, (6) n whereaisthespatialperiodandX(t)isthecoordinateoftheentirerigidfilamentattimet.Eachoftheforce centresiscapableofinteractingwiththemachinetip. Tomodeltheinteractionbetweenthefilamentandthemachinetip,Lennard–Jonespotentialsareused.The totalinteractionpotentialintbetweentheendparticle(i = 64)ofthemachineandthefilamentisgivenbya sumofpairinterationpotentials m int(R , X) = å int(r ), (7) 64 n n=-m where ⎧ V (r ) - V (l ) ifr < l ; int(r ) = ⎨ LJ n LJ c n c (8) n ⎩0 otherwise, 6 NewJ.Phys.18(2016)043006 ASarkaretal Figure6.ProfilesoftheinteractionpotentialV inunitsofs kfordifferentseparationsh oftheinteractingnode(i=64)fromthe int 64 filament.Separationsaremeasuredinunitsofa 4. and ⎡⎛ ⎞12 ⎛ ⎞6⎤ V (r ) = s⎢⎜C⎟ - 2⎜C⎟ ⎥, (9) LJ n ⎣⎢⎝r ⎠ ⎝r ⎠ ⎦⎥ n n Herer isthedistancebetweentheendparticle(i=64)andthenthforcecentreofthefilament, n r2 = h2 + (X + na - x )2.Thecoefficientσspecifiestheinteractionstrength,whiletheparametersCandl n 64 64 c determinetherangeoftheinteraction. NotethattheinteractionpotentialisaperiodicfunctionofthefilamentpositionXandithastheperioda. Indeed,thetotalinteractionwiththe(infinite)filamentisnotchangedifthefilamentisshiftedbydistancea correspondingtotheseparationbetweenindividualforcecentres.Figure6showstheinteractionpotential (equation(7))asafunctionofthefilamentpositionXforthreedifferentdistancesh .Theperiodicityofthe 64 effectiveinteractionpotentialisdeterminedbythelatticedistancea,oftheforcecentresonthefilament. Thecompletemodel Thus,theequationsofmotionfortheparticles(i = 1,,64)ofthemotorandthefilamenthavetheform dR ¶(R; s) i = -g + z (t); (i ¹ 1, 2, 10, 64), (10) dt ¶R i i dR ¶(R; s) ¶ (R , X) 64 = -g - g int 64 + z (t), (11) dt ¶R ¶R 64 64 64 dR dR dR 1 = 2 = 10 = 0, (12) dt dt dt dX ¶ (R , X) = -G int 64 - GF + c(t). (13) ext dt ¶X Hereistheelasticenergy(3)ofthemachineand intheinteractiongivenbyequation(7).Themobilitiesof int themachineparticlesandofthefilamentareγandΓ,respectively.Wehaveaddedtothelastequationthe externalforceF whichmaybeappliedtothefilament. ext Thelasttermsintheequations(10),(11)and(13)takeintoaccountthermalfluctuations.Inequations(10) and(11),z (t) = {zx(t), zy(t), zz(t)}areindependentwhitevectornoiseshavingthecorrelations i i i i áza(t)zb(t¢)ñ = 2gk Td d d(t - t¢)wherea, b = x, y, z, (14) i j B ij ab k istheBoltzmannconstantandTisthetemperature.Inequation(13)c(t)isawhitenoisewiththecorrelation B function ác(t)c(t¢)ñ = 2Gk Td(t - t¢). (15) B Thediscretevariablestakestwovalues:s=0correspondstothefreemachine,whereass=1corresponds totheligand-boundmachine.Bindingoftheligand,i.e.,transitionfroms=0tos=1,isastochasticevent whichtakesplacewiththeprobabilityratew withintheinterval[f - D , f + D ]ofthehingeanglegiven 0 0 0 0 0 byequation(4).Thereleaseoftheligand,i.e.,transitionfroms=1tos=0,cantakeplacewiththeprobability ratew insidetheinterval[f - D, f + D]ofthehingeangle.Notethatgenerallytheratesw andw depend 1 1 1 1 1 0 1 ontemperatureT.Inourmodelsystem,suchpossibledependenceisnothowevertakenintoaccount.Our investigationswillbealwaysperformedneartothesaturationregime,withbindingorreleaseofaligandalways 7 NewJ.Phys.18(2016)043006 ASarkaretal takingplaceoncetherespectivewindowhasbeenentered.Thefocuswillbeonthefluctuationeffectscontrolled bythetemperatureparameterinthemodel. Whens=1,themachineincludesaligandparticle(i=65)andtheequationofmotionforthisparticlehas theform dR ¶(R; s) 65 = -g + z (t), (16) dt ¶R 65 65 where(R; s)isgivenbyequation(3).Theligandparticlehasthesamemobilityγandissubjecttothesamekind ofnoise(equation(14))asthemachineparticles.Whentheligandarrives,i.e.,atthemomentofthetransition froms=0tos=1,itsinitialpositionisR = RcmwhereRcmisgivenbyequation(5).Whenthereverse 65 transitionfroms=1tos=0takesplace,theligandisimmediatelyremovedandwedonottrackitsposition anyfurther.Anewligandparticleisboundtothemachineasthesubstrateandremovedfromitastheproductin eachnextoperationcycle. Inournumericalsimulations,thedimensionlessformofthemodelisemployed.Toobtainit,timeis measuredinunitsoft = 1 kgwhereasthecoordinates{R}andXaswellasthedistancesh andx are i 64 64 measuredintheunitsofL = a 4whereaisthespacingbetweenconsecutiveforcecentresonthefilament. Belowthesamenotationsareusedfortherescaledvariables.Inthedimensionlessform,theexplicitevolution equationsofthemodelare ⎛ ⎞ dRi = - å64A (R - R)⎜⎜dij - di0j⎟⎟ + x (t); for i ¹ 1, 2, 10, 64, (17) dt ij i j ⎝ d ⎠ i j=1 ij ⎛ ⎞ dR64 =-å64A (R - R)⎜⎜d64,j - d604,j⎟⎟ + åm f (r) ¶rn + x (t) ; fori = 64, (18) dt 64,j 64 j ⎝ d ⎠ int n ¶R 64 j=1 64,j n=-m 64 dR i = 0; for i = 1, 2, 10, (19) dt ⎛ ⎞ dR65 = - å (R - R)⎜⎜d65,j - d605,j⎟⎟ + x (t); fori = 65(ligand), (20) dt 65 j ⎝ d ⎠ 65 j=32,40,41 65,j dX m ¶r = m å f (r) n - mf + h(t), (21) dt int n ¶X ext n=-m ⎡⎛ ⎞13 ⎛ ⎞7⎤ f =⎢⎜ c ⎟ - ⎜ c ⎟ ⎥H(r - l) (22) int ⎣⎢⎝r ⎠ ⎝r ⎠ ⎦⎥ n c n n whered = ∣R - R∣andr = h2 + (X + 4n - x )2;weusethestepfunctionH(z)=1forz>0and ij i j n 64 64 H(z)=0forz⩽0.Thedimensionlessinteractionstrengthcoefficientis= 12s kaCandthedimensionless characteristicinteractiondistanceisc = 4C a.Thecoefficientm = G gistheratioofthemobilitiesofthe machineparticlesandthefilament.Therescaledexternalforceis f = (4 ka)F ext ext Therescaledequationsincludenewnoisesx (t) = (t L)z (t)andh(t) = (t L)c(t)withthecorrelation i i functions áxa(t)xb(t )ñ = 2Qd d d(t - t )where a, b = x, y, z, (23) i 1 j 2 ij ab 1 2 áh(t)h(t )ñ = 2mQd(t - t ). (24) 1 2 1 2 whereΘistherescaledtemperaturegivenbyQ = 16k T ka2.Notethatthetransitionrateconstantsforthe B bindingandreleaseoftheligandalsobecomerescaledandthedimensionlesstransitionrateconstantsare n = w kgandn = w kg. 0 0 1 1 Examplesofmotoroperation Whenconversionofthesubstrateintotheproductisexcluded,theligandbindstothemachineandstays indefinitelylongwithinit.Therefore,themotorcanonlyexhibitthermalfluctuationscharacteristicforits ligand-boundequilibriumstate(s=1).Invideo3,weshowasimulationofthemotorinthiscaseunder relativelyweakthermalnoise(Q = 0.005).Theswingingarmofthemotorgetsattachedtothefilamentand performsequilibriumthermalfluctuationstogetherwithit.Ascouldbeindeedexpectedunderequilibrium conditions,nouni-directionalmovementofthefilamentisobserved. Ifthemotorisstillatequilibrium(nosubstrateconversion),butthetemperatureisincreased(Q = 0.030), thebehaviourbecomesdifferent(seevideo4).Now,thearmofthemotorcannotfirmlyholdontothefilament and,asaresult,thefilamenteasilyslidesagainstit.Incontrasttovideo3,motionsofthearmandthefilament seemtobeindependentinthiscase. 8 NewJ.Phys.18(2016)043006 ASarkaretal a b c 2.5 2.5 2.5 2 s=0 2 s=0 2 s=0 1.5 1.5 1.5 h46 h46 s=1 h46 1 1 1 s=1 0.5 0.5 0.5 s=1 0 0 0 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 φ φ φ Figure7.Trajectoriesofthebeadi=64intheplaneofvariablesh andfattemperatures(a)Q=0.005(b)Q=0.03and(c) 64 Q=0.Thedatafor10consecutivecyclesistaken. Thebehaviourofthemotorgetschangeddramaticallywhenthereaction,i.e.,theconversionofthesubstrate intoproduct,isincluded.Video5showsthemotoroperatingundertheseconditionsatalowlevelofthermal fluctuations(Q = 0.005). IfthetemperatureisincreasedtoQ = 0.030,itcanbeobserved(Video6)thatthearmofthemotorbegins toslideagainstthefilament,similartowhatisseeninvideo4.Thismeansthatinthiscasethemotorcanonly weaklyaffecttheintrinsicindependentBrownianmotionofthefilament. Figures7(a)and(b)displaytrajectoriesofthebeadi=64,locatedattheendofthearm,intheplaneofthe variablesh (distancetothefilament)andf(hingeangle)attwotemperaturesQ = 0.005andQ = 0.03, 64 respectively.Here,theredcolourindicatesthattheligandispresentinsidethemachine(s=1)andthegreen colourcorrespondstothefreemachine(s=0).Forcomparison,wealsoshowinfigure7(c)thetrajectoriesin absenceofthermalnoise,i.e.,Q = 0.Foreachtemperature,thedatafor10consecutivecyclesistaken. Examiningfigures7(a)and(b),onecannoticethatthemotorarmispersistentlycyclinginacounter-clockwise direction.Wecanalsonoticethatevenattherelativelyhightemperature(Q = 0.030)infigure7(b)themotions ofthearmremainwell-defined,sothatthetwobrancheswiths=0ands=1donotoverlap. Strongandweakcouplingregimes Supposefirstthatthemotorarmisfixed,sothatthedistanceofthebeadi=64fromthefilament,h ,andthe 64 projectionofitspositiononthefilament,x ,arebothconstant.Thenthefilamentiseffectivelyperforming 64 thermalBrownianmotioninaperiodicpotentialV (X) = V (X - x , h ).Thispotentialisgivenby int int 64 64 equation(22)anddisplayedforthreedifferentvaluesofh infigure6.Asseeninfigure6,theheightofthe 64 barrierstronglydependsonthedistance(h )betweenthearmandthefilament.Atthetypicaldistance, 64 h » 0.4,whichischaracteristicfortheligand-boundstate(s=1),thebarrierheightisaboutV » 0.02. 64 max Whentheligandisabsent(s=0),theseparationgetsincreasedaboveh 2.0and,atsuchdistancesthe 64 interactionpotentialV vanishes.Thismeansthatintheligand-freestatethemotorcannotexhibitanyaction int onthefilament. Supposenowthemotorarmmovesinsuchawaythatitsseparationfromthefilamenth remainsconstant, 64 butitspositionx withrespecttothefilamentchanges,x = x (t).Thenthefilamentwillexperiencea 64 64 64 travellingperiodicpotentialV (X, t) = V (X - x (t), h ). int int 64 64 AtlowtemperaturesQ V thefilamentgetslockedintoatravellingtroughandmovestogetherwithit. max Thismeansthatthemovingmotorarmisabletoholdthefilamentandtransportitbyapowerstrokewhenthe ligandisbound(s=1).Intheotherpartofthecycles=0,theinteractionisabsentandthereforethearmcan movebackwithoutthefilament.Thisoperationmodeofthemotorcanbedescribedasthestrongcouplingregime andcanbeobservedinvideo5.Insucharegime,themotorworksalmostlikeadeterministicratchet.The cyclingmachinegeneratesaflashingtravellingpotentialwhichispresentinonepartofthecycle,draggingthe filament,andabsentintheotherpart. Theaboveexplanationofthemotoroperationinthestrongcouplingregimeisonlyapproximateand qualitative.Forinstance,onehastofurthertakeintoaccountthattheinteractionpotentialchangesgradually withthedistanceh tothefilamentwhichvarieswithintheoperationcycle(seefigure6)andisalsoaffectedby 64 thermalfluctuations.Moreoverthemotionofthearmandthereforetheoperationofthemachinearealso affectedbytheinteractionswiththefilament.Whenthemotorarmdragsthefilamentinthepowerstroke,the reactionforceactsonthearmandmodifiesitsmotion.Hence,theflashingpotentialisnotexternaland independentofthefilamentdynamics. Figure8(a)displaysthedependenceofthefilamentcoordinateXontimeinthestrongcouplingregime. Additionally,highlightednarrowstripesinthisfigureindicatetheintervalsoftimeduringwhichthemotorisin 9
Description: