NuclearPhysicsB Proceedings Supplement NuclearPhysicsBProceedingsSupplement00(2013)1–4 Towards a determination of the tau lepton dipole moments M.Faela,b,L.Mercollic,M.Passerad aDipartimentodiFisicaeAstronomia,Universita`diPadova,35131Padova,Italy bInstitutfu¨rTheoretischePhysik,Universita¨tZu¨rich,CH-8057,Zu¨rich,Switzerland cPrincetonUniversity,DepartmentofAstrophysicalSciences,Princeton,NJ,08544,USA dIstitutoNazionaleFisicaNucleare,35131Padova,Italy 3 1 0 2 n Abstract a J The τ anomalous magnetic moment a and electric dipole moment d have not yet been observed. The present τ τ 2 bounds on their values are of order 10−2 and 10−17e cm, respectively. We propose to measure a with a precision τ 2 ofO(10−3)orbetterandimprovetheexistinglimitsond usingpreciseτ− → l−ν ν¯ γ (l = eorµ)datafromhigh- τ τ l luminosityBfactories. Adetailedfeasibilitystudyofthismethodisunderway. ] h p p- 1. Introduction O(10−6);severaltheoriesexistwherethisna¨ıvescaling e isviolatedandmuchlargereffectsareexpected[3]. Theveryshortlifetimeoftheτlepton(2.9×10−13s) h Ever since the very first discovery of CP violation [ makes it very difficult to measure its electric and mag- in the 1960s there have been ongoing efforts to mea- netic dipole moments. The present resolution on its 1 surefundamentalelectricdipolemoments(EDMs). In- anomalousmagneticmomenta isonlyofO(10−2)[1], v τ deed,EDMsviolateparityandtimereversal;ifCPT is 2 more than an order of magnitude larger than its Stan- agoodsymmetry,T violationimpliesCPviolationand 0 dardModel(SM)prediction α (cid:39) 0.001. Infact,while 2π viceversa. TheSMpredictionsforleptonEDMsarefar 3 theSMvalueofa isknownwithatinyuncertaintyof 5 5×10−8 [2],thissτhortlifetimehassofarpreventedthe too small to be seen by projected future experiments. . Hence,theobservationofanon-vanishingleptonEDM 1 determinationofa measuringtheτspinprecessionina τ would be evidence for a CP-violating new physics ef- 0 magneticfield,likeintheelectronandmuong−2exper- 3 fect[4]. Theexperimentaldeterminationorastringent iments. Instead, experiments focused on various high- 1 boundontheτleptonEDMd posesthesamedifficul- precision measurements of τ pair production in high- τ : tiesthatoneencountersinthecaseofa :theτ’slifetime v energy processes, comparing the measured cross sec- τ i is very short. Nonetheless, a CP violation signature X tions with the SM predictions. As these processes in- arising from d was searched for in the e+e− → τ+τ− r volve off-shell photons or taus in the ττ¯γ vertices, the reactionreachiτngasensitivitytod of10−17ecm[5]. a measuredquantityisnotdirectlya . τ τ After a brief review of the present experimental and A precise measurement of a would offer an excel- τ theoretical status of the τ dipole moments, we discuss lent opportunity to unveil new physics effects. Indeed, thepossibilitytoprobethemviaprecisemeasurements in a large class of theories beyond the SM, new con- ofthedecaysτ− →l−ν ν¯ γ(l=eorµ). tributionstotheanomalousmagneticmomentofalep- τ l ton l of mass m scale with m2. Therefore, given the l l large factor m2/m2 ∼ 283, the g−2 of the τ is much 2. Theanomalousmagneticmomentofthetau τ µ more sensitive than the muon one to electroweak and newphysicsloopeffectsthatgivecontributionspropor- TheSMpredictionfora isgivenbythesumofQED, τ tionaltom2. Inthesescenarios,thepresentdiscrepancy electroweak (EW) and hadronic terms. The QED con- l inthemuong−2suggestsanew-physicseffectina of tribution has been computed up to three loops: aQED = τ τ /NuclearPhysicsBProceedingsSupplement00(2013)1–4 2 117324(2) × 10−8 (see [6] and references therein), the non-SM contribution to a . We refer to [10] for a τ where the uncertainty π2ln2(m /m )(α/π)4 ∼ 2×10−8 concise review of older, less stringent limits on a , de- τ e τ has been assigned for uncalculated four-loop contribu- rived from data samples of e+e− → τ+τ− (for photon tions. The errors due to the uncertainties of the O(α2) squared four-momentum q2 up to (37GeV)2) [11] and (5×10−10)andO(α3)terms(3×10−11),aswellasthat Z0 → τ+τ−γ (where q2 = 0 but the radiating τ is not induced by the uncertainty of α (8×10−13), are negli- on-shell)[12, 13,14, 15]. Other indirectbounds on a τ gible. Thesumoftheone-andtwo-loopEWcontribu- werestudiedin[16]. tionsisaEW = 47.4(5)×10−8 (see[7,2]andreferences Comparing Eqs. (1) and (2) (their difference is τ therein).Theuncertaintyencompassestheestimateder- roughlyonestandarddeviation),itisclearthatthesen- rors induced by hadronic loop effects, neglected two- sitivity of the best existing measurements is still more loopbosonictermsandthemissingthree-loopcontribu- than one order of magnitude worse than needed. The tion.Italsoincludesthetinyerrorsduetotheuncertain- possibility to improve these limits is certainly not ex- tiesinM andm . cluded. Future high-luminosity B factories such as top τ Similarly to the case of the muon g−2, the leading- Super-KEKB [17] offer new opportunities to improve order hadronic contribution to a is obtained via a dis- the determination of the τ magnetic properties. The τ persionintegralofthetotalhadroniccrosssectionofthe authors of [18] proposed to determine the Pauli form e+e− annihilation (the role of low energies is very im- factor F (q2) ofthe τ via τ+τ− production in e+e− col- 2 portant, althoughnotasmuchasfora ). Theresultof lisions at the Υ resonances with sensitivities possibly µ thelatestevaluation,usingthewholebulkofexperimen- down to O(10−5) or even better. In [19] the reanaly- taldatabelow12GeV,isaHLO = 337.5(3.7)×10−8 [2]. sisofvariousmeasurementsofthecrosssectionofthe τ The hadronic higher-order (α3) contribution aHHO can processe+e− → τ+τ−,thetransverseτpolarizationand τ be divided into two parts: aHHO = aHHO(vp)+aHHO(lbl). asymmetryatLEPandSLD,aswellasthedecaywidth τ τ τ The first one, the O(α3) contribution of diagrams con- Γ(W → τν ) at LEP and Tevatron allowed the authors τ taining hadronic self-energy insertions in the photon tosetamodel-independentlimitonnewphysicscontri- propagators, is aHHO(vp) = 7.6(2) × 10−8 [8]. Note butions, τ that na¨ıvely rescaling the corresponding muon g−2 re- −0.007<aNP <0.005, (3) τ sult by a factor m2/m2 leads to the incorrect estimate τ µ a bound stronger than that in Eq. (2). This analysis, aHHO(vp) ∼ −28×10−8 (even the sign is wrong!). Es- τ like earlier ones, was performed without radiative cor- timates of the light-by-light contribution aHHO(lbl) ob- τ rections, but the authors checked that the inclusion of tained rescaling the corresponding one for the muon initial-stateradiationdidnotaffectsignificantlytheob- g−2 by a factor m2/m2 fall short of what is needed – τ µ tainedbounds. this scaling is not justified. The parton-level estimate of [2] is aHHO(lbl) = 5(3) × 10−8, a value much lower τ 3. TheτleptonEDM than those obtained by na¨ıve rescaling. Adding up the abovecontributionsoneobtainstheSMprediction[2] In the SM, the only sources of CP violation are the aSM =aQED+aEW+aHLO+aHHO =117721(5)×10−8. (1) CKM-phase and a possible θ-term in QCD. A funda- τ τ τ τ τ mental EDM can only be generated at the three-loop Errorswereaddedinquadrature. level [20], yielding a SM contribution which is far be- The present PDG limit on the τ lepton g−2 was low experimental capabilities. Models for physics be- derived in 2004 by the DELPHI collaboration from yondtheSMgenerallyinducelargecontributionstolep- e+e− → e+e−τ+τ− total cross section measurements at tonandneutronEDMs,andalthoughtherehasbeenno √ sbetween183and208GeVatLEP2(thestudyofa experimentalevidenceforanEDMsofar,thereiscon- τ via this channel was proposed in [9]): −0.052 < a < siderable hope to gain new insights into the nature of τ 0.013 at 95% confidence level [1]. Reference [1] also CPviolationthroughthiskindofexperiments. quotestheresultintheform: Thecurrent95%confidencelevellimitsontheEDM oftheτleptonaregivenby a =−0.018(17). (2) τ −2.2<Re(d )<4.5 (10−17 ecm), τ (4) This limit was obtained comparing the experimentally −2.5<Im(d )<0.8 (10−17 ecm); τ measuredvaluesofthecrosssectiontotheSMvalues, assuming that possible deviations were due to non-SM they were obtained by the Belle collaboration [5] fol- values of a . Therefore, Eq. (2) is actually a limit on lowingtheanalysisof[21]fortheimpactofaneffective τ /NuclearPhysicsBProceedingsSupplement00(2013)1–4 3 operator for the τ EDM in the process e+e− → τ+τ−. whichcanbedeterminedasfollows. Comparedtoa ,theexperimentalsensitivitytod isnot Theleading-order(LO)predictionoftheLagrangian τ τ significantlyhighersinceinnaturalunitstheboundson L +L forthedifferentialdecayrateofapolar- QED Fermi d quoted above are of the order of 10−3 GeV−1. Fur- izedτ−intol−+ν¯ +ν +γ(l=eorµ)is,intheτlepton τ l τ thermore,asdiscussedpreviouslyinthecaseofa ,the restframe, τ analysisof[5]islimitedtotheLOprecisionofthecal- culationof[21].Therefore,webelievethatthereiscon- dΓ6 αm5G2 √ (cid:34) 0 = τ F y x2−4r2 G (x,y,c) siderableroomforanimprovementofthesebounds. dxdydΩ dΩ (4π)8 0 l γ √ (cid:35) + x2−4r2J (x,y,c)(cid:126)n·pˆ +yK (x,y,c)(cid:126)n·pˆ , (12) 4. Radiativeleptonicτdecays 0 l 0 γ Weproposetomeasurethedipolemomentsoftheτ where α = 1/137.035999174(35) [25] is the fine- leptonthroughitsradiativeleptonicdecays[22,23,24] structureconstant,G =1.663788(7)×10−5GeV−2[26] F istheFermicouplingconstant,m =1.77682(16)GeV τ τ− →l−ντν¯lγ, withl=eorµ. (5) [27],r=ml/mτ,andthekinematicvariables Theauthorsof[19]and[21]haveappliedeffectiveLa- 2E 2E x= l, y= γ, c≡cosθ (13) grangian techniques to study aτ and dτ. Our strategy mτ mτ is similar: we describe radiative τ decays through an effective Lagrangian Leff which contains the QED La- arethenormalizedenergiesoftheleptonl−andthepho- grangianfortheleptons,theeffectiveFermiLagrangian, ton, which are respectively emitted at solid angles Ωl andtheeffectiveoperatorsthatcontributetotheanoma- and Ωγ, and θ is the angle between their momenta (cid:126)pl lousmagneticmomentandEDMoftheτlepton,i.e. and(cid:126)pγ. Also,n=(0,(cid:126)n)istheτpolarizationvectorwith n2 = −1 and n· p = 0. The functionsG , J and K τ 0 0 0 Leff =LQED+LFermi+ca4eΛ Oa−cd2iΛ Od, (6) weTrehecoompepruatteodrOin[g2e8n,e2r9a,te3s0a,d3d1i]t.ionalcontributionsto a thedifferentialdecayrateinEq.(12). Theycanbesum- whereO aregivenby a,d marisedintheshift[24] O = τ¯σ τFµν, a µν (7) G0(x,y,c) → G0(x,y,c) + a˜τGa(x,y,c), (14) O = τ¯σ γ τFµν. d µν 5 andsimilarlyfor J and K . TheoperatorO produces The scale Λ represents the scale where any kind of 0 0 d theadditionalterm physicswhichisnotdescribedbyLeff generatesacon- √ (cid:16) (cid:17) tribution to the τ’s electric ormagnetic dipole moment d˜ m y x2−4r2pˆ · pˆ ×(cid:126)n G (x,y,z) (15) τ τ l γ d and is therefore larger than the electroweak scale, i.e. Λ > M . For simplicity we assume the scale Λ to be insidethesquarebracketsofEq.(12)[23]. Tinyterms Z equal for both operators O , knowing that in fact the ofO(a˜2)andO(d˜2)wereneglected. a,d scalefortheEDMismuchhigherthanthatfortheg−2. Ourgoalistoprovideamethodtodetermineaτ with The effective Lagrangian Leff in Eq. (6) gives the fol- aprecisionofO(10−3)orbetter. Thiscallsforananal- lowingpredictionsfortheτdipolemoments: ogousprecisiononthetheoreticalside. Forthisreason, wehavecorrectedthedecayrateinEq.(12)toinclude α m a = +c τ +··· (8) radiative corrections at next-to-leading order (NLO) in τ 2π a Λ QED[22,23,31,32].ThecomparisonofthisNLOpre- 1 d = c +··· (9) diction,modifiedbytheadditionaltermsinEq.(14)for τ d Λ G (andsimilarlyfor J and K ),tosufficientlyprecise 0 0 0 where the dots indicate higher-order contributions not dataallowstodeterminea˜ (andtherebya viaEq.(8)) τ τ relevantforourdiscussion(note,inEq.(9),thatd has possiblydowntothelevelofO(10−4).Similarly,includ- τ noQEDcontribution). Wethendefinetheparameters ing the additional term in Eq. (15), one can also deter- m mined˜τwhich,atthislevelofprecision,coincideswith a˜τ ≡ ca Λτ, (10) dτ(seeEq.(9)). Thisanalysisisinprogress[23]. The contributions from the two effective operators 1 d˜τ ≡ cd Λ, (11) Oa,d to the electromagnetic form factors are the same /NuclearPhysicsBProceedingsSupplement00(2013)1–4 4 forq2 = 0asforq2 (cid:44) 0. Thepointisthatonlyhigher References dimensional operators would give rise to a difference [1] J.Abdallahetal.[DELPHICollaboration],Eur.Phys.J.C35 betweenthesetwocases,whichmeansthatsuchcontri- (2004)159. butionsaresuppressedbyhigherpowersofq2/Λ2 [19]. [2] S.EidelmanandM.Passera,Mod.Phys.Lett.A22(2007)159. Inourcase,q2maybeoftheorderofm2whileΛiscer- [3] G.F.Giudice,P.ParadisiandM.Passera,JHEP1211(2012)113. τ tainlyhigherthan M andwemaythereforesafelyne- [4] M.Raidal, etal., Eur.Phys.J.C57(2008)13; M.Pospelov Z and A. Ritz, in “Lepton dipole moments,” B.L. Roberts and glect contributions from higher dimensional operators. W.J.Marciano(eds.),Advancedseriesondirectionsinhighen- Of course, the requirement that q2 (cid:28) Λ2 is the funda- ergyphysics,Vol.20,WorldScientific(2010),p.439;L.Mer- mentalhypothesisofoureffectiveLagrangianapproach. colliandC.Smith,Nucl.Phys.B817(2009)1. The possibility to set bounds on a via the radiative [5] K.Inamietal.[BelleCollaboration],Phys.Lett.B551 (2003) τ 16. leptonicτdecaysinEq.(5)wassuggestedlongagoin [6] M.Passera,Phys.Rev.D75(2007)013002. Ref.[24].Inthatarticletheauthorsproposedtotakead- [7] A.Czarnecki,B.KrauseandW.J.Marciano,Phys.Rev.D52 vantageofaradiationzerooftheLOdifferentialdecay (1995) 2619; Phys. Rev. Lett. 76 (1996) 3267; T.V. Kukhto, E.A. Kuraev, Z.K. Silagadze, A. Schiller, Nucl. Phys. B 371 rateinEq.(12)whichoccurswhen,intheτrestframe, (1992)567. thefinalleptonlandthephotonareback-to-back,andl [8] B.Krause,Phys.Lett.B390(1997)392. hasmaximalenergy. Sinceanon-standardcontribution [9] F.CornetandJ.I.Illana,Phys.Rev.D53(1996)118. to a spoils this radiation zero, precise measurements [10] W.Lohmann,Nucl.Phys.Proc.Suppl.144(2005)122. τ [11] D.J.SilvermanandG.L.Shaw,Phys.Rev.D27(1983)1196. of this phase-space region could be used to set bounds [12] J.A. Grifols and A. Mendez, Phys. Lett. B 255 (1991) 611 on its value. However, this method is only sensitive to [Erratum-ibid.B259(1991)512]. largevaluesofaτ (attheradiationzerothedependence [13] K. Ackerstaff et al. [OPAL Collaboration], Phys. Lett. B 431 onnon-standarda contributionsisquadratic),andpre- (1998)188. τ [14] M.Acciarrietal.[L3Collaboration],Phys.Lett.B434(1998) liminarystudieswithBelledatashownosignificantim- 169. provementoftheexistinglimits[23]. [15] J.BiebelandT.Riemann,Z.Phys.C76(1997)53. [16] R.EscribanoandE.Masso,Phys.Lett.B301(1993)419;Phys. Lett.B395(1997)369. 5. Conclusions [17] T.Aushevetal.,arXiv:1002.5012[hep-ex]. [18] J. Bernabeu, G.A. Gonzalez-Sprinberg, J. Papavassiliou and J. Vidal, Nucl. Phys. B 790 (2008) 160; J. Bernabeu, The magnetic and electric dipole moments of the τ G.A.Gonzalez-SprinbergandJ.Vidal,JHEP0901(2009)062. lepton are largely unknown. We propose to use radia- [19] G.A. Gonzalez-Sprinberg, A. Santamaria and J. Vidal, Nucl. tiveleptonicτdecaystomeasuretheformerwithasen- Phys.B582(2000)3. sitivity of O(10−3) or better and improve the existing [20] J.F.Donoghue,Phys.Rev.D18 (1978)1632;E.P.Shabalin,Sov. J.Nucl.Phys.28 (1978)75. limits on the latter. A preliminary analysis with Belle [21] W.Bernreuther,O.Nachtmann,andP. Overmann,Phys.Rev. data is in progress to determine the feasibility of this D48(1993)78. proposal[23]. [22] M.Fael,Studyoftheanomalousmagneticmomentoftheτlep- tonviaitsradiativeleptonicdecays,M.Sc.Thesis(2010),Uni- versityofPadua. Acknowledgements [23] S.Eidelman,D.Epifanov,M.Fael,L.Mercolli,andM.Passera, inpreparation. [24] M.L.Laursen,M.A.SamuelandA.Sen,Phys.Rev.D29(1984) We would like to thank Denis Epifanov and Simon 2652[Erratum-ibid.D56(1997)3155]. Eidelmanforourveryfruitfulcollaboration,andBrando [25] T.Aoyama,M.Hayakawa,T.KinoshitaandM.Nio,Phys.Rev. Bellazzini and Ferruccio Feruglio for very useful dis- Lett.109(2012)111807. [26] D.M.Webberetal.[MuLanCollaboration],Phys.Rev.Lett.106 cussions. The work of M.F. is supported in part by (2011)041803. theResearchExecutiveAgencyoftheEuropeanUnion [27] J. Beringer et al. [Particle Data Group Collaboration], Phys. under the Grant Agreement PITN-GA-2010-264564 Rev.D86(2012)010001. (LHCPhenoNet). L.M.issupportedbyagrantfromthe [28] T.KinoshitaandA.Sirlin,Phys.Rev.Lett.2(1959)177. [29] C.FronsdalandH.Uberall,Phys.Rev.113(1959)654. Swiss National Science Foundation. M.P. also thanks [30] Y.KunoandY.Okada,Rev.Mod.Phys.73(2001)151. the Department of Physics and Astronomy of the Uni- [31] A.Fischer,T.KurosuandF.Savatier,Phys.Rev.D49(1994) versity of Padova for its support. His work was sup- 3426. portedinpartbytheItalianMinisterodell’Universita` e [32] A.B.ArbuzovandE.S.Scherbakova,Phys.Lett.B597(2004) 285. dellaRicercaScientificaundertheprogramPRIN2010- 11, and by the European Programmes UNILHC (con- tract PITN-GA-2009-237920) and INVISIBLES (con- tractPITN-GA-2011-289442).