ebook img

Towards an Arithmetical Logic: The Arithmetical Foundations of Logic PDF

193 Pages·2015·1.786 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards an Arithmetical Logic: The Arithmetical Foundations of Logic

Studies in Universal Logic Yvon Gauthier Towards an Arithmetical Logic The Arithmetical Foundations of Logic Studies inUniversalLogic SeriesEditor Jean-YvesBéziau(FederalUniversityofRiodeJaneiroandBrazilianResearchCouncil, RiodeJaneiro,Brazil) EditorialBoardMembers HajnalAndréka(HungarianAcademyofSciences,Budapest,Hungary) MarkBurgin(UniversityofCalifornia,LosAngeles,USA) RazvanDiaconescu(RomanianAcademy,Bucharest,Romania) JosepMariaFont(UniversityofBarcelona,Spain) AndreasHerzig(CentreNationaldelaRechercheScientifique,Toulouse,France) ArnoldKoslow(CityUniversityofNewYork,USA) Jui-LinLee(NationalFormosaUniversity,HuweiTownship,Taiwan) LarissaMaksimova(RussianAcademyofSciences,Novosibirsk,Russia) GrzegorzMalinowski(UniversityofŁódz´,Poland) DarkoSarenac(ColoradoStateUniversity,FortCollins,USA) PeterSchröder-Heister(UniversityTübingen,Germany) VladimirVasyukov(RussianAcademyofSciences,Moscow,Russia) Thisseriesisdevotedtotheuniversalapproachtologicandthedevelopmentofageneral theoryoflogics.Itcoverstopicssuchasglobalset-upsforfundamentaltheoremsoflogic and frameworksforthe study of logics, in particularlogicalmatrices, Kripke structures, combinationoflogics,categoricallogic,abstractprooftheory,consequenceoperators,and algebraiclogic.Itincludesalsobookswithhistoricalandphilosophicaldiscussionsabout the nature and scope of logic. Three types of books will appear in the series: graduate textbooks,researchmonographs,andvolumeswithcontributedpapers. Moreinformationaboutthisseriesathttp://www.springer.com/series/7391 Yvon Gauthier Towards an Arithmetical Logic The Arithmetical Foundations of Logic YvonGauthier UniversityofMontreal Montreal Québec,Canada ISSN2297-0282 ISSN2297-0290 (electronic) StudiesinUniversalLogic ISBN978-3-319-22086-4 ISBN978-3-319-22087-1 (eBook) DOI10.1007/978-3-319-22087-1 LibraryofCongressControlNumber:2015949819 MathematicsSubjectClassification(2010):01-02,03-02,03-A05,13F-20,14-02 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknownor hereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoes notimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbookare believedtobetrueandaccurateatthedateofpublication. Neitherthepublishernortheauthorsortheeditors giveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsoromissions thatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.birkhauser-science.com) Dedicatedto thememoryof thegreat arithmeticianAndréWeil Foreword Theprojectofanarithmeticallogichasbeeninthemakingformanyyearsandthepresent work is the continuation of my 2002 book Internal Logic. Foundations of Mathematics from Kroneckerto Hilbert (Kluwer,Dordrecht).In the interveningyears,I have pursued the programme and I have published many scientific papers and a book in French on the subject. The progress made towards an arithmetical logic is here recorded, but the idea of an internal logic of arithmetic has not been altered. It is still the inner structure of classical arithmetic or number theory, which is the objective of the foundational enterprise.IhavebaptizedthatarithmetictheFermat-Kronecker(FK)arithmeticandIhave constantlyopposedit to Peano arithmetic.What I have beentrying to show is thatthere isnoset-theoreticelementinpurearithmetic,whilePeanoorDedekind-Peanoformalized arithmeticisembeddedinatransfiniteset-theoreticframework.Kronecker’sfinitiststand in mathematics extends from Hilbert to contemporary constructive mathematics, e.g. Bishop’s constructive analysis and Nelson’s predicative arithmetic. Gödel’s ‹extended finitism›oftheDialecticaInterpretationcouldbecountedasamitigatedreappropriation of Kronecker’s radical constructivism via Hilbert’s introduction of functionals inherited fromKronecker’shigher-orderforms(polynomials).ThisisoneofthemainthemesIhave proposedintherecentyears. The centralthesis of this book has been expandedto coverthe constructivistinsights in physics and mathematical physics, from relativity theory to quantum physics and cosmology where I have attempted to explore the ramifications of the constructivist- finitist motives. My objective here has been to elaborate on the foundational aspects of arithmetical logic—the proper name of which I have dubbed modular polynomial logic—with incursions in probability theory and theoretical and mathematical physics. Atthe sametime, I havebeentryingtosee whatisconceptually(andtechnically)going on in contemporary‹real› mathematicsfrom the constructivistviewpointof arithmetical foundations,withouttoomuchprejudiceastowhatconstitutesmathematicalpracticewith orwithoutfoundationalconcerns.Still,needlesstosaythatconstructivistfoundationsare inherently critical of mathematical (and logical) practice in classical logic and classical mathematics,butthecritiquecomesfromwithin,thatiswithoutinvokingprinciplesthat arealientomathematicalactivityinitshistorical,epistemologicalandrationalpursuits. vii viii Foreword Inthatendeavour,themainsourceofmyinspirationremainsAndréWeilwithwhomI discoveredbothFermatandKroneckerinthe1980s.Earlyon,AndréWeilhadencouraged mein correspondencetoexplorefurtherthemathematicalvirtuesofFermat’smethodof infinitedescentandIdiscoveredatthesametimetheimportanceofKronecker’sgeneral arithmeticinWeil’soriginalwritingsonalgebraicgeometry(seehisŒuvresscientifiques. CollectedWorks,Springer-Verlag,3vols,1980)—seemyreviewGauthier(1994b)ofWeil (1992).Weil has put Kronecker’stheory of formsor homogeneouspolynomialsand his divisor theory (moduli systems) at the very beginning of algebraic-arithmetic geometry with the emphasisonfinite fieldswhereFermat’sinfinitedescentisatwork.I mustalso acknowledgethebeneficialexchangesIhavehadoveraperiodofyears,eitherinpersonal contactsorincorrespondencewithHenriMargenau,A.Wheeler,E.P.Wigner,I.M.Segal, G.Chew,RenéThom,N.A.Shanin,H.M.Edwards,EdNelson,G.Kreisel,Y.Gurevich, U.Kohlenbach,H.Putnam,D.vanDalen,A.Urquhart,A.Joyal,BasvanFraasseneither forscientificcounsels,criticalassessmentsorfriendlyapprovals.Allhavecontributedto myunderstandingofthemanyfacetsoffoundations,maytheybelogical,mathematical, physicalorphilosophical. Inthewritingofthisopus,Ihavedrawnfreelyfrompreviouswork,mytwobookson thesubjectInternalLogicmentionedaboveandLogiquearithmétique.L’arithmétisation delalogique(PUL,Québec,2010)andnumerouspapersthathaveappearedinrecentyears in a varietyof scientific journals, Synthese,Logiqueet Analyse, Revue internationalede philosophie,FoundationsofScience, InternationalStudiesin the Philosophyof Science, Reports on Mathematical Logic, International Journal of Theoretical Physics, Journal of Physical Mathematics, International Journal of Pure and Applied Mathematics and Reports on Mathematical Physics. Some of the ideas that are still on the forefront here haveappearedinearlierpublicationsinModernLogic,ZeitschriftfürmathematischeLogik und Grundlagen der Mathematik and Archiv für mathematische Logik und Grundlagen- forschung,ZeitschriftfürallgemeineWissenschaftstheorie,Notre-DameJournalofFormal Logic,DialecticaandPhilosophyofScience,butthoseideashavetakenonnewclothesin myup-to-datesynthesis.Ihavecompletedthewritingofthisworkinthesummerandfall of 2014, not without the assistance of my two LATEX men, David Montminy and Benoit Potvin.BenoitPotvinhasmadeitpossibleformetobeuptotherequirementsofscientific journals by diligently latexizing my papersin the last five years. He is here thanked for hisexpertiseasacomputerscientist.IalsowishtothanktheCanadianResearchCouncil (SSHRC)forfundingmyresearchinthelastfouryears(andmanyyearsbefore!).Finally, IamgratefultoJean-YvesBéziauwhohashadasympatheticearandafriendlyreception tomyworkovertheyears. Montreal YvonGauthier August2015 Contents 1 Introduction:TheInternalLogicofArithmetic................................. 1 2 ArithmetizationofAnalysisandAlgebra ........................................ 5 2.1 CauchyandWeierstrass ...................................................... 5 2.2 DedekindandCantor......................................................... 6 2.3 Frege .......................................................................... 13 2.4 Russell,PeanoandZermelo.................................................. 15 2.5 KroneckerandtheArithmetizationofAlgebra ............................. 19 3 ArithmetizationofLogic........................................................... 25 3.1 HilbertafterKronecker....................................................... 25 3.2 Hilbert’sArithmetizationofLogicandtheEpsilonCalculus .............. 28 3.3 Herbrand’sTheorem.......................................................... 32 3.4 Tarski’sQuantifierElimination .............................................. 33 3.5 Gödel’sFunctionalInterpretation............................................ 34 3.6 SkolemandBrouwer ......................................................... 39 3.7 GödelandTuring............................................................. 40 3.8 Arithmetic..................................................................... 43 3.9 ConstructiveArithmeticandAnalysis....................................... 46 3.10 Complexity.................................................................... 50 4 Kronecker’sFoundationalProgrammeinContemporaryMathematics..... 55 4.1 Introduction................................................................... 55 4.2 Grothendieck’sProgramme.................................................. 59 4.3 Descent........................................................................ 60 4.4 Langlands’Programme....................................................... 63 4.5 Kronecker’sandHilbert’sProgrammesin Contemporary MathematicalLogic .......................................................... 65 4.6 Conclusion:FinitismandArithmetism...................................... 68 5 ArithmeticalFoundationsforPhysicalTheories ................................ 71 5.1 Introduction:TheNotionofAnalyticalApparatus.......................... 71 5.2 AnalyticalandEmpiricalApparatuses....................................... 72 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.