ebook img

Towards a unified view of inhomogeneous stellar winds in isolated supergiant stars and supergiant high mass X-ray binaries PDF

1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards a unified view of inhomogeneous stellar winds in isolated supergiant stars and supergiant high mass X-ray binaries

SpaceScienceReviewsmanuscriptNo. (willbeinsertedbytheeditor) Towards a unified view of inhomogeneous stellar winds in isolated supergiant stars and supergiant high mass X-ray binaries SilviaMart´ınez-Nu´n˜ez PeterKretschmar Enrico · · Bozzo LidiaM.Oskinova JoachimPuls Lara · · · Sidoli JonOlofSundqvist PereBlay Maurizio 7 Falanga· FelixFu¨rst Ange·lG´ımenez-G·arc´ıa 1 · · · IngoKreykenbohm MatthiasKu¨hnel Andreas 0 · · Sander Jose´MiguelTorrejo´n Jo¨rnWilms 2 · · r PublishedatJournalofSpaceScienceReviews,Springeronline07March2017 a M S.Mart´ınez-Nu´n˜ez 0 Instituto de F´ısica de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander, Spain E-mail: 1 [email protected] ] P.Kretschmar E EuropeanSpaceAstronomyCentre(ESA/ESAC),Science Operations Department P.O.Box78,E-28691, VillanuevadelaCan˜ada,Madrid,SpainE-mail:[email protected] H E.Bozzo . h ISDC, University of Geneva, Chemin dEcogia 16, Versoix, 1290, Switzerland E-mail: En- p [email protected] - o L.M.Oskinova Institut fu¨r Physik und Astronomie, Universita¨t Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, r t Germany s a J.Puls [ Universita¨tssternwarte derLudwig-Maximilians-Universita¨t Mu¨nchen,Scheinerstrasse1,81679,Mu¨nchen, Germany 2 v L.Sidoli INAF,IstitutodiAstrofisicaSpazialeeFisicaCosmica-Milano,viaE.Bassini15,I-20133Milano,Italy 8 1 J.O.Sundqvist 6 CentrodeAstrobiolog´ıa,CSIC-INTA,Ctra.Torrejo´naAjalvirkm.4,28850Madrid,Spain&Instituutvoor 8 Sterrenkunde,KULeuven,Celestijnenlaan200D,3001Leuven,Belgium 0 P.Blay 1. NordicOpticalTelescope-IAC,P.O.Box474,E-38700,SantaCruzdeLaPalmaSantaCruzdeTenerife, Spain 0 7 M.Falanga 1 International Space Science Institute (ISSI), Hallerstrasse 6, CH-3012 Bern, Switzerland & International : SpaceScienceInstituteinBeijing,No.1NanErTiao,ZhongGuanCun,Beijing100190,China v i F.Fu¨rst X Cahill Center forAstronomy and Astrophysics, California Institute ofTechnology, Pasadena, CA 91125, USA r a AG´ımenez-Garc´ıa InstitutoUniversitariodeF´ısicaAplicadaalasCienciasylasTecnolog´ıas,UniversityofAlicante,P.O.Box 99,E03080Alicante,Spain I.Kreykenbohm 2 S.Mart´ınez-Nu´n˜ezetal. Abstract Massivestars,atleast 10timesmoremassivethantheSun,havetwokeyprop- ∼ ertiesthatmakethemthemaindrivers ofevolution ofstarclusters,galaxies,andtheUni- verse as a whole. On the one hand, the outer layers of massive stars are so hot that they producemostoftheionizingultravioletradiationofgalaxies;infact,thefirstmassivestars helped to re-ionize the Universe after its Dark Ages. Another important property of mas- sivestarsarethestrongstellarwindsandoutflowstheyproduce.Thismassloss,andfinally theexplosionofamassivestarasasupernova oragamma-rayburst,provide asignificant input of mechanical and radiative energy into the interstellar space. These two properties togethermakemassivestarsoneofthemostimportantcosmicengines:theytriggerthestar formationandenrichtheinterstellarmediumwithheavyelements,thatultimatelyleadsto formation of Earth-like rocky planets and the development of complex life. The study of massivestarwindsisthusatrulymultidisciplinaryfieldandhasawideimpactondifferent areasofastronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles invarious wavelength regimes, andtheir analysis basedon tailored, inhomogeneous wind models).Thelimitedcharacterizationoftheclumpphysicalproperties(mass,size)obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such un- certaintieslimitourunderstandingoftheroleofmassivestarwindsingalacticandcosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources inthe sky. A largenumber of them consist ofa neutron staraccreting from thewind of a massivecompanionandproducingapowerfulX-raysource.Thecharacteristicsofthestellar wind together with the complex interactions between the compact object and the donor stardeterminetheobserved X-rayoutput fromallthesesystems.Consequently, theuseof SgXBsforstudies ofmassivestarsisonly possiblewhenthephysicsof thestellarwinds, thecompactobjects,andaccretionmechanismsarecombinedtogetherandconfrontedwith observations. Thisdetailedreviewsummarisesthecurrentknowledgeonthetheoryandobservations ofwindsfrommassivestars,aswellasonobservationsandaccretionprocessesinwind-fed highmassX-raybinaries.Theaimistocombineinthenearfutureallavailabletheoretical Dr.KarlRemeis-Observatory&ECAP,Universita¨tErlangen-Nu¨rnberg,Sternwartstr.7,D-96049Bamberg, Germany M.Ku¨hnel Dr.KarlRemeis-Observatory&ECAP,Universita¨tErlangen-Nu¨rnberg,Sternwartstr.7,D-96049Bamberg, Germany A.Sander Institut fu¨r Physik und Astronomie, Universita¨t Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany J.M.Torrejo´n InstitutoUniversitariodeF´ısicaAplicadaalasCienciasylasTecnolog´ıas,UniversityofAlicante,P.O.Box 99,E03080Alicante,Spain J.Wilms Dr.KarlRemeis-Observatory&ECAP,Universita¨tErlangen-Nu¨rnberg,Sternwartstr.7,D-96049Bamberg, Germany UnifiedviewofofinhomogeneousstellarwindsinsupergiantstarsandHXMB 3 diagnostics and observational measurements to achieve a unified picture of massive star windsinisolatedobjectsandinbinarysystems. Keywords Massivestars stellaroutflows X-raybinary wind-fedsystems accretion · · · · processes SgXBs SFXTs · · 1 Introduction Massive stars (M >10M ) play an important role in the evolution of star clusters and initial galaxies.Massivestar∼sgene⊙rateionizingultravioletradiation,andheatthedust.Thewinds of massive stars, and their final explosions as supernovae or gamma-ray bursts provide a significant input of energy and chemically enriched matter into the interstellar medium (Kudritzki, 2002). Massive stars are among the most important drivers of cosmic evolu- tion, they regulatestarformation and, together withlow-mass stars,enrich the interstellar mediumwithheavyelements.AmongthebrightX-raysourcesintheskyasignificantnum- berconsistsofacompactobjectaccretingfromthewindofsuchmassivestars.Thesewinds arefast(withtypicalterminalvelocitiesupto2500kms 1),dense(withmass-lossratesup − toM˙ >10 5 10 7M yr 1),anddrivenbylinescatteringofthestar’sintensecontinuum − − − radiat∼ion field−. Exampl⊙es of asystemcomprising amassivestarand acompact object are CygX-1/HDE226868,thefirstdetectedstellar-massblackhole,andVelaX-1,theprototype ofwindaccretingneutronstarX-raybinaries.Bothinisolatedmassivestarsandinbinary systemswithaccretingcompact objects,thebasicpictureofthewindformation andwind accretionprocess has beenestablishedfordecades. However,new findings concerning in- homogeneitiesinthemassivestarwindsandtheunexpectedlypronouncedX-rayvariability insomewind-fedbinariesquestionedourpreviousunderstandingofthesesystems. Thefirstquantitativedescription ofline-driven stellarwindswasprovided inthesem- inal paper by Castoretal. (1975), which assumed a stationary, homogeneous, and spheri- callysymmetricoutflow. Laterworks (e.g.,Owockietal.,1988;Feldmeieretal.,1997b,a; DessartandOwocki, 2005) showed that theline-driven hot starwinds areinfact unstable 1 to velocity perturbations (the so-called ”line-driven instability”, hereafter LDI), leading tohigh-speed rarefactions thatsteepen intostrong shocks, whereby most material iscom- pressed into spatially narrow ’clumps’ (or shells in 1-D simulations) separated by large regionsofmuchlowerdensities.Thepresenceofclumpsinthewindsofmassivestarsissup- portedbynumerousobservationalevidencesinmanydifferentwavebands(seeHamannetal., 2008;Sundqvistetal.,2011, forcomprehensive overviews). Innumerical simulations, the LDI is observed to generate strong wind shocks, which provide a possible explanation (Feldmeieretal.,1997b,a)forthesoftX-rayemissionobservedfrom”normal”(putatively single,non-magnetic) OB-stars,aswellasfortheirlackofsignificanttime-variability(see Naze´etal., 2013, for arecent review). Clumps affect several stellarwind diagnostics in a non-trivialway,anddiscussionsareon-goingtoinferthephysicalpropertiesofthesestruc- turesfromtheresultsofthemostrecentobservationalcampaigns. Additional independent observational evidence of clumped stellar winds comes from supergiant high mass X-ray binaries (SgXBs), i.e. those systems in which a compact ob- ject(ablackholeoraneutronstar)orbitsasupergiantO-Bstar.Sakoetal.(2003)wasthe first to review spectroscopic results obtained by X-ray observatories for several wind-fed SgXBs.Theyconcludedthattheobservedspectraandtimevariabilityoftheseobjectscould bebestexplainedbyassumingthataccretionontothecompactobjectistakingplacefrom 1 AlreadyLucyandSolomon(1970)pointedoutthatradiativeline-drivingissubjecttoastronginstability. 4 S.Mart´ınez-Nu´n˜ezetal. ahighly structured stellarwindwherecool denseclumps areembedded inararefiedpho- toionizedgas.SimilarstudieswerelatercarriedoutonanumberofbrightSgXBs,including 4U1700 37 (vanderMeeretal., 2005), VelaX-1 (Kreykenbohmetal., 2008; Fu¨rstetal., − 2010; Mart´ınez-Nu´n˜ezetal., 2014), Cyg X-1 (Misˇkovicˇova´ etal., 2011), and GX 301 2 − (Fu¨rstetal., 2011). Although the presence of structured clumped winds in SgXBs seems thus well established, there is astillconsiderable uncertainty inthephysical properties of thoseclumpsandthemechanismsbywhichthestructuredwindisabletofeedthecompact object. Particularly puzzling is the pronounced X-ray variability (a factor of 100-1000 ∼ higher than in classical SgXBs) of the supergiant fast X-ray transients (SFXTs) sources. Thisvariabilityisunlikelytobeonlyduetothepresenceofmassivestructuresinthewind ofthesupergiantstarsandrequiresad-hocassumptionsontheon-goingaccretionprocesses. The layout of the review is as follows: Section 2 first introduces the basic physics of line-driven winds in detail, from the pioneering ’CAK model’ to modern simulations in- cludingsmallandlargescalestructuresinthewind.Thesectioncontinueswiththetheory ofaccretionofthesewindsontocompactobjectsandespeciallyneutronstars,treatingalso differentaccretionregimesandtheinhibitionofaccretion.Section3discussesthedetermi- nation of stellar and wind parameters by quantitative spectroscopy in the optical and UV regime,includingtheeffectsofwindclumpingonthemasslossdiagnostics.Measurements anddiagnosticsintheX-rayregimearediscussedinSection4,togetherwithcaveatswhen applyingthese.Thissectionalsosummarisesthecurrentknowledgeonboththe”classical” SgXBsandtheSFXTs.Finally,Section5summarisesthemaincurrentlyopenquestionson stellarwindsandwindpropertiesofmassivestars. 2 Basicphysics Wesummariseinthenexttwosectionsthebasicphysicsoftheline-drivenwindsinmassive starsandaccretionprocessesinwind-fedbinaries. 2.1 Basicsofline-drivenwinds Adecisiveproperty ofhot, massivestarsistheirstellarwind, withtypical mass-lossrates (forsolarmetallicity),M˙ 10 7...10 5 M /yr,andterminalvelocities,υ ,ranging from − − ∞ 200... 3,500kms 1.The≈originofthesew⊙indsisattributedtoradiativeline-driving,i.e., − stellar continuum photons are scattered in a multitude of spectral lines and transfer their momentumtothewind.Sincethisprocessrequiresalargenumberofphotons (i.e.,ahigh luminosity),suchwindsoccurinthehotteststars,likeO-typestarsofallluminosityclasses, butalsoincoolerBA-supergiants,becauseoftheirlargerradii.Efficientline-drivingfurther requires a large number of spectral lines close to the flux-maximum and a high interac- tion probability (i.e., a significant optical depth). Since most spectral lines originate from various metals, a strong dependence of M˙ on metallicity is thus to be expected, and such line-drivenwindsshouldonlyplayaminorrole(ifatall)intheearlyUniverse.2Thetheory of line-driven winds has been pioneered byLucyandSolomon (1970) andparticularly by Castoretal.(1975,henceforth ’CAK’),withessentialimprovements regarding aquantita- tivedescriptionandapplicationprovidedbyFriendandAbbott(1986)andPauldrachetal. 2 Contrastedtothealmostmetallicity-independent,porosity-moderatedcontinuum-drivenwindshypoth- esizedbyOwockietal.(2004). UnifiedviewofofinhomogeneousstellarwindsinsupergiantstarsandHXMB 5 (1986). Line-driven winds have beenreviewed by KudritzkiandPuls(2000)and morere- centlybyPulsetal.(2008).Inthefollowing,wewillbrieflyconsidersomerelevantaspects, mostlyintermsofthe’standardmodel’andthetheorydevelopedbyCAK. 2.1.1 TheCAKmodelandbeyond Fromstudyingthetemporalvariabilityoftypicalwind-features(UVP-Cygniprofiles,H , α HeII4686, see Sect. 3) and from analysing these lines, it turned out that the global quan- tities describing the outflow (M˙,υ ) typically show only little variations. This and other ∞ evidencemotivatesthedefinitionofastationary,sphericallysymmetric,andhomogeneous standardmodel.Effectsfromrotationandmagneticfieldsarebrieflyoutlinedattheendof thissection,anddeviationsfromahomogeneousstructurearediscussedinSects.2.1.2and 2.1.3. Insuchastandardmodel,themass-lossrateM˙ =4πr2ρ(r)υ(r)remainsconstantover thewind,andtheequationofmotionisgovernedbypressuretermsandexternalforces,in our case the inward gravitational pull and an outward directed radiative acceleration. For simplicity, the Thomson-acceleration due to electron scattering will be included as a cor- rectiontogravity3intermsoftheconventionalEddington-Gamma,Γ =g /g ∝ Edd Thomson grav L/M,andtheremainingcontinuumaccelerationcanbeneglectedinmosthotstarwinds. Thus, the ‘only’ difficulty regards calculating the radiative line force. Basically, this forcecanbederivedfromthemomentumtransferoccurringduringtheabsorptionand(re- )emissionof(mostly) stellarphotons, whereon average theemissionprocess cancels out becauseofitsfore-aft-symmetry. Sincemostphotons areabsorbed inmetallines,themo- mentum needs to be redistributed to the bulk plasma (H and He), by means of Coulomb collisions(SpringmannandPauldrach,1992)4. Incertainfrequencyintervals,theline-densitycanbesohighthatphotonsontheirway out of the wind are not only scattered in one line before they escape, but also in a sec- ond one, a third one, etc., until they ultimately find their way out. This process is called multi-line-scattering,andleadstoacertaincomplexityinanalyticalcalculationsoftheline force.5 Forsimplicity,weassumeinsteadthateachlinecanbetreatedseparately,i.e.,that stellarphotonscaninteractwithonlyonelineandthenleavethewind,irrespectiveofline- density.AsshownbyPuls(1987),thisisnottoobadanapproximation forOBA-stars.6 In thiscase,thetotallineforcecanbecalculatedbysumminguptheindividualcontributions fromallparticipatinglines,expressedintermsofilluminatingintensityandlineopacity.In rapidlyexpandingatmospheres,thisexpressioncanbesimplifiedbymeansoftheso-called Sobolevapproximation(Sobolev,1960).Ifatfirstweonlyconsiderradiallystreamingpho- tons (relaxedlateron), theradiativeline-acceleration forlineiatresttransition-frequency ν resultsin 0,i grad,i= Lνciν20,i4dπυr/2dρrh1−exp(cid:0)−kLd,iυse/ρdυrth(cid:1)i= Lνciν20,i4dπυr/2dρrh1−e−τSobi (1) 3 Bothaccelerationsdependonr 2,atleastinahomogeneousmedium. − 4 Asignificantdriftbetweenmetallicionsandthebulkplasmaorevenacompletedecouplingofcertain ionsmightbecomepossibleinwindsoflowmetallicityand/orlowdensity,e.g.,Babel(1995);Krticˇkaetal. (2003);Krticˇka(2006);OwockiandPuls(2002). 5 For details, see, e.g., FriendandCastor (1983); Puls (1987); LucyandAbbott (1993); Gayleyetal. (1995). 6 InthedensewindsofWolf-Rayetstars(seebelow),multi-linescatteringneedstobeaccountedfor. 6 S.Mart´ınez-Nu´n˜ezetal. withL thespectralluminosity,s themass-absorptioncoefficientforThomsonscattering, νi e andυ thethermalvelocityforarepresentativeion.k istheso-calledline-strength,corre- th L,i spondingtotheratiobetweenfrequency-integratedline-opacityχ¯ andThomson-scattering i opacitys overatypicalline-width∆ν , e Dop,i χ¯ kL,i= s ρ∆νi . (2) e Dop,i Forthedominatingresonancelinesfrommajorions,k isroughlyconstantoverthewind. L,i Aline-strengthofunitythusreferstoaweaklineofcontinuumelectron-scatteringstrength, whereasstronglinescanhavek 106orevenmore. L,i ≈ ThemostintriguingquantityappearinginEq.1istheradialvelocitygradient,whichre- sultsfromtheDoppler-effectexperiencedbytheabsorbingmatterinanexpandingmedium. AsobviousfromEq.1,theradiativeaccelerationfromopticallythinlines(withlineoptical depth in Sobolev approximation τSob <1) is proportional to kL,i and does not depend on velocityand density, whilstforoptically thicklines(τ >1)g becomes independent Sob rad,i ofline-strength(saturation),butnowdependson(dυ/dr)/ρ. The basic trick of CAK was to write the total line acceleration, i.e., the sum over all contributinglinesi,asanintegraloveraline-strengthdistribution gtot =∑g g (k ,ν)dN(k ,ν) (3) rad rad,i→ZZ rad L L i wherethisdistributiondependsonline-strengthandfrequency.Fromsomepreliminaryem- piricalargumentswhichhavebeenconfirmedmeanwhile(e.g.,Pulsetal.2000andFig.1), CAKassumedapower-lawdistributionw.r.t.k andafrequentialdistribution∝1/ν, L dN(kL,ν)=−N0kαL−2dkLdν/ν. (4) Inthiscase,integralsinEq.3canbesolvedanalytically,andoneobtains L s υ N Γ(α) dυ/dr α s L gtot = e th 0 := e k kα=g (r)Γ k kα, (5) rad 4πr2c2 1 α s υ ρ 4πr2c CAK 1 grav Edd CAK 1 (cid:16) e th (cid:17) − whereΓ(α)istheGamma-function, υ N Γ(α) dυ/dr k = th 0 , k = . (6) CAK 1 c 1 α s ρυ e th − k (on the order of 0.1 for O-stars and early B-stars) is one of the so-called force- CAK multiplier parameters, and k the line-strength where the exponent in Eq. 1, the optical 1 depth in Sobolev approximation, becomes unity.7 αis the 2nd force-multiplier parameter ( 0.6...0.7 for O-star winds, see Fig. 1, left panel), either corresponding to the slope of ≈ theline-strengthdistributionfunction,Eq.4,oralternativelyinterpretedastheratioofline- accelerationfromopticallythicklinestothetotallineacceleration. Afteraccountingfornon-radialphotonsandionizationeffects(notdiscussedhere),we caninsertthetotallineaccelerationintothetime-independent equationofmotion.There- sultingnon-lineardifferentialequationcanbesolvedeithernumerically(e.g.,Pauldrachetal. 1986; FriendandAbbott 1986) or, applying certain simplifications, alsoanalytically (e.g., 7 k1correspondstot−1inthenotationofCAK. UnifiedviewofofinhomogeneousstellarwindsinsupergiantstarsandHXMB 7 Fig.1 Left:Frequencyintegratedline-strengthdistributionfunctionforanO-typewind(Teff=40kK,solar abundance),andcorrespondingpower-lawfit(slope=α 2).Right:ObservedWLRforGalacticO-stars − (asterisks, plus-signs and rectangles for luminosity classes I, III and V objects, respectively). Data from Pulsetal.(1996).Dashed:linear regressiontol.c.Iobjects; dotted: linear regression toluminosity class. IIIandVobjects.Analytical considerations (seetext)andtheoretical models(fromVinketal.2000,solid red)donotpredictadependence onluminosityclass.The‘observed’difference ispresumablyduetothe neglectofwind-inhomogeneities(clumping)inthemass-lossanalysis(seealsoRepolustetal.(2004)).Note thattheobservedwind-momentadeviatetowardslowvaluesbelowlogL/L <5.2(‘weakwindproblem’, cf.Marcolinoetal.2009andreferencestherein,andHuenemoerderetal.20⊙12forapotentialexplanation). BluedotsindicatetheoreticalmodelsfromPauldrachetal.(2003)calculatedforfivestarsfromtheobserved sample,resultinginsimilarwind-momentaaspredictedbyVinketal.(2000). Kudritzkietal.1989;Owockietal.2004),andthemass-lossrateresultsastheeigenvalue oftheproblem.Overall,weobtainthefollowingscalingrelations: M˙ ∝ k L 1/α′ M (1 Γ ) 1−1/α′ ∝ k1/α′ L ΓEdd 1/α′−1 (cid:16) CAKL (cid:17) (cid:16)M − Edd (cid:17) CAKL (cid:16)1 ΓEdd(cid:17) ⊙ ⊙ ⊙ − R β υ(r)=υ∞ 1 ∗ (cid:16) − r (cid:17) 2.25α 2GM(1 Γ ) 1 2.25α υ∞ − Edd 2= υesc (7) ≈ 1 α(cid:16) R (cid:17) 1 α − ∗ − Here,α =α δ,whereδ( 0.1forO-stars)isAbbott’s(1982)ionizationparameter,and ′ − ≈ υ isthephotosphericescapevelocity,correctedfortheradiativeaccelerationbyThomson esc scattering.Theexponentβisontheorderof0.8forO-dwarfs,andontheorderof1.3... 2 forBA-supergiants.ToovercomesomeinherentproblemswiththisinitialCAKformulation (e.g.,theartificialdependenceonafiducialthermalspeed,seeabove),Gayleyetal.(1995) usedasomewhatdifferentdefinitionfortheline-strength,aswellasaline-statisticswithan exponentialcut-off,andreformulatedthestandardCAKapproach.Whilethetwoformula- tions give identical results, thenew one provides a somewhat modified expression for the mass-lossrate,whichisfrequentlyusednowadays: M˙ ∝ L 1/α′ 1 M (1 Γ ) 1−1/α′ ∝ L Q¯ΓEdd 1/α′−1 (cid:16)L (cid:17) (cid:16)Q¯ M − Edd (cid:17) L (cid:16)1 ΓEdd(cid:17) ⊙ ⊙ ⊙ − Forδ=0, the relation between Q¯ ( 2000 for O-stars) and k is given by Q¯1/α 1 = CAK − ≈ 1/α c/υ (1 α)k . th CAK Fi(cid:0)nall−y,byusin(cid:1)gthescalingrelationsforM˙ andυ∞ (Eqs.7),andapproximatingα′ ≈ 2/3,oneobtainstheso-calledwind-momentumluminosityrelation-WLR-(Kudritzkietal., 8 S.Mart´ınez-Nu´n˜ezetal. 1995), R 1 1 L logD =log M˙υ 2 log +offset(Z,spectraltype), (8) mom ∞ (cid:16) (cid:0)R⊙(cid:1) (cid:17)≈α′ (cid:16)L⊙(cid:17) which relates the modified wind-momentum rate D with the stellar luminosity alone. mom ThedependenceonMandΓ (difficultto‘measure’)vanishessincetheproductof(M(1 Edd ΓEdd))1−1/α′ and(υescR1/2)becomesnegligibleaslongasα′ iscloseto2/3.Theoffset i−n Eq.8dependsonmetallicityandspectraltype,mostlybecausetheeffectivelinenumberand thusk (orQ¯)dependonthesequantities,viadifferentopacitiesandcontributingions. CAK Originally,ithadbeensuggestedtouseacarefullycalibratedWLRasanindependent tooltomeasureextragalacticdistances,fromthespectroscopicanalysisofextragalacticA- supergiants and their winds, and by solving for the stellar radius via Eq. 8. Meanwhile, however, the WLR is mostly used to test the validity of the line-driven wind theory itself (e.g.,Fig.1,rightpanel). Varioustheoreticalmodelshavebeencomputedduringrecentdecades,basedonamore orlessexact calculations ofthe line-force (i.e.,discarding thestatisticalapproach and ac- counting for non Local Thermodynamic Equilibrium (hereafter, non-LTE) effects). Most prominent arethemodelsbyVinketal.(2000,2001),relyingonaMonteCarloapproach, themodelsbyPauldrach(1987)andPauldrachetal.(1994,2001)(‘WM-Basic’),calculat- ingtheline-forceinaSobolev-approach,andthemodelsbyKrticˇkaandKuba´t(2000,2001, 2004),whichincludeamore-componentdescription(metalionsplusH/He).Allthesemod- elsagree intheir quantitative predictions (e.g., Fig. 1,right panel), inparticular regarding themetallicitydependenceofthemass-lossrate,M˙ ∝Z0.6...0.7.8 Themostimpressiveobservationalconfirmationofthetheoreticalconceptofline-driven winds and their metallicity dependence has been provided by Mokiemetal. (2007), com- piling observed stellar- and wind-parameters from Galactic, LMC and SMC O-stars, and analysingthecorrespondingWLRs.Accountingforwind-inhomogeneities(seeSect.2.1.2) inanapproximateway,theyderiveM˙ ∝Z0.72 0.15,inverygoodagreementwiththeoretical ± predictions. Thebi-stabilityjump Oneofthestillunsolvedproblemsregardingline-drivenwindsisthe reality of the so-called bi-stability jump9, which should affect the mass-loss rates of B- supergiants(importantinthecontextofSgXBs).Asitturnsout(Pulsetal.,2000;Vinketal., 2001),themass-lossratesofradiationdrivenwindsaremostlydeterminedbyiron(group) lines.BelowT 23kK, theionization ofFe(inthelowerwind)switchesabruptly from eff ≈ FeIVtoFeIII,whichhasmuchmorelinesclosetofluxmaximum.Consequently,themass- loss rateis predicted toincrease for suchcooler stars by roughly afactor of fiveor more, whilstυ shoulddecreasebyafactoroftwo(Vinketal.,2001).Thus,thewind-momentum ∞ ratesforB-supergiants(likeinVelaX-1)arepredictedtobelargerthanofO-starsofsimilar luminosity. Though agradual decreaseinυ (moreprecisely, intheratioυ /υ )overtherange ∞ ∞ esc T = 23kK to 18kK has been confirmed in many studies (e.g., Groenewegenetal. 1989; eff Crowtheretal.2006;MarkovaandPuls2008),thisisnottrueforthepredictedincreasein M˙.DetailedinvestigationsofB-supergiantsbyCrowtheretal.(2006)andMarkovaandPuls (2008)donotshowsuchabehaviour,butratherindicatethattheirmass-lossratesarelower (orsimilar)tothosefrom O-starsatthesameluminosity. Sincethetheoretical predictions 8 Themetallicitydependenceofυ∞isratherweak,υ∞∝Z0.06...0.13(Leithereretal.,1992;Krticˇka,2006). 9 introducedbyPauldrachandPuls(1990)toexplainthebi-stablebehaviourofwindmodelsforPCygni. UnifiedviewofofinhomogeneousstellarwindsinsupergiantstarsandHXMB 9 arequiterobust,whereastheformationoftheprimemass-lossindicator,H ,isquitecom- α plex in the B-supergiant range (Petrovetal., 2014), further investigations are required to solvethislong-standingissue.Onemightnote,however,thatallpresentevolutionarycodes for massive stars incorporate the theoretical mass-loss predictions, and that the predicted bi-stability jump has alarge effect on the evolution and rotation of B-supergiants and be- yond(Vinketal.,2010;Markovaetal.,2014).IfthejumpinM˙ werenotpresent,significant changesinsuchevolutionaryphasesaretobeexpected. Mass loss from Wolf-Rayet stars From early on, the mass-loss properties of Wolf-Rayet starsposedamajorproblemfortheoreticalexplanations,sincetheyareconsiderablylarger compared to O-stars of similar luminosity. Though LucyandAbbott (1993) showed that line-overlapeffects,coupledwithasignificantlystratifiedionizationbalance,canhelpalot to increase the mass-loss, it were Gra¨fenerandHamann (2005, 2006, 2007) who showed thattherearetwoingredientsthatmightproducetheobservedlargemass-lossratesinpar- allelwithhighterminalvelocities.First,ahighEddington-Γ isnecessarytoprovidealow effectivegravityandtoenableadeeplyingsonicpoint athightemperatures.Then,ahigh mass-loss rate leading to an optically thick wind can be initiated either by the ‘hot’ Fe- opacitybump(around 160kK,forthecaseofWCsandWNEs)orthecoolerone(around 40to70kK,forthecaseofWNLs).10 Alternativewindmodels havebeenconstructed by Vinketal. (2011), who argue that forΓ >0.7 the winds (more precisely, the pseudo- Edd continuum) become optically thickalready at thesonicpoint, which should enableahigh M˙.Nevertheless,therearestillanumberofdetailstobeworkedoutbeforethesewindsare completelyunderstood. Impact of (fast)rotation When stars rotaterapidly, their photospheres become oblate, the effective temperature decreases from pole towards equator (‘gravity darkening’), and the wind is predicted tobecome prolate in most cases(because of the larger illuminating po- lar fluxes), with a fast and dense polar outflow, and a slow and thinner equatorial one (CranmerandOwocki,1995).11 Whilststellaroblateness andgravity darkening havebeen confirmed(atleastthebasiceffects)bymeansofinterferometry(DomicianodeSouzaetal., 2003;Monnieretal.,2007), thepredictions on thewind-structure ofrapidly rotating stars havenotbeenverifiedbyobservationssofar(Pulsetal.2010andreferencestherein):first, only few stars in such phases are known (but they exist, e.g., the most extremely rotating massive stardetected by Duftonetal. 2011 rotates very close to critical), and second, the toolstoanalysetheatmospheresandwinds(multi-Dmodels!)ofsuchstarsarerare,ifthey existatall.Notethatevenformoderaterotationthewindispredictedtobecomeasymmetric (thoughtoalesserextent),andtheformationofimportantmass-lossdiagnosticssuchasH α becomesaffected(e.g.,PetrenzandPuls1996). Impact of magnetic fields Recent spectropolarimetric surveys (mostly performed by the international Magnetism in Massive Stars, MiMeS, collaboration, e.g., Wadeetal. 2012, andworkdonebyS.Hubrigandcollaborators, e.g.,Hubrigetal.2013)haverevealedthat roughly10%ofallmassivestarshavealarge-scale,organizedmagneticfieldintheirouter stellarlayers(theincidenceofinternalfieldsmightbehigher), ontheorderofacoupleof hundredtoseveralthousandGauss.Theoriginofthesefieldsisstillunknown,thoughmost 10 TheimportanceoftheseopacitybumpswaspointedoutalreadybyNugisandLamers(2002). 11 Alltheseeffectsbecomesignificantiftherotationalspeedexceedsroughly70%ofthecriticalone. 10 S.Mart´ınez-Nu´n˜ezetal. evidence points toquite stablefossil fields formed sometimes during earlyphases of stel- larformation(Alecianetal.,2013).Theinteractionofthesefieldswiththestellarwindhas been theoretically investigated by ud-Doula, Owocki and co-workers in a series of publi- cations (summarised in ud-Doula 2013), and two different scenarios have been identified, dependingonrotationalspeedandfieldstrength.Fornottoofastrotation(whentheAlve´n radiusissmallerthantheKeplerianco-rotationradius),amagneticallyconfinedwindispre- dicted,inwhichthegravitational pull onthetrapped windplasmacreateslargeregions of infallingmaterial,whereasforfastrotationandstrongconfinement12 oneobtainsarigidly rotatingmagnetosphere(Alve´nradiuslargerthanKeplerianradius(theseradiiaredefined inSect.2.2.2),inwhichthecentrifugalforcepreventsthetrappedmaterialfromfallingback tothestellarsurface.Bothscenariosareconsistentwithobservationalfindings(Petitetal., 2013),andarenowadayscalleddynamicalandcentrifugalmagnetospheres.Thesetwopop- ulationscanbedifferentiatedbytheirdistinctH emission:slowlyrotatingO-typestarswith α narrow,strongemissionconsistentwithadynamicalmagnetosphere,andmorerapidlyrotat- ingB-typestarswithbroader,oftendouble-peaked, emissionassociatedwithacentrifugal magnetosphere. First attempts (Sundqvistetal., 2012a) to simulate the H emission from α thedynamical magnetospheres ofprototypical O-stars(denotedbythespectraltypequali- fiers‘f?p’)havebeenquitesuccessful,thoughttheseinitialinvestigationscertainlyneedto berepeatedwithinamulti-DNLTEapproach. 2.1.2 Smallscalestructures Althoughthestandardtheoryofline-drivenwindsoutlinedintheprevioussectionassumes a stable, time-independent and homogeneous wind, it is since long known that the radi- ation line-force in fact is subjected to a very strong, intrinsic instability (Milne, 1926; LucyandSolomon,1970).Belowwereviewthetheoreticalbackgroundforthisfundamen- tal instability, whereas the corresponding observational background regarding small-scale windstructureisgiveninSect.3.4. Linear perturbation theory Following OwockiandRybicki (1984), let us assume a small velocityperturbationoftheconventionalsinusoidalformδυ=δυei(kx wt),wherethewave 0 − numberkistheinverseoftheperturbationwavelengthandthecircularfrequencywmaybe complex(toaccountforpotentialexponentialgrowthordampingoftheinitialperturbation). Forasphericallysymmetricwind,inaframeco-movingwiththeunderlyingmeanflow,and neglectinggaspressureterms,thiscircularfrequencyisgivenby w=iδg /δυ, (9) rad whereδg =g g istheresponseoftheunperturbedlineforceg tothevelocity rad rad rad,0 rad,0 − perturbation.Foralinethatisopticallythickinthemeanflow,OwockiandRybicki(1984) showedtheratioδg /δυcanbeexpressedbya“bridginglaw” rad δg L rad Ωik Sob , (10) δυ ≈ 1+ikLSob where Ω υ/L is the growth rate of the perturbation, and L =υ /(dυ/dr) the 0 Sob Sob th 0 radialSob≈olevlength13 oftheunperturbedflow,movingwithυ inthestellarframe.Thus, 0 12 Forexample,alargeratiobetweenmagneticandwindenergy. 13 theradialextentofthatzonewherephotonscanbeabsorbedbyaspecificline.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.