ebook img

Towards a parameter-free method for high Reynolds number turbulent flow simulation based on PDF

15 Pages·2015·0.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards a parameter-free method for high Reynolds number turbulent flow simulation based on

Availableonlineatwww.sciencedirect.com ScienceDirect Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 www.elsevier.com/locate/cma Towards a parameter-free method for high Reynolds number turbulent flow simulation based on adaptive finite element approximation Johan Hoffmana,b,∗, Johan Janssona,b, Niclas Janssonc, Rodrigo Vilela De Abreua aDepartmentofHighPerformanceComputingandVisualization,KTHRoyalInstituteofTechnology,10044Stockholm,Sweden bBasqueCenterforAppliedMathematics,Mazarredo,14.48009Bilbao,BasqueCountry,Spain cRIKENAdvancedInstituteforComputationalScience,Kobe,Japan Availableonline29December2014 Highlights • Wepresentaparameter-freemethodforhighReynoldsnumberturbulentflow. • Themethodisbasedonadaptivemeshoptimizationusingadjointtechniques. • Weconnectthenumericalapproximationtodissipativeweaksolutions. • Turbulentboundarylayersareleftunresolved,noboundarylayermeshisneeded. • Wehighlightbenchmarkproblemsforwhichthemethodisvalidated. Abstract Thisarticleisareviewofourworktowardsaparameter-freemethodforsimulationofturbulentflowathighReynoldsnumbers. InaseriesofpaperswehavedevelopedamodelforturbulentflowintheformofweaksolutionsoftheNavier–Stokesequations, approximated by an adaptive finite element method, where: (i) viscous dissipation is assumed to be dominated by turbulent dissipationproportionaltotheresidualoftheequations,and(ii)skinfrictionatsolidwallsisassumedtobenegligiblecomparedto inertialeffects.Theresultisacomputationalmodelwithoutempiricaldata,wheretheonlymodelparameteristhelocalsizeofthe finiteelementmesh.Underadaptiverefinementofthemeshbasedonaposteriorierrorestimation,outputquantitiesofinterestin theformoffunctionalsofthefiniteelementsolutionconvergetobecomeindependentofthemeshresolution,andthustheresulting methodhasnoadjustableparameters.Noadhocdesignofthemeshisneeded,insteadthemeshisoptimizedbasedonsolution features,inparticularnoboundarylayermeshisneeded.Weconnectthecomputationalmethodtothemathematicalconceptofa dissipativeweaksolutionoftheEulerequations,asamodelofhighReynoldsnumberturbulentflow,andwehighlightanumber ofbenchmarkproblemsforwhichthemethodisvalidated.Thepurposeofthearticleistopresentthecomputationalframeworkin aconciseform,toreportonrecentprogress,andtodiscussopenproblemsthataresubjecttoongoingresearch. ⃝c 2014ElsevierB.V.Allrightsreserved. MSC:65M60;65M50 Keywords:Finiteelementmethod;Adaptivemeshrefinement;Turbulencesimulation ∗Corresponding author at: Department of High Performance Computing and Visualization, KTH Royal Institute of Technology, 10044 Stockholm,Sweden. E-mailaddresses:[email protected](J.Hoffman),[email protected](J.Jansson),[email protected](N.Jansson),[email protected] (R.V.DeAbreu). URL:http://www.csc.kth.se/∼hoffman(J.Hoffman). http://dx.doi.org/10.1016/j.cma.2014.12.004 0045-7825/⃝c 2014ElsevierB.V.Allrightsreserved. J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 61 1. Introduction InthispaperwereviewourworktowardsageneralframeworkforsimulationofunsteadyhighReynoldsnumber turbulent flow using adaptive finite element methods, with the purpose to give a coherent presentation of the com- putational framework, to report on recent progress, and to highlight challenges and open problems. We can refer to themethodologyasDirectFiniteElementSimulation(DFS),andwerecallthetheoreticalfoundationandshowhow DFSofferssolutionstothemainchallengesofturbulencesimulation:howtoassesstheaccuracyinasimulation,how tooptimizetheuseofcomputationalresources,andhowtominimizethedependencyonapplicationspecificmodel parameters. Overtheperiod2010–2013,wehaveparticipatedinanumberofComputationalFluidDynamics(CFD)benchmark workshops organized by the aerospace community (AIAA, NASA, DLR, Boeing, etc.), namely the BANC series [1–4](WorkshoponBenchmarkProblemsAirframeNoiseComputation)andHiLiftPW-2[5](2ndAIAACFDHigh Lift Prediction Workshop). These workshops have gathered leading research groups in the area, as well as major aerospace companies (e.g. Boeing, Cessna, Aerospace Kawasaki) and the main commercial software developers (e.g. ANSYS and Exa), with the objective to assess the state of the art computational methods for high Reynolds number aerodynamics and aeroacoustics in complex geometry. From the results presented in these workshop it is clear thatour CFDmethodology is uniquein several aspects,in particular: (i)it was theonly method thatprovided estimatesoftheerrorinthecomputation,(ii)itwastheonlymethodwithautomaticmeshadaptation,and(iii)itwas theonlymethodwhichwasfreefrommodelparameters. IntheDFSframework,(i)and(ii)areachievedbygoal-orientedaposteriorierrorestimation,wheretheerrorina functionalofinterestcanbeexpressedintermsoftheresidualoftheapproximatesolutionweightedbythesolution of an associated adjoint (dual) problem. A general framework for a posteriori error estimation based on duality for differentialequationswasdevelopedinthe1990sdescribed,e.g.,in[6–8]andthereferencestherein.Ourownwork hasbeenfocusedontheextensionofthisframeworktoCFDandturbulentflow[9–11].Themethodisvalidatedfor arangeofbasicbenchmarkproblemsincludingflowpastcylinders,spheresandsquares[12–15],wheretheadaptive algorithmisshowntoconvergetotheexperimentalreferencedata. The parameter-free aspect (iii) of DFS is related to the fact that no subgrid scale stresses or Reynolds stresses areparametrizedasinLES(LargeEddySimulation)orRANS(ReynoldsAveragedNavier–Stokesequations)[16], andthatforhighReynoldsnumbersweassumethattheskinfrictionoftheboundarylayersisdominatedbyinertial effects,sothatafreeslipboundaryconditionisusedatsolidboundaries[17–19].IncontrasttoRANSandLES,no averagingorfilteringoperatorsareintroducedinDFS,theresolutionoftheturbulentscalesisdeterminedaspartof thecomputation,withthelocalmeshsizeadaptedbasedontherequiredprecisioninthechosenquantityofinterest. Themotivationforthefreeslipboundaryconditionisbasedontheuseofamixedboundarycondition,forthenormal velocityandthetangentialstresses,similartostandardwalllayermodelsofLES[20]. We now proceed to put the DFS method into the context of research on computational methods for turbulence simulation,andmathematicalresearchontheNavier–Stokesequations. 1.1. Turbulencesimulation Turbulenceiscentralforourunderstandingoftheworld,includingthegeophysicalflowoftheocean-atmosphere system, and the aerodynamics of vehicles, aircraft and wind turbines, for example. Simulation of turbulent flow is anoutstandingproblemthatcutsthroughmathematics,numericalanalysis,scientificcomputingandfluidmechanics. Thisinterdisciplinarynatureoftheproblemmakesitparticularlychallenging. ThefundamentalmathematicalmodeloffluidflowisthenonlinearNavier–Stokesequationsin3spacedimensions, forwhichaproofofexistenceofclassical(smooth)solutionsinthegeneralcaseismissing.Tocomputeapproximate solutionsoftheNavier–Stokesequationsinthecaseofturbulentflowisextremelyexpensive;anheuristicargument estimatesthenumberofdegreesoffreedomneededtoresolveallturbulentscalesinaDirectNumericalSimulation (DNS) to be of the order Re9/4, with Re the Reynolds number, which for many decades to come will make DNS impossiblee.g.forgeophysicalfloworflightaerodynamicswhere Re≫106. Areductioninthenumberofdegreesoffreedomispossiblebyinsteadconsideringmodelsforaveragedquantities, suchasstatisticalmeanfieldsinRANSorspatiallyfilteredfieldsinLES,atthecostofintroducingturbulence/subgrid 62 J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 modelstomodelunresolvedstatisticalfluctuations/subgridscales[16].Thisclosureproblemofturbulencemodeling hasproventobeanoutstandingproblem,wheremodelparametersoftenhavetobetunedtoaparticularapplication. Similarly,subgridmodelsintroduceparametersthatneedtobechosenbytheuser,inparticularnearsolidwallsitisa challengetoselectproperparameterstoaccuratelycapturephenomenasuchasflowseparation[20]. In RANS/LES simulations, the relation between model errors and numerical errors is delicate, since the effect ofthenumericalmethodoftenissimilartotheeffectofturbulence/subgridmodels,e.g.intheformofdissipationof kineticenergy.Forexample,thewidelyusedSmagorinskysubgridmodel[21]iscloselyrelatedtomethodsofartificial viscosityusedtostabilizenumericalmethods[22].Totacklethisissue,differentapproacheshavebeenattempted,from usinghighordernumericalmethodswithminimaldissipation,tointerpretingthenumericalstabilizationasthesubgrid model[23,11,24,25],oralternativelytryingtobalancethetwosourcesoferrors[26,10].Therelationshipbetweenthe localresolutionofthecomputationalmeshandtheturbulentlengthscalesofRANSandLESalsoposeschallenges,in particularnearsolidwallswheresmallturbulentscalesdictateaveryfinemeshresolutionwhichdominatesthetotal computationalcost[20]. Inthecontextoffiniteelementmethods,VariationalMultiscaleStabilizedmethods(VMS)[24]havebeendevel- oped where the variational form of the Navier–Stokes equations is split into resolved scales and subgrid scales, by decomposingtheunderlyingHilbertspaceintoadirectsumofacoarsespaceandafinespace,whereasubgridmodel isusedtomodelthefinescalecontribution. 1.2. Dissipativeweaksolutions Intheframeworkpresentedinthispaperwefollowadifferentpath,whereweavoidtheprocessofaveragingand scaleseparationaltogether,andthusalsotheclosureproblem.ForincompressibleflowthemathematicianJeanLeray in1934[27]provedtheexistenceofaweaksolution,orturbulentsolution(solutionturbulente)intheterminologyof Leray, which is a function that satisfies a weak form of the Navier–Stokes equations (in the sense of distributions). TheworkofLeraylaidthefoundationforthemodernmathematicaltheoryoftheNavier–Stokesequations,andthe regularized form of the equations used by Leray later inspired a specific class of LES methods [28]. The question of uniqueness of a weak solution is still an open problem, and whether a weak solution is also a smooth (strong) solutionisformulatedasa$1millionClayPrizeproblem[29].Aweaksolutiondoesnotsatisfythestandardenergy balancevalidforasmoothsolutionoftheNavier–Stokesequations,insteadonlyanenergyinequalitycanbeshownto hold.Partialregularityofaweaksolutionwasprovenundertheassumptionthatageneralizedenergyinequalityholds [30,31],inwhichcasetheweaksolutionisreferredtoasasuitableweaksolution.Itcanbeshownthatcertaindiscrete approximations,includingfiniteelementapproximations,convergetosuitablesolutions[32]. Foraweaksolution,dissipationwithoutviscosityispossible.Inparticular,DuchonandRobertin2000introduced the notion of a dissipative weak solution as a model for high Reynolds number turbulent flow, where an explicit expressionforthesourceofinvisciddissipationwasderived,whichtooktheformofalocallackofregularityinthe velocityfield[33].Alreadyin1949,OnsagersuggestedthatweaksolutionsoftheinviscidEulerequations(assuming suchexist)couldbeusedtomodelhighReynoldsnumberturbulentflow[34]: “Itisofsomeinteresttonotethatinprinciple,turbulentdissipationasdescribedcouldtakeplacejustasreadily withoutthefinalassistancebyviscosity.Intheabsenceofviscosity,thestandardproofoftheconservationofenergy doesnotapply,becausethevelocityfielddoesnotremaindifferentiable!” A consequence of the idea that turbulent dissipation is independent of viscosity, is that it should be possible to model turbulence without any empirical parameters. Onsager also conjectured that in such “ideal” turbulence, the regularity of the velocity field could at most satisfy a Ho¨lder condition with exponent 1/3, otherwise the energy wouldbeconserved.SeveralproofsofOnsager’sconjecturehavesincethenbeenpresented,andintheir2006review oftheworkofOnsager,EyinkandSreenivasanendwithaconclusiononthefutureofOnsager’sideas[35]: “We believe that Onsager’s theoretical vision of an ideal turbulence described by inviscid fluid equations is a properidealizationforunderstandinghighReynoldsnumberflows.Needlesstosay,inrealphysicalturbulencethere isviscosity,whichisalwayspositive.[...]Inthesameway,thezero-viscositylimit,whichsupposesaninfinitenumber of cascade steps, should be a good idealization for turbulence with a large but finite number of cascade steps, that is, a Reynolds number which is large but finite. The vindication of this belief, if it is true, must come from a set of calculationaltoolsforthezero-viscositylimit,whichwillmakeit,intheend,atrulypredictivedevice”. J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 63 1.3. Directfiniteelementsimulation In [11,36,15] we show that approximate dissipative weak solutions can be computed to simulate turbulent flow usingastabilizedfiniteelementmethodthatsatisfiescertainconditionsonstabilityandconsistency,whichwerefer to as a General Galerkin (G2) method. We also refer to the computational methodology as DFS, as an extension to turbulent flow of the general framework for a posteriori error estimation developed in the early 1990s [6–8]. In particular, for high Reynolds numbers we can set the viscosity to zero, thus realizing a computational model for turbulentflowfreefromempiricalparameters. Wearguethatthepropermathematicalobjectsforassessingwell-posednessinDFSarefunctionalsofthecomputed weaksolutions[37].Torepresenttheerrorinafunctionalofadissipativeweaksolutionweintroduceadual(adjoint) linearized problem, which opens for a posteriori estimation of the error in outputs of interest, such as the drag and liftofanairplane.Theaposteriorierrorrepresentationcanbeusedtoconstructefficientadaptivealgorithms,where the computational mesh and the finite element space are optimized for the computation of a particular output of interest(goalfunctional)toacertainaccuracyusingminimalcomputationalresources.Thusalsothelocalresolution of turbulent scales is determined as part of the computation (a posteriori) based on what functional is the goal of the simulation. For example, approximation of the aeroacoustic sources in a turbulent flow past a landing gear may demandadifferentmeshresolutionthanapproximationoftheaerodynamicforcesonthesamelandinggear[1,2]. A classical problem of great significance is the prediction of aerodynamic forces acting on a body in a high Reynolds number flow. The choice of boundary conditions in the simulation is here central. As already noted, for realistic applications e.g. in flight aerodynamics, full resolution of a turbulent boundary layer in DNS is impossible duetothecomputationalcost.InLES,typicalmodelsofthenearwallturbulentflowarewallshearstressmodels[20] orlocalRANSmodelsnearthewall[38],wherebothapproachesdemandhighresolutionboundarylayermeshesand calibrationofmodelparameters. In [18] we investigate a simple wall shear stress model parametrized by the skin friction stress generated by the turbulent boundary layer. We find that for very high Reynolds numbers, corresponding to small skin friction, the macroscopicflowislargelyindependentofthewallshearstressmodel.Inparticular,theskinfrictionparametercan be set to zero, corresponding to a free slip boundary condition, and no boundary layer mesh is needed. For high Reynoldsnumberflow,DFSwithafreeslipboundaryconditionhasbeenshowntobeanefficientandaccuratemodel forapproximationofaerodynamicforcesandaeroacousticsources[1–3,5]. In this paper the G2/DFS framework is presented in Section 2, and we give a brief description of a detailed implementationofthemethodinSection3.InSection4wesummarizeasetofvalidationstudiesforthecomputational model,inSection5wediscusschallengesandopenproblemsrelatedtothedualproblem,andinSection6wegivea shortsummary. 2. TheG2/DFScomputationalframework LowMachnumberflowcanbeapproximatedbyincompressibleflow,andthefocusofthispaperisthemodelof incompressiblehighReynoldsnumberturbulentflowaroundblufforstreamlinedbodies,wheretheReynoldsnumber is defined as Re = UL, withU a characteristic velocity, L a characteristic length and ν is the kinematic viscosity. ν Further,weassumethatturbulentboundarylayersarefullydeveloped,sothattransitiontoturbulenceintheboundary layersisnotpartofthemodel. We choose mixed boundary conditions in the form of prescribing the normal component of the velocity and the tangential components of the viscous shear stresses, with the purpose to avoid resolution of thin boundary layers at high Reynolds numbers. The normal velocity is set to zero relative the body, corresponding to a no penetration boundarycondition,whereasthetangentialshearstressesmustbeprovidedasdatatotheproblem.Boundarystress data is typically not available, but viscous shear stresses, measured in the form of a non-dimensional skin friction coefficient,isknowntodecreasewithincreasingReynoldsnumber[39].InLES,wall-layermodelstakeasimilarform, withwallshearstressproportionaltoskinfriction[20].Thus,thisformofboundaryconditionscanbemotivatedboth bystandardargumentsfromtheLESliterature[16],notingthatbothLESandDFSconcernmodelsoftheunresolved turbulent flow near the boundary, and by strict mathematical arguments choosing mixed Dirichlet–Neumann type boundaryconditionsfortheNavier–Stokesequations. 64 J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 2.1. Mathematicalmodel The Navier–Stokes equations for incompressible flow of (small positive) constant kinematic viscosity ν in a (bounded) volume Ω in R3 around a fixed rigid body with smooth boundary Γ over a time interval I = [0,T], taketheform:Findthevelocityu =(u ,u ,u )andpressure pdependingon(x,t)∈Ω ∪Γ ×I,suchthat 1 2 3 u˙ +(u·∇)u+∇p−∇·τ =0 inΩ ×I, ∇·u =0 inΩ ×I, un =0 onΓ ×I, (1) τ =βu onΓ ×I, sk tk u(·,0)=u0 inΩ, with k = 1,2,u˙ = ∂u,u = u · n the fluid velocity normal to Γ with n a unit outward normal vector, τ = ∂t n τ(u)=2νϵ(u)theviscousstresswithϵ(u)thestandardvelocitystrain,τ thetangentialstressesandu =u·t the sk tk k tangentialvelocitieswitht orthogonaltangentvectors,andu0agiveninitialcondition. k We assume suitable far-field inflow/outflow boundary conditions, and we note the Dirichlet–Neumann boundary conditioninthenormalandtangentialdirections,respectively,withtheeffectofturbulentboundarylayersmodeled bya(skin)frictionparameterβ.Withzeroviscosityν andboundaryfrictionβ,themodel(1)reducestotheinviscid Eulerequations. In [33] it is shown that for any weak solution (u,p) of the Euler equations (assumed to exist), a local energy equationissatisfied(inthesenseofdistributions) d 1   1  |u|2 +∇· u |u|2+ p +D(u)=0, (2) dt 2 2 with D(u)definedintermsofthelocalsmoothnessofu.If D(u)≥0,then(u,p)isreferredtoasadissipativeweak solution. 2.2. Finiteelementmethod InG2/DFSwecomputeapproximatesolutionsoftheNavier–Stokesequations(1)byaweightedresidualstabilized finiteelementmethod,oftheform:FindUˆ =(U,P)∈ V suchthatforallvˆ =(v,q)∈ V h h [R(U;Uˆ),vˆ]+[hR(U;Uˆ),R(U;vˆ)]=0, (3) whereV isaspace–timefiniteelementspacewithvelocitiesvsatisfyingv·n =0onΓ,[·,·]isan L (Ω ×I)inner h 2 product, R(U;vˆ) = (v˙ +U ·∇v +∇q,∇ ·v) is the residual, and h is the local mesh size. The first term in (3) ˆ establishesU asaweaksolutionof(1)andthesecondtermintroduceskineticenergydissipation D (Uˆ)=[hR(U;Uˆ),R(U;Uˆ)]=∥h0.5R(U;Uˆ)∥2 (4) h L2 boundedbydatawith∥·∥ an L (Ω ×I)norm[36]. L2 2 Noticethat here ν and β areset tozero withinsteadthe weightedresidual stabilizationintroducinga dissipative effectasanautomaticturbulencemodel.ThisisanalogoustothedissipativeweaksolutionsintroducedbyDuchonand Robert[33],withdissipationcausedbyalackofsmoothnessinthevelocityfield,unrelatedtoviscousdissipation.For asmoothsolutionUˆ,correspondingtoasmallresidualin L (Ω × I),thedissipativeeffectoftheweightedresidual 2 stabilizationvanishes.InSection4werecallvalidationresultsthatshowthatDFSbasedontheEulerequationsisa goodapproximationofhighReynoldsnumberturbulentflow.Wealsofindthatwithsufficientmeshresolution,D (Uˆ) h in(4)isindependentofthelocalmeshsizeh [15]. InSection3wegiveaprecisedefinitionofaparticularimplementationofG2/DFS,butmanychoicesarepossible aslongascertainconditionsforstabilityandconsistencyaresatisfied[36,15]. J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 65 2.3. Boundaryconditions Itiswellknownthatforviscousflow,thinboundarylayersdevelopnearsolidwallsoverwhichthevelocitychanges fromthevelocityofthewalltothefreestreamvelocity.ThethicknessoftheseboundarylayersscalewiththeReynolds number, and at high Reynolds numbers the boundary layers are so thin that computational resolution is impractical or impossible. At sufficiently high Reynolds numbers the boundary layers undergo transition to turbulence, where computationalresolutionofturbulentboundarylayersisevenlessrealisticinanyapplicationofsignificance[20].For example,fullcomputationalresolutioninDNSoftheturbulentflowaroundacaroranairplane,includingboundary layers,isimpossibleformanydecadestocome[40]. Ever since the introduction of the boundary layer concept by Prandtl [41], models of the flow decoupling the boundary layer from the interior flow have been pursued, in which the effect of the boundary layer is modeled as a boundaryconditionfortheinteriorflow[20].In(1)wemodeltheeffectofturbulentboundarylayersasasmallskin frictionstressatthesolidboundary,whichdissipateskineticenergyproportionaltoβ.Thesensitivityofthesolution with respect to perturbations in the skin friction parameter β is investigated in [17,18], where it is found that for smallβ (correspondingtohighReynoldsnumbers)thesensitivityislow.Inparticular,forexternalflowatReynolds numbers higher than Re > 106 we typically approximate the small skin friction by zero, which makes DFS into a parameter-freemodelofhighReynoldsnumberexternalflow. We have presented evidence in the form of analysis and computational studies, that the macroscopic features of highReynoldsnumberflow,including3Dflowseparation,ismainlydeterminedbylargescalestabilityaspects,rather thanboundarylayereffects[19,1–3,5]. 2.4. Aposteriorierrorestimation Thegoalofasimulationcanoftenbeformulatedascomputinganumberofoutputquantities,forexamplethelift and drag of an airplane. To estimate the error in an output functional of interest we use a posteriori error analysis basedonsensitivityinformationfromthesolutionofaadjoint(dual)problem. WedefineatargetfunctionalM(uˆ)=[uˆ,ψˆ]+[pn,ψ ] ,whereψˆ =(ψ,χ)isagivenweightfunctionactingas Γ Γ dataforthedualproblem,andψ isboundarydataforthedualvelocity,with[·,·] a L (Γ × I)innerproduct.For Γ Γ 2 example,tochoosethesumoftheliftanddragofanairplaneasthetargetfunctionalwesetψˆ =0andψ =v +v , Γ D L withv andv unitvectorsindirectionsoppositeandnormaltotheflightdirection,respectively. D L Thedifferenceinoutput M(uˆ)− M(Uˆ) = [uˆ,ψˆ]+[pn,ψ ] −[Uˆ,ψˆ]−[Pn,ψ ] oftwoDFSsolutionsuˆ Γ Γ Γ Γ ˆ andU ondifferentmesheswithmaximalmeshsizeh,canberepresentedas M(uˆ)−M(Uˆ)=[R(u;uˆ)− R(U;Uˆ),ϕˆ] (5) whereϕˆ =(ϕ,θ)isasolutionoftheadjointlinearizedproblem −ϕ˙ −(u·∇)ϕ+∇UTϕ+∇θ =ψ inΩ ×I, ∇·ϕ =χ inΩ ×I, (6) ϕ =ψ onΓ ×I, Γ ϕ(·,T)=0 inΩ, where(∇UTϕ) =3 ∂U /∂x ϕ . j i=1 i j i Ifweassumethatthetimestepisboundedbysomeconstanttimesh,wecanboundtheoutputerrorusingbasic analysis[36]: |M(uˆ)−M(Uˆ)|≤C∥h0.5ϕˆ∥ , (7) H1 with a constant C depending on data and bounds on the magnitude of the discrete velocities u andU. We can thus guarantee stability in output if ∥h0.5ϕˆ∥ is small, where H1 = H1(Ω × I) is the standard Hilbert space with H1 associatednorm.Wenote,however,thatforturbulentflowthelossofsharpnessintheboundin(7)maybesignificant, duetotheuseofaglobalCauchy–Schwarzinequality.Therefore,inadaptivealgorithms,theerrorrepresentationin (5)isuseddirectly,orwithonlylocalboundsoneachcellinthefiniteelementmesh. 66 J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 2.5. Adaptivealgorithms A posteriori error estimation provides a powerful tool for the development of robust and efficient adaptive algo- rithms.Thebasicideaofadaptivealgorithmsistooptimizethecomputationalmethodwithrespecttothegoal(output ofinterest)ofthecomputation.Typicalparametersofanadaptivefiniteelementmethodincludethelocalmeshsize (h-adaptivity),localdegreeofthefiniteelementapproximation(p-adaptivity),localshapeofthecells(r-adaptivity), orcombinationsthereof. ˆ To construct an adaptive DFS algorithm we compute a solutionU for which we use the error representation (5) to estimate the output error |M(uˆ)− M(Uˆ)|, with uˆ any DFS solution computed on a finer mesh than Uˆ. We can eitherchooseuˆ andUˆ tobetwoDFSsolutionscomputedondifferentmeshesinthemeshhierarchygeneratedbythe adaptivealgorithm,oralternativelytoconsideruˆ tobeanidealsolutioncomputedonafinestmeshpossibleinwhich caseweusetheapproximationu ≈U inthedualproblem(6). An adaptive algorithm is based on an estimate of the local contribution to the global error, which is obtained by splittingtheerrorrepresentation(5)intoasumoferrorindicatorsEn,K overthecells K inthediscretespacemesh Th,andthetimeintervals In =(tn−1,tn),n =1,...,N,thatis N N M(uˆ)−M(Uˆ)=  En,K =  [R(u;uˆ)− R(U;Uˆ),ϕˆ]n,K (8) n=1K∈Th n=1K∈Th with[·,·]n,K an L2(K ×In)innerproduct. 2.6. Approximationofthedualsolution Thereareseveraltechnicalaspectswithrespecttohowtoapplytheerrorrepresentationformula(8)inanadaptive algorithm,inparticularwithregardstotheapproximationofϕˆ,thesolutiontothedualproblem. Thedualproblemislinear,butrunsbackwardintimewhichisachallengesincetheDFSvelocitiesuandU actas coefficientsinthedualproblemandthushavetobestoredasdata.Inpractice,thedualproblemisoftensolvedbyusing asimilarfiniteelementmethodasusedfortheprimalDFSproblem,andthecoefficientsuandU canbeinterpolatedin timetominimizedatastorage,withpossiblyarestartschemetoincreaseaccuracy.Also,severaldifferentapproaches are possible for how to apply the error representation formula (8) in practice [42], to retain sharpness and achieve maximalrobustness. When we use the approximation u ≈ U in the dual problem we introduce a linearization error which is hard to estimate a priori, since worst case estimates based on Gro¨wall’s inequality grossly overestimate the effect [36]. In practice, computations on a sequence of meshes with different associated approximationsU provide an estimate of theasymptoticeffectofthislinearizationerrorontheresultingaposteriorierrorestimates. More specifically, the accuracy in the a posteriori error estimates depends on the accuracy in the approximation ofthedualproblem,whichisaffectedby(i)perturbationsindataand(ii)errorsfromcomputationalapproximation. Aspartoftheadaptivealgorithm,approximationsofthedualproblemarecomputedonahierarchyofcomputational meshes, which can be used as a robustness test with respect to (i)–(ii), improving the reliability of the a posteriori errorestimates. 3. DFSimplementation We now give a detailed presentation of one implementation of DFS, in the form of the cG(1)cG(1) method with piecewiselinearapproximationinspaceandtimeovertetrahedralmeshes.InSection4werecallvalidationstudiesof thismethod. 3.1. ThecG(1)cG(1)method The cG(1)cG(1) method is based on the continuous Galerkin method cG(1) in space and time. With cG(1) in time the trial functions are continuous piecewise linear and the test functions piecewise constant. cG(1) in space J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 67 corresponds to both test functions and trial functions being continuous piecewise linear. Let 0 = t < t < ··· < 0 1 tN = T beasequenceofdiscretetimestepswithassociatedtimeintervals In = (tn−1,tn)oflengthkn = tn −tn−1 andspace–timeslabsS =Ω ×I ,andletW ⊂ H1(Ω)beafiniteelementspaceconsistingofcontinuouspiecewise n n linear functions on a tetrahedral mesh Th of mesh size h(x) with W the functions v ∈ W satisfying the Dirichlet 0 boundaryconditionv·n| =0. Γ WeseekUˆ =(U,P),continuouspiecewiselinearinspaceandtime:Forn =1,...,N,find(Un,Pn)≡(U(t ), n P(t ))withUn ∈ Vn ≡[W ]3and Pn ∈ W,suchthat n 0 0 ((Un −Un−1)k−1+U¯n ·∇U¯n,v)−(Pn,∇·v) n +(∇·U¯n,q)+SDn(U¯n,Pn;v,q)=0 ∀vˆ =(v,q)∈ Vn ×Wn, (9) δ 0 whereU¯n = 1(Un +Un−1)and Pn arepiecewiseconstantintimeover I ,withthestabilizingterm 2 n SDn(U¯n,Pn;v,q)≡(δ (U¯n ·∇U¯n +∇Pn),U¯n ·∇v+∇q)+(δ ∇·U¯n,∇·v), (10) δ 1 2 and   (v,w)= v·wdx, K∈Th K withthestabilizationparametersδ =κ (k−2+|Un−1|2h−2)−1/2 andδ =κ h|Un−1|,whereκ andκ arepositive 1 1 n 2 2 1 2 constantsofunitsize.Wechooseatimestepsizekn =CCFLminx∈Ω h/|Un−1|,withCCFL aconstantofunitsize. Remark1. The cG(1) discretization in time does not allow for a fully consistent stabilization of the method, since the velocity test functions are constant in time. To make the method fully consistent while keeping a least squares stabilizationoftheresidual,wewouldneedtousetestfunctionsthatarelineardiscontinuousintime,corresponding to a cG(1)dG(1) method. The main motivation for using cG(1)cG(1) is the reduction of the number of degrees of freedombyafactor2. 3.2. cG(1)cG(1)energyequation We recall that a cG(1)cG(1) solution satisfies a local energy equation, with dissipation directly proportional to the local residual, with the proof given in [15]. We define a family of smooth positive test functions φ (x) for n n = 1,...,N, with local compact support supp φ ⊂ Ω, and we define a piecewise constant function in time n definedbyφ(x,t)=φ (x)fort ∈ I ,normalizedsuchthat n n N   φ (x)dx k =1. n n n=1 Ω Theorem2. Notingthatδ ≤Ch,fori =1,2,wehavethefollowinglocalenergyestimateforcG(1)cG(1): i   N  1(|Un|2−|Un−1|2)k−1+∇·U¯n1|U¯n|2+ Pnφ dx k  2 n 2 n n  n=1 Ω  + N  (δ |R¯ (U¯n,Pn)|2+δ |R¯ (U¯n)|2)φ dx k  1 1 2 2 n n  n=1 Ω  ≤Ch1/2 max,φ,n withhmax,φ,n ≡maxn:suppφn̸=∅(maxx∈suppφnh(x)),andwiththeresiduals R¯1(U¯n,Pn)and R¯2(U¯n)definedby R¯ (v,q)=v˙+U¯n ·∇v+∇q, (11) 1 R¯ (v,q)=∇·v, (12) 2 fort ∈ I . n 68 J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 Ifwechooseatestfunctionφ withasuitablelocalsupport,andwithφ = 0forall j ̸= n,Theorem2statesthat j fort ∈ I ,acG(1)cG(1)solutionuptothefactorCh0.5 weaklysatisfies(integratedagainstasmoothpositivetest n max,φ,n functionwithlocalsupport)alocalenergyequationoftheform: d 1   1  |Un|2 +∇· U¯n |U¯n|2+ Pn =−Dn(Uˆ), (13) dt 2 2 h with Dn(Uˆ)≡δ |R¯ (U¯n,Pn)|2+δ |R¯ (U¯n)|2 ≥0,aresidualbasednumericaldissipation,andwith d (1|Un|2)≡ h 1 1 2 2 dt 2 1(|Un|2−|Un−1|2)k−1. 2 n This local energy equation connects to a dissipative weak Euler solution [33], with inertial energy dissipation resultingfromlocalnon-smoothnessofthesolution,andnotfromanyviscosity.Thedissipativeterm Dn(Uˆ)in(13) h reflectslocalnon-smoothnessinthesolutionidentifiedbytheresiduals,andisobservedtobeindependentofhunder sufficientmeshresolution[12,15] 3.3. Aposteriorierroranalysisandanadaptivealgorithm Usingstandardtechniquesofaposteriorierroranalysis,seee.g.[36],wecanderiveanaposteriorierrorestimate forcG(1)cG(1). Theorem3. If Uˆ = (U,P) solves (9), uˆ = (u,p) is a weak solution to (1), and ϕˆ = (ϕ,θ) solves (6), then we have the following a posteriori error estimate for the output M(Uˆ) = [Uˆ,ψˆ] with respect to the reference output M(uˆ)=[uˆ,ψˆ]: N |M(uˆ)−M(Uˆ)|≤  En,K (14) n=1K∈Th where    En,K ≡ |R1(Uˆ)|K ·ω1dt + |R2(U)|K ω2dt + |SDδn(Uˆ;ϕˆ)K|dt In In In with R (Uˆ)=U˙ +(U ·∇)U +∇P, 1 R (U)=∇·U, 2 whereSDn(·;·) isalocalversionofthestabilizingform(10),andthestabilityweightsaregivenby δ K ω1 =Cnk,Kkn|ϕ˙|K,∞+Cnh,KhK|∇ϕ|K, ω2 =Cnk,Kkn|θ˙|K,∞+Cnh,KhK|∇θ|K, where h is the diameter of element K in the mesh Th,Ch ,Ck represent interpolation constants, |w| ≡ K n,K n,K K (∥w ∥ ,∥w ∥ ,∥w ∥ )with∥w∥ =(w,w)1/2,andthedotdenotesthescalarproductinR3. 1 K 2 K 3 K K K Basedontheaposteriorierrorestimate(14),wedesignabasicadaptivealgorithmwherethemeshiskeptconstant intime.Startingfromaninitialmeshtheprimalproblemiscomputedforthefulltimeintervalafterwhichthedual problemissolvedbackwardsoverthesametimeintervalusingasimilarcG(1)cG(1)discretizationasfortheprimal problem(sametrialandtestspace,leastsquaresstabilizationoftheresidualexceptthetimederivative,andthesame stabilizationparametersandtimediscretization).TheerrorindicatorsEK = nN=1En,K arethencomputedforeach cell K in the mesh. The cells with the highest error indicators E are bisected to generate a new refined mesh, for K whichthealgorithmstartsoveruntilconvergencein M(Uˆ)isdetected. TheprimalsolutionU foreachmeshisstoredtobeusedasdataforthedualproblem,wheretheapproximation u ≈ U is used for the coefficient u in (6). For demanding large scale problems where it is too expensive to store ˆ thecompletetimeseriesoftheprimalsolution,snapshotsofU arestoredwithacertainfrequency,andintermediate solutionfieldsarereconstructedbyinterpolationintime. J.Hoffmanetal./Comput.MethodsAppl.Mech.Engrg.288(2015)60–74 69 Adaptive algorithm: given initial coarse meshTh,k =0, 0 (1) compute the solutionUˆ to the primal problem usingTh k (2) compute the solutionϕˆ to the dual problem usingTh k (3) if convergence in M(Uˆ) is observed, or if the estimated error  E is less than a K∈Th K given tolerance, then STOP, else (4) bisect 10% of cells K ∈Th with highest error indicatorsE k K (5) setk =k+1, then goto (1) 3.4. Softwareimplementation The adaptive algorithm and the cG(1)cG(1) solvers for the primal and dual problems are implemented in the continuum mechanics solver Unicorn [43] that builds on the high performance (HPC) branch of the finite element problemsolvingenvironmentDOLFIN,partoftheFEniCSproject[44].DOLFIN-HPCisoptimizedfordistributed memory architectures using a hybrid MPI+OpenMP approach with efficient parallel I/O (MPI I/O) [45,46], where ParMETIS [47] is used for mesh partitioning. DOLFIN-HPC supports several parallel linear algebra packages, but mostlyrelyonPETSc[48]. 4. ValidationandapplicationofDFS DFSisbasedonthecomputationoffiniteelementapproximationsonadaptivelyrefinedcomputationalmeshes.In particular,noadhocmeshdesignisneeded,sincesolutionsfeaturessuchasflowseparationandturbulentwakesare automaticallydetectedbytheadaptivemethodthroughaposteriorierrorestimationwithsensitivityinformationfrom thesolutionofadualproblem.Ahierarchyofadaptivelyrefinedmeshesisgeneratedforwhichconvergencecanbe observedwithrespecttoanoutputofinterest.Themethodhasbeenappliedforanumberofbluffbodyflowproblems overarangeofReynoldsnumbers,andwehererecallsomevalidationresultsforDFSintheformofthecG(1)cG(1) method. 4.1. MediumReynoldsnumberflow AtmediumReynoldsnumbers,Re < 105,boundarylayersarelaminarandcanberesolvedbythecomputational mesh.Forthiscase,viscouseffectsarenotnegligiblesothattheviscosityiskeptinthemodel(1),andnoslipboundary conditionsarechosenwherethevelocityissettozeroonthesolidboundaryΓ.DFSintheformofthecG(1)cG(1) method has been validated for a number of model problems of simple geometry bluff bodies, including a surface mountedcubeandarectangularcylinder[12,11],asphere[13]andacircularcylinder[14].Ineachcase,convergence isobservedforoutputquantitiessuchasdrag,liftandpressurecoefficients,andStrouhalnumbers,andtheadaptive algorithmleadstoanefficientmethodoftenusingordersofmagnitudefewernumberofdegreesoffreedomcompared toLESmethodsbasedonadhocdesignofthemesh. 4.2. HighReynoldsnumberflow InhighReynoldsnumberflow,with Re > 106,boundarylayersareturbulentandareinmostcasestooexpensive to resolve, and must instead be modeled. To accurately predict e.g. aerodynamic forces it is critical to capture the correct flow separation, which can be connected to the boundary layer, in case flow separation is not triggered by sharpfeaturesinthegeometry[15].Dragcrisisforacircularcylinderisanillustrativeexample,whereflowseparation movesdownstreamthecylinderwallasaconsequenceoftransitiontoturbulenceintheboundarylayer[49].In[18]we modeldragcrisisbydecreasingtheskinfrictionparameterβinthemodel(1),wherewefindthattheDFSsimulations reproducetheobserveddragcrisisscenariofromexperiments[50–53]. In particular, we find that for small β the solution is insensitive to the particular value of β, so that we reach an ultimate regime where the turbulent boundary layer is modeled by a zero friction free slip boundary condition. Thisfreeslipmodelhasthebenefitofbeingaparameter-freemodelofturbulentboundarylayers,whichrequiresno boundary layer mesh since no boundary layer is resolved. The basic assumptions underlying the model is that the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.