ebook img

Towards a tropical Hodge bundle PDF

0.86 MB·
by  Bo Lin
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards a tropical Hodge bundle

Towards a tropical Hodge bundle BoLinandMartinUlirsch 7 1 0 2 n a J Abstract The moduli space Mtrop of tropical curves of genus g is a generalized 6 g 1 conecomplexthatparametrizesmetricvertex-weightedgraphsofgenusg.Foreach such graph Γ, the associated canonical linear system |K | has the structure of a Γ ] polyhedral complex. In this article we propose a tropical analogue of the Hodge G bundle on Mtrop and study its basic combinatorial properties. Our construction is g A illustratedwithexplicitcomputationsandexamples. . h t a m 1 Introduction [ 1 Letg≥2anddenotebyM themodulispaceofsmoothalgebraiccurvesofgenus g v g.TheHodgebundleΛ isavectorbundleonM whosefiberoverapoint[C]inM g g g 5 isthevectorspaceH0(C,ω )ofholomorphicdifferentialsonC.Onecanthinkof 8 C thetotalspaceofΛ asparametrizingpairs(C,ω)consistingofasmoothalgebraic 3 g 4 curveandadifferentialω onC.SinceforeverycurveCthecanonicallinearsystem 0 |K |canbeidentifiedwiththeprojectivizationP(cid:0)H0(C,ω )(cid:1),thetotalspaceofthe C C 1. projectivizationHg=P(Λg)ofΛgparametrizespairs(C,D)consistingofasmooth 0 algebraiccurveC andacanonicaldivisorDonC;itisreferredtoastheprojective 7 Hodgebundle.Letπ :C →M betheuniversalcurveonM .WemaydefineΛ g g g g 1 formallyasthepushforwardπ ω oftherelativedualizingsheafω onC overM . ∗ g g g g : v TheHodgebundleisoffundamentalimportancewhendescribingthegeometry i ofM .Forexample,itsChernclasses,theso-calledλ-classes,formanimportant X g collectionofelementsinthetautologicalringonM (see[31]foranintroductory g r a BoLin Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, e-mail: [email protected] MartinUlirsch FieldsInstituteforResearchinMathematicalSciences,UniversityofToronto,222CollegeStreet, Toronto,OntarioM5T3J1e-mail:[email protected] 1 2 BoLinandMartinUlirsch survey).TheHodgebundleadmitsanaturalstratificationbyprescribingcertainpole and zero orders (m ,...,m ) such that m +...+m =2g−2 and the study of 1 n 1 n naturalcompactificationsofthesecomponentshasrecentlyseenansurgefromboth theperspectiveofalgebraicgeometryaswellasfromTeichmu¨llertheory(seee.g. [4]). Intropicalgeometry,thenaturalanalogueofM isthemodulispaceMtrop that g g parametrizes isomorphism classes [Γ] of stable tropical curves Γ of genus g. In Section2belowwearegoingtorecalltheconstructionofthismodulispace.Inpar- ticular,wearegoingtoseehowthismodulispacenaturallyadmitsthestructureofa generalizedconecomplexwhoseconesareinanaturalorder-reversingone-to-one correspondencewiththeboundarystrataoftheDeligne-Mumfordcompactification M ofM (see[1]aswellasSection2belowfordetails). g g Wealsoreferthereaderto[19],[20],[24],and[25]forthetheoryingenusg=0 (with marked points), to [7], [10], [13], [16], and [32] for its connections to the tropicalTorellimap,aswellasto[1],[11],[12],and[30]forconnectionsofMtrop g (and some of its variants) to non-Archimedean analytic geometry and to [14] and [15]foranin-depthstudyofthetopologyofMtrop.We,inparticular,highlightthe g,n twosurveypapers[8]and[9]. LetΓ be a tropical curve. We denote by K the canonical divisor onΓ and by Γ Rat(Γ)thegroupofpiecewiseintegerlinearfunctionsonΓ (seeSection3belowfor details).Inthisnoteweproposetropicalanaloguesoftheaffineandtheprojective Hodgebundle,andstudytheirbasiccombinatorialproperties. Definition1.1.Asaset,thetropicalHodgebundleΛtropisgivenas g Λgtrop=(cid:8)([Γ],f)(cid:12)(cid:12)[Γ]∈Mgtropand f ∈Rat(Γ)suchthatKΓ +(f)≥0(cid:9) andtheprojectivetropicalHodgebundleHtropisgivenas g Hgtrop=(cid:8)([Γ],D)(cid:12)(cid:12)[Γ]∈MgtropandD∈|KΓ|(cid:9). (cid:0) (cid:1) (cid:0) (cid:1) The associations [Γ],f (cid:55)→[Γ] and [Γ],D (cid:55)→[Γ] define natural projection mapsΛtrop −→Mtrop and Htrop −→Mtrop, which, in a slight abuse of notation, g g g g wedenotebothbyπ . g In [18, 22, 26] the authors describe a structure of a polyhedral complex on the linear system |D| associated to a divisor D on a tropical curveΓ; we are going to reviewthisdescriptioninSection3below.Wealso,inparticular,highlightthefirst authors[23],wherehepresentsalgorithmsforcomputingthispolyhedralcomplex. Ourmainresultisthefollowing: Theorem1.2.Letg≥2. (i)The tropical Hodge bundle Λtrop and the projective tropical Hodge bundle g Htropcarrythestructureofageneralizedconecomplex. g (ii)ThedimensionsofΛtropandHtroparegivenby g g dimΛtrop=5g−4 and dimHtrop=5g−5 g g TowardsatropicalHodgebundle 3 respectively. (iii)There is a proper subdivision of Mtrop such that, for all [Γ] in the relative g interiorofaconeinthissubdivision,thecanonicallinearsystems |K |=π−1(cid:0)[Γ](cid:1) Γ g havethesamecombinatorialtype. We are going to refer to this subdivision of Mtrop as the wall-and-chamber de- g compositionofMtrop.Ingeneral,thegeneralizedconecomplexesΛtrop andHtrop g g g are not equi-dimensional. So Theorem 1.2 (ii) really states that the dimension of a maximal-dimensional cone inΛtrop (or Htrop) has dimension 5g−4 (or 5g−5 g g respectively). AsafirstexamplewereferthereadertoFigure1below,whichdepictstheface latticeofthetropicalHodgebundleinthecaseg=2. Fig.1:ThefacelatticeofHtrop.Thenumbersingreenarethepositiveh(v)andthe 2 numbersinblackdenotecoefficientsgreaterthan1inthedivisors. Letusgiveaquickoutlineofthecontentsofthiscontribution.InSection2we recall the construction of the moduli space Mtrop of stable tropical curves and in g Section3thepolyhedralstructureoflinearsystemsontropicalcurvesrespectively. InSection4weproveTheorem1.2bydescribingthepolyhedralstructuresofboth Λtrop and Htrop simultanously. Section 5 contains a selection of explicit (some- g g timespartial)calculationsofthepolyhedralstructureofHtropinsomesmallgenus g cases. Finally, in Section 6 we describe a natural tropicalization procedure for the 4 BoLinandMartinUlirsch projectivealgebraicHodgebundlevianon-Archimedeananalyticgeometryandex- hibitanaturalrealizabilityproblem. 2 Modulioftropicalcurves AtropicalcurveisafinitemetricgraphΓ (withafixedminimalmodelG)together withagenusfunctionh:V(G)→Z .ThegenusofΓ (orofG)isdefinedtobe ≥0 g(Γ)=g(G)=b (G)+ ∑ h(v) 1 v∈V(G) whereb (G)denotestheBettinumberofG.Intheabovesumoneshouldthinkof 1 the vertex-weight terms as the contributions of h(v) infinitesimally small loops at every vertex v. We say a tropical curve Γ (or the graph G) is stable, if for every vertexv∈V(G)wehave 2h(v)−2+|v|>0, (1) where|v|denotesthevalenceofGatv. Definition2.1.Asaset,themodulispaceMtropofstabletropicalcurvesofgenusg g isgivenas Mtrop=(cid:8)isomorphismclasses[Γ]ofstabletropicalcurvesofgenusg(cid:9). g Let us now recall from [1] the description of Mtrop as a generalized extended g conecomplex. Proposition2.2([1]Section4).ThemodulispaceMtrop carriesthestructureofa g generalizedrationalpolyhedralconecomplexthatisequi-dimensionalofdimension 3g−3. First, recall that a morphism τ →σ between rational polyhedral cones is said to be a face morphism, if it induces an isomorphism onto a face of σ. Note that we explicitly allow the class of face morphisms to include all isomorphisms. A generalized(rationalpolyhedral)conecomplexisatopologicalspaceΣ thatarises asacolimitofafinitediagramoffacemorphisms(see[1,Section2]and[29,Section 3.5]fordetails). In order to understand this structure on Mtrop, we observe that it is given as a g colimit Mgtrop=limM(cid:101)G, → ofrationalpolyhedralconesM(cid:101)GtakenoveracategoryJg.Letusgointosomemore detail: 1. ThecategoryJ isdefinedasfollows: g TowardsatropicalHodgebundle 5 • itsobjectsarestablevertex-weightedgraphs(G,h)ofgenusg,and • itsmorphismsaregeneratedbyweightededgecontractionsG→G/eforan edgeeofGaswellasbytheautomorphismsofall(G,h). Hereaweightededgecontractionc:G→G/eisanedgecontractionsuchthat foreveryvertexvinG/ewehave g(cid:0)c−1(v)(cid:1)=h(v). 2. Moreover,foreverygraphGwedenoteby M(cid:101)G=R≥E(0G) theparameterspaceofallpossibleedgelengthsonG. 3. The association G(cid:55)→M(cid:101)G defines a contravariant functor Jg →RPCZ from Jg to the category of rational polyhedral cones. It associates to a weighted edge contraction G→G/e the embedding of the corresponding face of M(cid:101)trop and G to an automorphism of G the automorphism of M(cid:101)G that permutes the entries correspondingly. Wenoteherebythatwehaveadecompositionintolocallyclosedsubsets Mtrop=(cid:71)RE(G)/Aut(G), g >0 G where the disjoint union is taken over the objects in J , i.e. over all isomorphism g classesofstablefinitevertex-weightedgraphsGofgenusg. Example2.3([13] Theorem 2.12). For a d-dimensional cone complex C, its f- vector is defined as (f ,f ,...,f ), where f is the number of i-dimensional cones 0 1 d i inC. The 12-dimensional moduli space Mtrop has 4555 cells; its f-vector is given 5 by f(Mtrop)=(1,3,11,34,100,239,492,784,1002,926,632,260,71). 5 Remark2.4.Earlierapproaches,suchas[7],[8],[10],[13],[16],and[32],usedto refer to the structure of a generalized cone complex as a stacky fan. Since there is acloselyrelated,butnotequivalent,notionofthesamenameinthetheoryoftoric stacks we prefer to follow the terminology of generalized cone complexes intro- ducedin[1]. 3 Linearsystemsontropicalcurves LetΓ beatropicalcurve.AdivisoronΓ isafiniteformalZ-linearsum D=∑a p , i i i 6 BoLinandMartinUlirsch over points p in Γ, i.e. D is an element in the free abelian group Div(Γ) on the i pointsofΓ.Thedegreedeg(D)ofadivisorD=∑iaipi isdefinedtobetheinteger ∑iai.WesayD=∑iaipiiseffective,ifai≥0foralli. A rational function onΓ is a continuous function f :Γ →R whose restriction toeveryedgeisapiecewiselinearintegralaffinefunction.Givenarationalfunction f onΓ asaboveandapoint p∈Γ,theorderord (f)of f at pisdefinedtobethe p sumoftheoutgoingslopesof f emanatingfrom p.Observethatord (f)isequalto p zeroforallbutfinitelymanypoints p∈Γ.Sowehaveamap (.):Rat(Γ)−→Div(Γ) f (cid:55)−→(f)=∑ord (f)·p. p p Divisorsoftheform(f)forafunction f ∈Rat(Γ)formasubgroupPDiv(Γ)of Div(Γ)andarereferredtoastheprincipaldivisorsonΓ.TwodivisorsDandD(cid:48)on Γ aresaidtobeequivalent(writtenasD∼D(cid:48)),ifD−D(cid:48)∈PDiv(Γ),i.e.ifthereis arationalfunction f ∈Rat(Γ)suchthatD+(f)=D(cid:48).Notethatthecontinuityof f impliesthatdeg(f)=0. Letusnowdefinethemainplayersofthisgame: Definition3.1.LetDbeadivisorofdegreenonatropicalcurveΓ. 1.DenotebyR(D)theset (cid:8) (cid:12) (cid:9) R(D)= f ∈Rat(Γ)(cid:12)D+(f)≥0 . For f ∈R(D),thedivisorD+(f)issupportedindeg(D+(f))=deg(D)=n points(countedwithmultitplicity).Wemaythereforedefine: (cid:8) (cid:12) S(D)= (f,p1,...,pn)(cid:12)f ∈Rat(Γ)and p1,...,pn∈Γ (cid:9) suchthatD+(f)=p +...+p ≥0 . 1 n 2.Thelinearsystem|D|associatedtoDistheset |D|=(cid:8)D(cid:48)∈Div(Γ)(cid:12)(cid:12)D(cid:48)≥0andD∼D(cid:48)(cid:9). Observe that R(D)=S(D)/S , where the symmetric group S acts on S(D) by n n permutationofthepoints p ,...,p .Moreover,theadditivegroupR=(R,+)op- 1 n erates on R(D) by adding a constant function and, taking the quotient under this operation,weobtainthat R(D)/R=|D|, since(f)=0ifandonlyif f isaconstantfunctiononΓ. ThespacesS(D),R(D),and|D|areknowntocarrythestructureofapolyhedral complex(seee.g.[26]or[18]).Thefollowingpropositionisamoredetailedversion of[18,Lemma1.9]. TowardsatropicalHodgebundle 7 Proposition3.2.Given a divisor D on a tropical curveΓ, the space S(D) has the structure of a polyhedral complex. Choose an orientation for each edge e of Γ, identifyingitwiththeopeninterval[0,l(e)].ThenthecellsofS(D)canbedescribed bythefollowing(discrete)data: (i)apartitionof{p ,...,p }intodisjointsubsetsP andP (indexedbyv∈V(G) 1 n e v andedgese∈E(G))thattellsusonwhichedge(oratwhichvertex)every p i islocated, (ii)atotalorderoneachP,and e (iii)theoutgoingslopem ∈Zof f atthestartingpointofe e suchthatforeveryvertexvtheequality #P =D(v)+ ∑ m + ∑ −(#P +m ) v e e e outwardedgesatv inwardedgesatv holds.Furthermore,thispolyhedralstructuredescendsfromS(D)toR(D)=S(D)/S n and|D|=R(D)/R. Proof. Setd =#P andd =#P.WeclaimthatthepointsinacellofS(D)canbe v v e e parametrizedbythefollowingtwotypesofcontinuousdata: • thevalue f(v)atavertexv,aswellas • thedistanced(pe)ofevery pe∈P from0∈e=[0,l(e)]. i i e Thedistancesd(pe)immediatelydeterminethe p.Inordertoreconstruct f (ifit i i exists)wewrite∑p∈Pep=∑jde,jxj forpoints0<x1<···<xr<l(e)one,where the positive integers d indicate the number of pe that are all located at the same e,j i pointx .Therationalfunction f isthendeterminedbytakingthevalue f(v)atthe j originofeveryedgee=[0,l(e)]andcontinuingitpiecewiselinearlywithslopem e untilwehitx ,atwhichpointwechangetheslopetod +m untilwehitx ,where 1 e,1 e 2 we change the slope to d +d +m , and so on until we hit the vertex v(cid:48) at the e,2 e,1 e endofe=[0,l(e)].So,bycontinuity,foreveryedgeweobtainthelinearcondition r k f(v(cid:48))= f(v)+m x +∑(cid:0)m +∑d (cid:1)(x −x )= e 1 e e,j k+1 k k=1 j=1 r (cid:0) (cid:1) = f(v)+m l(e)+∑d l(e)−x e e,i i i=1 on the parameters of a cell in S(D). This, together with the inequalities 0<x < 1 ···<x <l(e)determinesthepolyhedralstructureofacellinS(D).Notethatour r parametersarestilloverdeterminedinthesensethattheremaybenorationalfunc- tion f suchthatD+(f)=p +...+p ≥0andwhichalsofulfillsalloftheabove 1 n inequalities;inthiscaseweobtainanemptycell. TheconditionsonthecellsofS(D)arealldiscreteandthepointswithinonecell are all parametrized by the distances d(pe)∈(0,l(e)) and the values f(v) subject i tothesediscreteconditions.ThereforeS(D)isapolyhedralcomplexthatdoesnot dependonthechoiceoftheorientationofΓ. 8 BoLinandMartinUlirsch TheactionofS oneverycellisaffinelinearandthereforethepolyhedralstruc- n ture descends to R(D). Moreover, the additive group R acts on R(D) by adding a constanttoall f(v)andthereforethepolyhedralstructurealsodescendsto|D|. (cid:116)(cid:117) 4 StructureofthetropicalHodgebundle LetΓ beatropicalcurvewithafixedminimalmodelG.Asexplainedin[3,Section 5.2],thecanonicaldivisoronΓ isdefinedtobe K =K = ∑ (2h(v)+|v|−2)(v), Γ G v∈V(G) where|v|denotesthevalenceofthevertexv.Observethatdeg(K )=2g−2.The Γ h(v)-term in the sum should hereby be thought of as contributing h(v) infinitely small loops at the vertex v. In fact, given a semistable curveC whose dual graph is G, the canonical divisor is the multidegree of the dualizing sheaf onC (see [2, Remark3.1]).WerecallDefinition1.1fromtheintroduction. Definition4.1.Letg≥2.Asaset,thetropicalHodgebundleΛtropisdefinedtobe g Λgtrop=(cid:8)([Γ],f)(cid:12)(cid:12)[Γ]∈Mgtropand f ∈Rat(Γ)suchthatKΓ +(f)≥0(cid:9) andtheprojectivetropicalHodgebundleHtropas g Hgtrop=(cid:8)([Γ],D)(cid:12)(cid:12)[Γ]∈MgtropandD∈|KΓ|(cid:9) ThetropicalHodgebundlescomewithnaturalprojectionmaps Λtrop−→Mtrop and H −→Mtrop g g g g (cid:0) (cid:1) (cid:0) (cid:1) givenby [Γ],f (cid:55)→[Γ]and [Γ],D (cid:55)→[Γ],which,inabuseofnotation,weboth denotebyπ . g trop InordertounderstandthestructureofthetropicalHodgebundleΛ wecon- g siderthepullbackofΛgtropandHgtroptoM(cid:101)G,definedas (cid:8) (cid:12) (cid:9) Λ(cid:101)G= ([Γ],f)(cid:12)[Γ]∈M(cid:101)Gand f ∈Rat(Γ)suchthatKΓ +(f)≥0 and H(cid:102)G=(cid:8)([Γ],D)(cid:12)(cid:12)[Γ]∈M(cid:101)GandD∈|KΓ|(cid:9). InanalogywiththespaceS(D),asinSection3above,wealsoset (cid:8) (cid:12) S(cid:101)G= ([Γ],f,p1,...,p2g−2)(cid:12)[Γ]∈M(cid:101)Gand f ∈Rat(Γ) (cid:9) suchthatK +(f)=p +...+p ≥0 . Γ 1 2g−2 TowardsatropicalHodgebundle 9 Proposition4.2. (i)TheactionofS onS thatpermutesthepointsp ,...,p 2g−2 G 1 2g−2 inducesanaturalbijection Λ(cid:101)G(cid:39)S(cid:101)G/S2g−2. (ii)TheactionoftheadditivegroupR=(R,+)onΛ(cid:101)G,givenbyaddingconstant functionsto f,inducesanaturalbijection H(cid:102)G(cid:39)Λ(cid:101)G/R. Proof. TheprojectionsS(cid:101)G→M(cid:101)GandΛ(cid:101)G→M(cid:101)Garebothinvariantundertheaction of S and R. Therefore our claims follow from the respective identities on the 2g−2 fibers. (cid:116)(cid:117) LetusnowrecallTheorem1.2fromtheintroduction. Theorem4.3.Letg≥2. (i)The tropical Hodge bundlesΛtrop and Htrop canonically carry the structure g g ofageneralizedconecomplex. (ii)ThedimensionsofΛtropandHtroparegivenby g g dimΛtrop=5g−4 and dimHtrop=5g−5 g g respectively. (iii)ThereisapropersubdivisionofMtropsuchthat,forall[Γ]intherelativeinte- g riorofaconeinthissubdivision,thecanonicallinearsystems|K |=π−1(cid:0)[Γ](cid:1) Γ g havethesamecombinatorialtype. Proof (Proof of Theorem 1.2). Part (i): We are going to show that S(cid:101)G canonically carries the structure of a cone complex. Then, by Proposition 4.2 above, both H(cid:102)G andΛ(cid:101)Gcarrythestructureofageneralizedconecomplex. ChooseanorientationforeachedgeeofG,identifyingitwiththeclosedinter- val [0,l(e)]. As in Proposition 3.2 above, we can describe the cells of S(cid:101)G by the followingdiscretedata: (i) apartitionof{p ,...,p }intodisjointsubsetsP andP (indexedbyver- 1 2g−2 e v ticesv∈V(G)andedgese∈E(G))thattellsusonwhichedge(oratwhich vertex)each p islocated, i (ii) atotalorderoneachP,and e (iii) theintegerslopem of f atthestartingpointofe e suchthatforeveryvertexvtheequality d =2h(v)−2+|v|+ ∑ m + ∑ −(d +m ) v e e e outwardedgesatv inwardedgesatv holds,whered =#P andd =#P.Thecontinuousparametersdescribingallele- v v e e mentsinourcellaregivenby 10 BoLinandMartinUlirsch (i) thevalues f(v), (ii) thedistancesd(pe)of pefrom0∈[0,l(e)],and i i (iii) thelengthsl(e). In order to find the conditions on those parameters, we again write ∑ p= p∈Pe ∑de,jxj forx1<···<xr.Usingthisnotationwehave0<x1<...<xr <l(e)as conditionsonthed(pe)=x aswellasbythecontinuityof f: i i m x = f(x )−f(v) e 1 1 (m +d )(x −x )= f(x )−f(x ) e e,1 2 1 2 1 (m +d +d )(x −x )= f(x )−f(x ) e e,1 e,2 3 2 3 2 . . . r (cid:0)m +∑d (cid:1)(l(e)−x )= f(v(cid:48))−f(x ). e e,j r r j=1 Eliminating the non-parameters f(x ),...,f(x ) we can combine the system of 1 r equationsto r f(v(cid:48))= f(v)+(m +d )l(e)−∑d x . (2) e e e,j j j=1 Since these conditions are invariant under multiplying all parameters simultane- ouslybyelementsinR≥0,everynon-emptycellinS(cid:101)Ghasthestructureofarational polyhedralcone. Finally,thenaturalactionofAut(G)onS(cid:101)G,givenby φ·(cid:0)[Γ],f,p ,...,p (cid:1)=(cid:0)[φ(Γ)],f◦φ−1,φ(p ),...φ(p )(cid:1) 1 2g−2 1 2g−2 forφ ∈Aut(G)iscompatiblewithboththeS -andtheR-operation.Moreover, 2g−2 givenaweightededgecontractionG(cid:48)=G/eofG,thenaturalmapS(cid:101)G(cid:48) (cid:44)→S(cid:101)G iden- tifies S(cid:101)G(cid:48) with the subcomplex of S(cid:101)G given by the condition l(e)=0 in the above coordinates. Thereforewecanconcludethatboth Λgtrop=limΛ(cid:101)G and Hgtrop=limH(cid:102)G, −→ −→ where the limits are taken over the category J as in Section 2 above, carry the g structureofageneralizedconecomplex. Part(ii):Weneedtoshowthatthedimensionofamaximal-dimensionalconein H is5g−5.By[7,Proposition3.2.5(i)],wehavedimMtrop=3g−3and,by[23, g g Corollary7],thedimensionofthefiber|K |ofapoint[Γ]isatmostdeg(K )=2g− Γ Γ 2.ThisshowsthatthedimensionofHtropisatmost(3g−3)+(2g−2)=5g−5. g In addition we now exhibit a (5g−5)-dimensional cone in Htrop as follows: g ConsiderthetropicalcurveΓ asindicatedinFigure2andnotethatithas2g−2 max verticesand3g−3edges.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.