ebook img

Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary PDF

185 Pages·2017·4.69 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary

Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents: A Numerical Approach Veerapandian Ponnuchamy To cite this version: Veerapandian Ponnuchamy. Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents: A Numerical Approach. Theoretical and/or physical chemistry. Université Grenoble Alpes, 2015. English. ￿NNT: 2015GREAY004￿. ￿tel- 01159617￿ HAL Id: tel-01159617 https://theses.hal.science/tel-01159617 Submitted on 3 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE`SE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE´ DE GRENOBLE Spe´cialite´ : Physique Arreˆte´ ministe´riel:7Aoˆut2006 Pre´sente´epar Veerapandian PONNUCHAMY The`se dirige´e par Valentina Vetere et codirige´e par Stefano Mossa pre´pare´e au sein Laboratoire des Composants pour Piles com- bustibles et Electrolyseurs et de Modlisation (CEA LITEN) et de Ecole Doctorale Physique Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents: A Numeri- cal Approach The`se soutenue publiquement le 23 January 2015, devant le jury compose´ de : Prof. Timothy ZIMAN CNRS DR1, LPMMC, UMR 5493, Maison des Magiste´res CNRS, 38042 Greno- ble,France,Pre´sident Prof. Laurent JOUBERT UniversitdeRouen,COBRA UMRCNRS6014,RueTesnire76821MontSaint- AignanCedex,France,Rapporteur Prof. Jean-Sebastian FILHOL Institut Charles GERHARDT - CNRS 5253 Universit Montpellier 2, 34095 Mont- pellierCedex5,France,Rapporteur Dr. Valentina VETERE Chercheur,CEA/LITEN/DEHT,38054Grenoble,France,Directeurdethe`se Dr. Stefano MOSSA Chercheur,CEA/INAC/SPrAM,38054Grenoble,France,Co-Directeurdethe`se Abstract Duetotheincreasingglobalenergydemand,eco-friendlyandsustainablegreenresources includingsolar,orwindenergiesmustbedeveloped,inordertoreplacefossilfuels. These sources of energy are unfortunately discontinuous, being correlated with weather condi- tions and their availability is therefore strongly fluctuating in time. As a consequence, large-scale energy storage devices have become fundamental, to store energy on long time scales with a good environmental compatibility. Electrochemical energy conversion is the key mechanism for alternative power sources technological developments. Among these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most robust and efficient, and have become the prevalent technology for high-performance energy storage systems. These are widely used as the main energy source for popular applications, including laptops, cell phones and other electronic devices. The typical LIB consists of two (negative and positive) electrodes, separated by an electrolyte. This plays a very important role, transferring ions between the electrodes, therefore providing the electrical current. This thesis work focuses on the complex materials used as electrolytes in LIBs, which impact Li-ion transport properties, power densities and electrochemical performances. Usually, the electrolyte consists of Li-salts and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore indispensable to shed light on the most important structural (coordination) properties, and their implications on transport behaviour of Li+ ion in pure and mixed solvent compositions. We have performed a theoretical investigation based on combined density Functional Theory(DFT)calculationsandMolecularDynamics(MD)simulations,andhavefocused on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture for the optimized structures of isolated carbonate molecules and Li+ ion, including pure clusters Li+(S) (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S ) (S ) n 1 m 2 n (S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)(DMC) (PC) l m n with l+m+n=4. Pure solvent clusters were also studied including the effect of PF – 6 anion. We have investigated in details the structure of the coordination shell around Li+ for all cases. OurresultsshowthatclusterssuchasLi+(EC) ,Li+(DMC) andLi+(PC) andLi+(PC) 4 4 3 4 arethemoststable,accordingtoGibbsfreeenergyvalues,inagreementwithpreviousex- perimentalandtheoreticalstudies. ThecalculatedGibbsfreeenergiesinbinarymixtures suggestthattheclusterssuchasLi+(EC) (PC) ,Li+(EC) (DMC)andLi+(PC) (DMC) 2 2 3 3 are more preferable one in their corresponding binary mixtures. In the case of ternary mixtures, Li+(EC) (DMC)(PC) is most preferable and the DMC molecule cannot re- 2 place EC and PC, while PC can easily substitute both EC and DMC molecules. Our ii study shows that PC tends to substitute EC in the solvation shell. We have complemented our ab-initio studies by MD simulations of a Li-ion when im- mersed in the pure solvents and in particular solvents mixtures of interest for batteries applications, e.g., EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool and has allowed us to clarify the relevance of the cluster structures discovered by DFT when the ion is surrounded by bulk solvents. Indeed, DFT provides information about the most stable structures of isolated clusters but no information about their stability or multiplicity (entropy) when immersed in an infinite solvent environment. The MD data, together the DFT calculations have allowed us to give a very comprehensive pic- ture of the local structure of solvent mixtures around Lithium ion, which substantially improve over previous work. Some preliminary information about the dynamics of these long-lived local structures is also given. R´esum´e Enraisondel’augmentationdelademanded’´energie,ressources´ecologiquesrespectueux del’environnementetdurables(solaires´eoliennes)doiventˆetred´evelopp´eesafinderem- placer les combustibles fossiles. Ces sources d’´energie sont discontinues, ´etant corr´el´es avec les conditions m´et´eorologiques et leur disponibilit´e est fluctuant dans le temps. En cons´equence, les dispositifs de stockage d’´energie `a grande ´eechelle sont devenus incon- tournables, pourstockerl’´energiesur des´echellesdetemps longues avecunebonne com- patibilit´e environnementale. La conversion d’´energie ´electrochimique est le m´ecanisme cl´e pour les d´eveloppements technologiques des sources d’´energie alternatives. Parmi ces syst`emes, les batteries Lithium-ion (LIB) ont d´emontr´e ˆetre les plus robustes et effi- caces et sont devenus la technologie courante pour les syst`emes de stockage d’´energie de haute performance. Ils sont largement utilis´es comme sources d’´energie primaire pour des applications populaires (ordinateurs portables, t´el´ephones cellulaires, et autres). La LIB typique est constitu´e de deux ´electrodes, s´epar´es par un ´electrolyte. Celui-ci joue un rˆole tr`es important dans le transfert des ions entre les ´electrodes fournissant la courante´electrique. Cetravaildeth`eseportesurlesmat´eriauxcomplexesutilis´escomme ´electrolytes dans les LIB, qui ont un impact sur les propri´et´es de transport du ion Li et les performances ´electrochimiques. Habituellement l’´electrolyte est constitu´e de sels de Li et de m´elanges de solvants organiques, tels que les carbonates cycliques ou lin´eaires. Il est donc indispensable de clarifier les propri´et´es structurelles les plus importantes, et leurs implications sur le transport des ions Li+ dans des solvants purs et mixtes. Nous avonseffectu´eune´etudeth´eoriquebas´eesurlath´eoriedufonctionnelledensit´e(DFT)et la dynamique mol´eculaire (MD), et nous avons consider´e des carbonates cyclique (car- bonate d’´ethyl`ene, EC, et carbonate de propyl`ene, PC) et le carbonate de dim´ethyle, DMC, lin´eaire. Les calculs DFT ont fourni une image d´etaill´ee des structures opti- mis´ees de mol´ecules de carbonate et le ion Li+, y compris les groupes pures Li+(S) (S n =EC,PC,DMCetn=1-5),groupesmixtesbinaires,Li+(S ) (S ) (S ,S =EC,PC,DMC, 1 m 2 n 1 2 m+n=4), et ternaires Li+(EC)(DMC) (PC) (l+m+n=4). L’effet de lanion PF – a l m n 6 ´egalement ´et´e ´etudi´e. Nous avons aussi ´etudi´e la structure de la couche de coordination autour du Li+, dans tous les cas. Nos r´esultats montrent que les complexes Li+(EC) , 4 Li+(DMC) etLi+(PC) sontlesplusstables,selonlesvaleursdel’´energielibredeGibbs, 4 3 en accord avec les ´etudes pr´ec´edentes. Les ´energies libres de r´eactions calcul´es pour les m´elanges binaires sugg`erent que l’ajout de mol´ecules EC et PC aux clusters Li+-DMC sont plus favorables que l’addition de DMC aux amas Li+-EC et Li+-PC. Dans la plu- part des cas, la substitution de solvant aux m´elanges binaires sont d´efavorables. Dans le cas de m´elanges ternaires, la mol´ecule DMC ne peut pas remplacer EC et PC, tandis que PC peut facilement remplacer EC et DMC. Notre´etude montre que PC tend `a sub- stituerECdanslacouchedesolvation. Nousavonscompl´et´enos´etudesab-initiopardes simulations MD d’une ion Li+ immerg´e dans les solvants purs et dans des m´elanges de v solvants d’int´erˆet pour les batteries, EC:DMC(1: 1) et EC:DMC:PC(1:1:3). MD est un outil tr`es puissant et nous a permis de clarifier la pertinence des structures d´ecouvertes par DFT lorsque le ion est entour´e par des solvants m´elang´es. En effet,la DFT fournit des informations sur les structures les plus stables de groupes isol´es, mais aucune in- formation sur leur stabilit´e ou de la multiplicit´e (entropie) lorsqu’il est immerg´e dans un environnement solvant infinie. Les donn´ees MD, ainsi que les calculs DFT nous ont permis de donner une image tr`es compl`ete de la structure locale de m´elanges de solvants autour le ion lithium, sensiblement am´elior´e par rapport aux travaux pr´ec´edents. “Dedicated to my beloved Parents and to my beloved wife Esakkiammal Sudha”

Description:
Some preliminary information about the dynamics of these . supervisor) and Mrs. J . Jeyachristi Bai (My high school chemistry teacher) who have where ˆH is the Hamiltonian operator, E is the total energy of the system and Ψ is the comprendre les propriétés de transport des ions de lithium.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.