ebook img

Towards Extensible and Adaptable Methods in Computing PDF

409 Pages·2018·13.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards Extensible and Adaptable Methods in Computing

Shampa Chakraverty · Anil Goel Sanjay Misra Editors Towards Extensible and Adaptable Methods in Computing Towards Extensible and Adaptable Methods in Computing Shampa Chakraverty Anil Goel (cid:129) Sanjay Misra Editors Towards Extensible and Adaptable Methods in Computing 123 Editors ShampaChakraverty SanjayMisra Department ofComputer Engineering, Department ofElectrical andInformation Netaji SubhasInstitute of Technology Engineering University of Delhi Covenant University NewDelhi, India Ota, Nigeria Anil Goel SAPCanada Waterloo, ON,Canada ISBN978-981-13-2347-8 ISBN978-981-13-2348-5 (eBook) https://doi.org/10.1007/978-981-13-2348-5 LibraryofCongressControlNumber:2018952626 ©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface Extensible and adaptable computing refers to the array of methods and techniques thatsystematicallytacklethefuturegrowthofsystemsbyrespondingproactivelyto change. This mandates a synergetic coordination amongst various facets of com- puting. Agile software development is a significant driver towards this paradigm shiftandhasindeedbecometheindustrydefactostandard.Theever-evolvingdata is another component that requires new methods of storage, transmission and processing. The Web which hosts almost all applications and data is potent with latentintelligence,readytobeminedandutilizedforextendingtheapplicationsand making them respond seamlessly to changing contexts. Innovative machine learning tools enable us to extricate patterns of information from repositories and adapt to changes in real time. Our journey towards extensible and adaptable methods in computing investi- gates various challenges in the above areas. Accordingly, this book is divided into the following parts: agile software development, data management, machine learning, Web intelligence and computing in education. The first four domains of computing work together in mutually complementary ways to build automated systemsthatscalewelltomeetthedemandsofchangingcontextandrequirements. The fifth part highlights an important application of adaptable computing that enables lifelong learning for all. The concept of this book emanated from the deliberations of the international conference Towards Extensible and Adaptable Methods in Computing that took place during March 26–28, 2018, in New Delhi. The top research papers presented in it were selected to prepare its chapters. The first part on agile software development addresses some of the important challenges in developing quality software within collaborative environments such as risk management, test case prioritization, open-source software reliability and predicting software change proneness. The second part on data management pre- sents elegant solutions for cost-efficient storage of data, transmitting data securely and processing data in specific applications such as health care. The third part on machine learning showcases innovative algorithms and applications including portfolio optimization, disruption classification and outlier detection. The fourth part on Web intelligence covers emerging Web applications in dynamic social v vi Preface contexts including metaphor detection in natural language processing, language identification and sentiment analysis. It also underscores Web security issues such as fraud detection and trust and reputation systems. The fifth part on computing in educationpresentscomputer-aidedpedagogicalmethodsthatadaptandpersonalize to each learner, thus overcoming the constraints of traditional methods. WewishtothankoursectioneditorsRituSibal,AnandGupta,SushmaNagpal, Swati Aggarwal and Pinaki Chakraborty for their invaluable contribution. We are grateful to our publishing coordinators Krati Srivastav, Antony Raj Joseph, Suvira Srivastava, Sona Chahal and Nidhi Chandhoke for their support and encourage- ment. It is through the dedicated efforts of all the authors and reviewers that this book has been compiled, and we are deeply thankful to all of them. New Delhi, India Prof. Shampa Chakraverty Ota, Nigeria Prof. Sanjay Misra Waterloo, Canada Dr. Anil Goel June 2018 Contents Part I Agile Software Development Ritu Sibal Risk Assessment Framework: ADRIM Process Model for Global Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chamundeswari Arumugam, Sriraghav Kameswaran and Baskaran Kaliamourthy 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1 Mitigation Strategy for Various Risks . . . . . . . . . . . . . . . . . . . . . 5 3.2 ADRIM Process Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 An Extended Test Case Prioritization Technique Using Script and Linguistic Parameters in a Distributed Agile Environment . . . . . . . 13 Anita and Naresh Chauhan 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Modified User Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 Sprint—Story Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 Linguistic Parameters-Noun and Verb . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 Agile Change Management (ACM)—User Story . . . . . . . . . . . . . 17 6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii viii Contents AutoJet: Web Application Automation Tool . . . . . . . . . . . . . . . . . . . . . 27 Sheetika Kapoor and Kalpna Sagar 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1 Context of Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 The AutoJet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Adaption of Autojet in Agile Methodology . . . . . . . . . . . . . . . . . 40 4 Conclusion and Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Prioritization of User Story Acceptance Tests in Agile Software Development Using Meta-Heuristic Techniques and Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Ritu Sibal, Preeti Kaur and Chayanika Sharma 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.1 Given-When-Then Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 Overview of Meta-Heuristic Algorithms. . . . . . . . . . . . . . . . . . . . 45 3 Proposed Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Case Study: Bank Management System . . . . . . . . . . . . . . . . . . . . 49 3.2 User Story: Account holder withdraws cash . . . . . . . . . . . . . . . . . 50 3.3 Acceptance Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Conclusion and Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Software Reliability Assessment Using Deep Learning Technique . . . . . 57 Suyash Shukla, Ranjan Kumar Behera, Sanjay Misra and Santanu Kumar Rath 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 Bug Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Identification of Critical Fault Based on Neural Network . . . . . . . . . . . 59 5 Identification of Critical Fault Based on Deep Learning . . . . . . . . . . . . 61 5.1 Analysis of Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Creation of the Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3 Compilation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 Fitting the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.5 Evaluation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7 Analysis of Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Contents ix Empirical Validation of OO Metrics and Machine Learning Algorithms for Software Change Proneness Prediction . . . . . . . . . . . . . 69 Anushree Agrawal and Rakesh Kumar Singh 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1 Independent Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Dependent Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.3 Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4 Validation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4 Empirical Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Descriptive Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Result Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Univariate LR Analysis Results. . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Model Evaluation Using ROC Curve. . . . . . . . . . . . . . . . . . . . . . 80 5.3 Friedman Test Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Part II Data Management Anand Gupta Extending Database Cache Using SSDs . . . . . . . . . . . . . . . . . . . . . . . . . 89 Prateek Agarwal and Vaibhav Nalawade 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2 Configuring NV Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3 NV Cache Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.1 Buffer Cache Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.2 Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.3 Page Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4 Page Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.5 Lazy Cleaner Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.6 Page Eviction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.1 Benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 Enhancements and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 x Contents Cloud-BasedHealthcareMonitoringSystemUsingStormandKafka .... 99 N. Sudhakar Yadav, B. Eswara Reddy and K. G. Srinivasa 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3 Proposed System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.1 Web Portal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.2 Data Adapter and Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Apache Kafka. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.4 Storm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 Experiment and Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Honeynet Data Analysis and Distributed SSH Brute-Force Attacks. . . . 107 Gokul Kannan Sadasivam, Chittaranjan Hota and Bhojan Anand 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3 Honeynet Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1 Source of the Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5 Secure Shell (SSH) Traffic Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Efficient Data Transmission in WSN: Techniques and Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Nishi Gupta, Shikha Gupta and Satbir Jain 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2 Routing in WSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 2.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 3 Routing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 Future Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 AStudyofEpidemic SpreadingandRumor Spreadingover Complex Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Prem Kumar, Puneet Verma and Anurag Singh 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 1.1 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 1.2 Scale-free Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 1.3 Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 1.4 Characteristics of Some Real Network Data Available and Widely Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Description:
This book addresses extensible and adaptable computing, a broad range of methods and techniques used to systematically tackle the future growth of systems and respond proactively and seamlessly to change. The book is divided into five main sections: Agile Software Development, Data Management, Web I
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.