ebook img

Toward a Compositional Theory of Leftist Grammars and Transformations PDF

0.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Toward a Compositional Theory of Leftist Grammars and Transformations

Toward a Compositional Theory of Leftist Grammars and Transformations⋆ P.ChambartandPh.Schnoebelen LSV,ENSCachan,CNRS 0 61,av.Pdt.Wilson,F-94230Cachan,France 1 0 2 Abstract. Leftistgrammars[Motwanietal.,STOC2000]arespecialsemi-Thue n a systemswheresymbolscanonlyinsertorerasetotheirleft.Wedevelopatheory J ofleftistgrammarsseenaswordtransformersasatooltowardrigorousanalyses 7 of their computational power. Our maincontributions inthisfirstpaper are(1) 2 constructionsprovingthatleftisttransformationsareclosedundercompositions andtransitiveclosures,and(2)aproofthatboundedreachabilityisNP-complete ] evenforleftistgrammarswithacyclicrules. L F . s 1 Introduction c [ Leftist grammarswere introducedby Motwaniet al. to study accessibility and safety 1 inprotectionsystems[MPSV00].Inthisframework,leftistgrammarsareusedtoshow v thatrestrictedaccessibilitygrammarshavedecidableaccessibilityproblems(unlikethe 7 4 moregeneralaccess-matrixmodel). 0 Leftistgrammarsarebothsurprisinglysimpleandsurprisinglycomplex.Simplicity 5 comes from the fact that they only allow rules of the form “a→ba” and “cd →d” . 1 where a symbol inserts, resp. erases, another symbol to its left while remaining un- 0 changed. But the combination of insertion and deletion rules makes leftist grammars 0 go beyondcontext-sensitive grammars, and the decidability result comes with a high 1 complexity-theoreticalprice [Jur08]. Mostof all, what is surprisingis thatapparently : v leftist grammars had not been identified as a relevant computational formalism until Xi 2000. Theknownfactsonleftistgrammarsandtheircomputationalandexpressivepower r a are rather scarce. Motwani et al. show that it is decidable whether a given word can be derived (accessibility) and whether all derivable words belong to a given regular language (safety) [MPSV00]. Jurdzin´ski and Lorys´ showed that leftist grammars can define languages that are not context-free [JL07] while leftist grammars restricted to acyclicrulesarelessexpressivesincetheycanonlyrecognizeregularlanguages.Then Jurdzin´skishowedaPSPACElowerboundforaccessibilityinleftistgrammars[Jur07], beforeimprovingthistoanonprimitive-recursivelowerbound[Jur08]. Jurdzin´ski’sresultsrelyonencodingclassicalcomputationalstructures(linear-boun- dedautomata[Jur07]andAckermann’sfunction[Jur08])inleftistgrammars.Devising such encodings is difficult because leftist grammars are very hard to control. Thus, ⋆WorksupportedbytheAgenceNationaledelaRecherche,grantANR-06-SETIN-001. 2 P.ChambartandPh.Schnoebelen forcomputingAckermann’sfunction,devisingtheencodingisactuallynotthehardest part:the hardertask is to provethatthe constructedleftist grammarcannotbehavein unexpectedways.Inthisregard,thepublishedproofsarenecessarilyincomplete,hard to follow, and hard to fully acknowledge. The final results and intermediary lemmas cannoteasilybeadaptedorreused. Our Contribution. We developa compositionaltheoryof leftist grammarsand leftist transformations(i.e.,operationsonstringsthatarecomputedbyleftistgrammars)that provides fundamental tools for the analysis of their computational power. Our main contributionsareeffectiveconstructionsforthecompositionandthetransitiveclosure of leftist transformations.Thecorrectnessproofsfor these constructionsare based on newdefinitions(e.g.,forgreedyderivations)andassociatedlemmas. AfirstapplicationofthecompositionaltheoryisgiveninSection6whereweprove theNP-completenessofboundedreachabilityquestions,evenwhenrestrictedtoacyclic leftistgrammars. A secondapplication,andthe main reasonforthispaper,isour forthcomingcon- structionprovingthatleftistgrammarscansimulate lossychannelsystemsand“com- pute”allmultiply-recursivetransformationsandnothingmore(basedon[CS08b]),thus providingaprecisemeasureoftheircomputationalpower.Finally,afterourintroduction ofPost’sEmbeddingProblem[CS07,CS08a],leftistgrammarsareanotherbasiccom- putationalmodelthatwillhavebeenshownto captureexactlythe notionofmultiply- recursivecomputation. As furthercomparisonwith earlier work,we observethat, of course,the complex constructionsin[Jur07,Jur08]arebuiltmodularly.However,themodularityisnotmade fullyexplicitintheseworks,theinterfacingassumptionsareincompletelystated,orare mixedwith thedetailsofthe constructions,andcorrectnessproofscannotbegivenin full. OutlineofthePaper. BasicnotationsanddefinitionsarerecalledinSection2.Section3 definesleftistgrammarsandprovesageneralizedversionofthecompletenessofgreedy derivations.Sections4introducesleftisttransformersandtheirsequentialcompositions. Section 5 specializes on the “simple” transformers that we use in Section 6 for our encodingof3SAT.FinallySection7showsthatso-called“anchored”transformersare closedunderthetransitiveclosureoperation,thisinaneffectiveway. 2 BasicDefinitions andNotations Words. Weusex,y,u,v,w,a ,b ,...todenotewords,i.e.,finitestringsofsymbolstaken fromsomealphabet.Concatenationisdenotedmultiplicativelywithe (theemptyword) asneutralelement,andthelengthofxisdenoted|x|. Thecongruenceonwordsgeneratedbytheequivalencesa≈aa(forallsymbolsa inthealphabet)iscalledthestutteringequivalenceandisalsodenoted≈:everywordx hasaminimalandcanonicalstuttering-equivalentx′obtainedbyrepeatedlyeliminating symbolsinxthatareadjacenttoacopyofthemselves. Wesaythatxisasubwordofy,denotedx⊑y,ifxcanbeobtainedbydeletingsome symbols (an arbitrarynumber,at arbitrary positions) from y. We further write x⊑S y TowardaCompositionalTheoryofLeftistGrammarsandTransformations 3 whenallthesymbolsdeletedfromybelongtoS (NB:we donotrequirey∈S ∗),and let⊒denotetheinverserelation⊑−1. RelationsandRelationAlgebra. WeseearelationRbetweentwosetsX andY asaset ofpairs,i.e.,someR⊆X×Y.WewritexRyratherthan(x,y)∈R.TworelationsRand R′ can be composed,denotedmultiplicativelywith R.R′, and definedby x(R.R′)y⇔def ∃z. xRz ∧ zR′y . (cid:0)TheunionR+(cid:1)R′,alsodenotedR∪R′,isjusttheset-theoreticunion.Rn isthen-th powerR.R...RofRandR−1istheinverseofR:xR−1y⇔defyRx.Thetransitiveclosure S RnofRassumesY =X andisdenotedR+,whileitsreflexive-transitiveclosure n=1,2,... isR+∪Id ,denotedR∗. X Below we often use notations from relation algebra to state simple equivalences. E.g.,wewrite“R=R′”and“R⊆S”ratherthan“xRyiffxR′y”and“xRyimpliesxSy”. Ourproofsoftenrelyonwell-knownbasiclawsfromrelationalgebra,like(R.R′)−1= R′−1.R−1,or(R+R′).R′′=R.R′′+R′.R′′,withoutexplicitlystatingthem. 3 Leftist Grammars A leftist grammar (an LGr) is a triple G=(S ,P,g) where S ∪{g}={a,b,...} is a finitealphabet,g6∈S isafinalsymbol(alsocalled“axiom”),andP={r,...}isasetof productionrulesthatmaybeinsertionrulesoftheforma→ba,anddeletionrulesof theformcd→d.Forsimplicity,weforbidrulesthatinsertordeletetheaxiomg(this isnolossofgenerality[JL07,Prop.3]). Leftist grammars are not context-free (deletions are contextual), or even context- sensitive (deletions are not length-preserving). For our purposes, we consider them as string rewritesystems, morepreciselysemi-Thuesystems. Writing S for S ∪{g}, g the rules of P define a 1-step rewrite relation in the standard way: for u,u′ ∈S ∗, we g write u⇒r,p u′ wheneverr is some rule a →b , u is some u a u with |u a |= p and 1 2 1 u′ =u b u . We often write shortly u⇒r u′, or evenu⇒u′, when the positionor the 1 2 rule involvedin the step can be left implicit. On the other hand, we sometimes use a subscript,e.g.,writingu⇒ v,whentheunderlyinggrammarhastobemadeexplicit. G A derivation is a sequence p of consecutive rewrite steps, i.e., is some u0 ⇒r1,p1 u1⇒r2,p2 u2···⇒rn,pn un,oftenabbreviatedasu0⇒n un, orevenu0⇒∗ un. A subse- quence(ui−1⇒ri,pi ui)i=m,m+1,...,l of p is a subderivation.As with allsemi-Thuesys- tems,steps(andderivations)areclosedunderadjunction:ifu⇒u′thenvuw⇒vu′w. Two derivations p =(u ⇒∗ u′) and p =(v ⇒∗ v′) can be concatenated in the 1 2 obviousway (denoted p .p ) if u′ =v. They are equivalent,denoted p ≡p , if they 1 2 1 2 havesameextremities,i.e.,ifu=vandu′=v′. Wesaythatu∈S ∗isacceptedbyGifthereisaderivationoftheformug⇒∗gand wewriteL(G)forthesetofacceptedwords,i.e.,thelanguagerecognizedbyG. WesaythatI⊆S ∗isaninvariantforanLGrG=(S ,P,g)ifu∈Iandug⇒vgentail v∈I.KnowingthatIisaninvariantforGisusedintwosymmetricways:(1)fromu∈I andug⇒∗vgonededucesv∈I,and(2)fromug⇒∗vgandv6∈Ionededucesu6∈I. 4 P.ChambartandPh.Schnoebelen 3.1 GraphsandTypesforLeftistGrammars When dealing with LGr’s, it is convenient to write insertion rules under the simpler form“a b”,anddeletionrulesas“d c”,emphasizingthefactthata(resp.d)isnot modifiedduringtheinsertionofb(resp.thedeletionofc)onitsleft.Fora∈S ,welet g def def ins(a)={b|P∋(a b)}anddel(a)={b|P∋(a b)}denotethesetofsymbols thatcanbeinserted(respectively,deleted)bya.We writeins+(a)forthesmallestset that containsb and ins+(b) for all b∈ins(a), while del+(b) is defined similarly. We saythataisinactiveinaLGrifdel(a)∪ins(a)=∅. ItisoftenconvenienttoviewLGr’sinagraph-theoreticalway.Formally,thegraph ofG=(S ,P,g)isthedirectedgrapht havingthesymbolsfromS asverticesandthe G g rulesfromPasedges(comingintwokinds,insertionsanddeletions).Furthermore,we oftendecoratesuchgraphswithextrabookkeepingannotations. We say that G “has type t ” when t is a sub-graph of t . Thus a “type” is just a G restriction on what are the allowed symbols and rules between them. Types are often givenschematically,groupingsymbolsthatplayasimilarroleintoasinglevertex.For insertion: S g deletion: Fig.1.Universaltype(schematically). example,Fig.1displaysschematicallythetype(parametrizedbythealphabet)observed byallLGr’s. 3.2 Leftmost,PureandEagerDerivations We speak informallyof a “letter”, say a, when we really mean “an occurrenceof the symbola”(insomeword).Furthermore,wefollowlettersalongstepsu⇒v,identifying thelettersinuandthecorrespondinglettersinv.Hencea“letter”isalsoasequenceof occurrencesinconsecutivewordsalongaderivation. Aletteraisan-thdescendantofanotherletterb(inthecontextofaderivation)ifa hasbeeninsertedbyb(whenn=1),orbya(n−1)-thdescendantofb. Given a step u⇒r,p v, we say that the p-th letter in u, written u[p], is the active letter: the one that inserts, or deletes, a letter to its left. This is often emphasized by writingthestepundertheform(u=)u au ⇒u′au (=v)(assumingu[p]=a). 1 2 1 2 Aletterisinertinaderivationifitisnotactiveinanystepofthederivation.Aset of letters is inert if it only contains inertletters. A derivationis leftmost if every step u au ⇒u′au inthederivationissuchthatu isinertintherestofthederivation. 1 2 1 2 1 Aletterisusefulinaderivationp =(u⇒∗v)ifitbelongstouorv,orifitinserts or deletes a useful letter along p . This recursive definition is well-founded:since let- tersonlyinsertordeletetotheirleft,the“inserts-or-deletes”relationbetweenlettersis acyclic.Aderivationp ispureifalllettersinp areuseful.Observethatifp isnotpure, TowardaCompositionalTheoryofLeftistGrammarsandTransformations 5 itnecessarilyinsertsatsomestepsomelettera(calledauselessletter)thatstaysinert andwilleventuallybedeleted. Aderivationiseager if,informally,deletionsoccurassoonaspossible.Formally, p =(u0⇒r1,p1 u1···⇒rn,pn un)isnoteagerifthereissomeui−1 oftheformw1baw2 where b is inert in the rest of p and is eventually deleted, where P contains the rule a b,andwherer isnotadeletionrule.1 i A derivation is greedy if it is leftmost, pure and eager. Our definition general- izes[Jur07,Def.4],mostnotablybecauseitalsoappliestoderivationsug⇒∗vgwith nonemptyv.Henceasubderivationp ′ ofp isleftmost,eager,pure,orgreedy,whenp is. Thefollowingpropositiongeneralizes[Jur07,Lemma7]. Proposition3.1 (Greedyderivationsaresufficient).Everyderivationp hasanequiv- alentgreedyderivationp ′. Proof. Withaderivationp oftheformu0⇒r1,p1u1⇒r2,p2u2···⇒rn,pnun,weassociate its measure µ(p )d=efhn,p ,...,p i, a (n+1)-tuple of numbers. Measures are linearly 1 n ordered with the lexicographic ordering, giving rise to a quasi-ordering,denoted ≤ , µ betweenderivations.A derivationiscalled µ-minimalif anyequivalentderivationhas greaterorequalmeasure. We can now prove Prop. 3.1 along the following lines (see Appendix A for full details):firstprovethateveryderivationhasaµ-minimalequivalent(LemmaA.1),then showthatµ-minimalderivationsaregreedy(LemmaA.2). ⊓⊔ Observethat≤ iscompatiblewith concatenationofderivations:if p ≤ p then µ 1 µ 2 p .p .p ′≤ p .p .p ′ whentheseconcatenationsaredefined.Thusanysubderivationofa 1 µ 2 µ-minimalderivationisµ-minimal,hencealsogreedy. µ-minimalityisstrongerthangreediness,andisapowerfulandconvenienttoolfor provingProp. 3.1.However,greedinessis easier to reason with since it only involves localpropertiesofderivations,whileµ-minimalityis“global”.Theseintuitionsarere- flectedby,andexplain,thefollowingcomplexityresults. Theorem3.2. 1.Greediness(decidingwhetheragivenderivationp inthecontextofa givenLGrGisgreedy)isinL. 2.µ-Minimality(decidingwhetheritisµ-minimal)iscoNP-complete,evenifwerestrict toacyclicLGr’s. Proof. 1.Beingleftmostoreageriseasilycheckedinlogspace(i.e.,isinL).Checking non-puritycanbedonebylookingforalastinserteduselessletter,henceisinLtoo. 2. µ-minimality is obviously in coNP. Hardness is proved as Coro. 6.9 below, as a byproductofthereductionweusefortheNP-hardnessofBoundedReachability. ⊓⊔ 1Eagernessdoes not requirethatr deletesb: other deletionsareallowed,only insertionsare i forbidden. 6 P.ChambartandPh.Schnoebelen 4 Leftist Grammarsas Transformers Someleftistgrammarsareusedascomputingdevicesratherthanrecognizersofwords. Forthispurpose,werequireastrictseparationbetweeninputandoutputsymbolsand speakofleftisttransformers,orshortlyLTr’s. 4.1 LeftistTransformers Formally,anLTrisaLGrG=(S ,P,g)whereS ispartitionedasA⊎B⊎C,andwhere symbolsfromAareinactiveinPandarenotinsertedbyP(seeFig.2).Thisisdenoted G :A ⊢C. Here A contains the input symbols, B the temporary symbols, and C the outputsymbols,andG ismoreconvenientlywrittenasG=(A,B,C,P,g).Whenthere isnoneedtodistinguishbetweentemporaryandoutputsymbols,wewriteGunderthe def formG=(A,D,P,g),whereD=B∪Ccontainsthe“working”symbols, A D g Fig.2.Typeofleftisttransformers. AconsequenceoftherestrictionsimposedonLTr’sisthefollowing: Fact4.1 A∗D∗ isaninvariantinanyLTrG=(A,D,P,g). WithG=(A,B,C,P,g), weassociate a transformation(arelationbetweenwords) R ⊆A∗×C∗definedby G uR v ⇔def ug⇒∗ vg∧u∈A∗ ∧v∈C∗ G G andwesaythatGrealizesR .Finally,aleftisttransformationisanyrelationonwords G realizedbysomeLTr.Bynecessity,aleftisttransformationcanonlyrelatewordswritten usingdisjointalphabets(thisisnotcontradictedbye R e ). G Leftist transformations respect some structural constraints. In this paper we shall usethefollowingproperties: Proposition4.2 (Closure for leftist transformations,see App. B). If G:A⊢C is a leftisttransformer,thenR = (⊒ .≈.R .≈). G A G 4.2 Composition We say thattwoleftisttransformationsR ⊆A∗×C∗ andR ⊆A∗×C∗ arechainable 1 1 1 2 2 2 ifC =A andA ∩C =∅.TwoLTr’sarechainableiftheyrealizechainabletransfor- 1 2 1 2 mations. Theorem4.3. ThecompositionR .R oftwochainableleftisttransformationsisaleft- 1 2 ist transformation.Furthermore,onecan buildeffectivelya linear-sized LTr realizing R .R fromLTr’srealizingR andR . 1 2 1 2 TowardaCompositionalTheoryofLeftistGrammarsandTransformations 7 Foraproof,assumeG =(A ,B ,C ,P ,g)andG =(A ,B ,C ,P ,g)realizeR and 1 1 1 1 1 2 2 2 2 2 1 R .Beyondchainability,weassumethatA ∪B andB ∪C aredisjoint,whichcanbe 2 1 1 2 2 ensuredbyrenamingtheintermediarysymbolsinB andB .ThecomposedLTrG .G 1 2 1 2 isgivenby def G .G =(A ,B ∪C ∪B ,C ,P ∪P ,g). 1 2 1 1 1 2 2 1 2 ThisisindeedaLTrfromA toC .SeeFig.3foraschematicsofitstype.SinceG .G 1 2 1 2 g P P P 1 2 1 P 2 A1 D1(⊇A2) D2 P P 1 2 P P 1 2 Fig.3.ThetypeofG .G . 1 2 hasallrulesfromG andG itisclearthat(⇒ +⇒ )⊆⇒ ,fromwhichwededuce 1 2 G1 G2 G RG1.RG2 ⊆RG1.G2.Furthermore,theinclusionintheotherdirectionalsoholds: Lemma4.4 (CompositionLemma,seeAppendixC).RG1.G2 =RG1.RG2. Remark4.5 (Associativity).Thecomposition(G .G ).G iswell-definedifandonlyif 1 2 3 G .(G .G )is.Furthermore,thetwoexpressionsdenoteexactlythesameresult. ⊓⊔ 1 2 3 5 Simple LeftistTransformations AsatoolforSections6and7,wenowintroduceandstudyrestrictedfamiliesofleftist grammars(andtransformers)wheredeletionrulesareforbidden(resp.,onlyallowedon A). AninsertiongrammarisaLGrG=(S ,P,g)wherePonlycontaininsertionrules. SeeFig.4foragraphicdefinition.ForanarbitraryleftistgrammarG,wedenotewith Gins theinsertiongrammarobtainedfromGbykeepingonlytheinsertionrules. The insertion relation I ⊆ S ∗×S ∗ associated with an insertion grammar G = G (S ,P,g)isdefinedbyuIGv⇔defug⇒∗Gvg.Obviously,IG⊆⊑S .ObservethatIG isnot necessarilyaleftisttransformationsinceitdoesnotrequireanyseparationbetweenin- putandoutputsymbols. AsimpleleftisttransformerisanLTrG=(A,B,C,P,g)whereB=∅andwhereno ruleinPerasessymbolsfromC.SeeFig.4foragraphicdefinition.We give,without proof,animmediateconsequenceofthedefinition: Lemma5.1. Let G=(A,∅,C,P,g) be a simple LTr and assume ug⇒k vg for some G u∈A∗andv∈C∗.Thenk=|u|+|v|. 8 P.ChambartandPh.Schnoebelen S g A C g Fig.4.Typesofinsertiongrammars(left)andsimpleleftisttransformers(right). Given a simple LTr G=(A,∅,C,P,g) and two words u=a ···a ∈A∗ and v= 1 n c ···c ∈C∗, we say that a non-decreasing map h:{1,...,n}→{1,...,m} is a G- 1 m witnessforuandvifPcontainstherulesc a andc c (foralli=1,...,n h(i) i j+1 j and j=1,...,m, with the convention that c =g). Finally, we write u(cid:209) v when m+1 G suchaG-witnessexists.Clearly,(cid:209) ⊆R .Indeed,whenGisasimpletransformer,(cid:209) G G G canbeusedasarestrictedversionofR thatiseasiertocontrolandreasonabout. G Lemma5.2 (SeeApp.D).LetG=(A,∅,C,P,g)beasimpleLTr.ThenR =(cid:209) .I . G G Gins Combining Lemma 5.2 with IdC∗ ⊆IGins ⊆⊑C, we obtain the following weaker but simplerstatement. Corollary5.3. LetG=(A,∅,C,P,g)beasimpleLTr.Then(cid:209) ⊆R ⊆(cid:209) .⊑ . G G G C 5.1 UnionofSimpleLeftistTransformers WenowconsiderthecombinationoftwosimpleLTr’sG =(A,∅,C ,P ,g)andG = 1 1 1 2 (A,∅,C ,P ,g) that transform from a same A to disjoint output alphabets, i.e., with 2 2 C ∩C =∅.WedefinetheirunionwithG +G d=ef (A,∅,C ∪C ,P ∪P ,g).Thisis 1 2 1 2 1 2 1 2 clearlyasimpleLTrwith(R +R )⊆R .Itfurthersatisfies: G1 G2 G1+G2 Lemma5.4. IfuR vthenu(R +R )v′forsomev′⊑v. G1+G2 G1 G2 Proof. AssumeuR v.WithCor.5.3,weobtainu(cid:209) v′forsomev′=c ···c ⊑ G1+G2 G1+G2 1 m v.HenceG +G hasinsertionrulesc c forall j=1,...,m,anddeletionrules 1 2 j+1 j oftheformc u[i].SinceC andC aredisjoint,eitheralltheserulesareinG (and h(i) 1 2 1 u(cid:209) v′),ortheyareallinG (andu(cid:209) v′).Henceu(R +R )v′. ⊓⊔ G1 2 G2 G1 G2 6 Encoding 3SATwithAcyclicLeftist Transformers Thissectionprovesthefollowingresult. Theorem6.1. BoundedReachabilityandExactBoundedReachabilityinleftistgram- marsareNP-complete,evenwhenrestrictingtoacyclicgrammars. (Exact)BoundedReachabilityisthequestionwhetherthereexistsan-stepderiva- tionu⇒nv(respectively,aderivationu⇒≤nvofnon-exactlengthatmostn)between givenuandv.Thesequestionsareamongthesimplestreachabilityquestionsand,since we consider that the input n is given in unary,2 they are obviously in NP for leftist grammars(andallsemi-Thuesystems). 2Itisnaturaltobeginwiththisassumptionwhenconsideringfundamentalaspectsofreachabil- itysincewritingnmoresuccinctlywouldblurthecomplexity-theoreticalpicture. TowardaCompositionalTheoryofLeftistGrammarsandTransformations 9 Consequently,ourcontributioninthispaperistheNP-hardnesspart.Thisisproved byencoding3SATinstancesinleftistgrammarswherereachingagivenfinalvamounts toguessingavaluationthatsatisfiestheformula.Whiletheideaofthereductioniseasy tograsp,thetechnicalitiesinvolvedareheavyanditwouldbedifficulttoreallyprove thecorrectnessofthereductionwithoutrelyingonacompositionalframeworklikethe onewedevelopinthispaper.Itisindeedverytemptingto“prove”itbyjustrunningan example. Ratherthanadoptingthiseasyway,weshalldescribethereductionasacomposition of simple leftist transformers and use our composition theorems to break down the correctnessproofinsmaller,manageableparts.Oncetheideasunderlyingthereduction are grasped, a good deal of the reasoning is of the type-checkingkind: verifyingthat theconditionsrequiredforcomposingtransformersaremet. Throughoutthis section we assume a generic 3SAT instance F =Vmi=1Ci with m 3-clauses on n Boolean variables in X ={x ,...,x }. Each clause has the formC = 1 n i W3k=1e i,kxi,k for some polarity e i,k ∈{+,−} and xi,k ∈X. (There are two additional assumptions on F that we postpone until the proof of Coro. 6.5 for clarity.) We use standardmodel-theoreticalnotationlike|=F (validity),ors |=F (entailment)whens isaBooleanformulaoraBooleanvaluationofsomevariables. We write s [x 7→b] for the extension of a valuation s with (x,b), assuming x 6∈ Dom(s ).Finally,foravaluationq :X →{⊤,⊥}andsome j=0,...,n,wewriteq to j denotetherestrictionq ofq onthefirst jvariables. |{x1,...,xj} 6.1 AssociatinganLTrGF withF Fortheencoding,weuseanalphabetS ={Tj,Uj,T′j,U′j|i=1,...,m∧ j=0,...,n}, i i i i i.e., 4(n+1) symbols for each clause. The choice of the symbols is that a U means “Undetermined”andaT means“True”,ordeterminedtobevalid. For j=0,...,n,letV d=ef{Uj,...,Uj,Tj,...,Tj},V′d=ef{U′j,...,U′j,T′j,...,T′j}, j 1 m 1 m j 1 m 1 m andWjd=efVj∪Vj′,sothatS ispartitionedinlevelswithS =Snj=0Wj.Witheachxj∈X weassociatetwointermediaryLTr’s: G⊤d=ef(W ,∅,V ,P,g), G⊥d=ef(W ,∅,V′,P′,g) j j−1 j j j j−1 j j withsetsofrulesP andP′.TherulesforG⊤aregiveninFig.5:somedeletionrulesare j j j conditional,dependingon whether x appearsin the clausesC ,...,C . The rulesfor j 1 m G⊥areobtainedbyswitchingprimedandunprimedsymbols,andbyhavingconditional j rules based on whether ¬x appears in the C’s. One easily checks that G⊤ and G⊥ j i j j are indeed simple transformers. They have same inputs and disjoint outputs so that theunion(G⊤+G⊥):W ⊢W iswell-defined.Hencethefollowingcompositionis j j j−1 j well-formed: GF d=ef(G⊤1 +G⊥1).(G⊤2 +G⊥2)···(G⊤n +G⊥n). WeconcludethedefinitionofGF withanintuitiveexplanationoftheideabehindthere- duction.GF operatesonthewordu0=U10···Um0 whereeachUi0standsfor“thevalidity ofclauseC isundeterminedatstep0(i.e.,atthebeginning)”.Atstep j,G⊤+G⊥picks i j j 10 P.ChambartandPh.Schnoebelen T1j−1 T′1j−1 T2j−1 T′2j−1 ··· Tmj−1 T′mj−1 T1j (ifxj|=C1) UU1′j−j−11 1 UT11jj UT22jj ······ UTmmjj g T2j ... (ifxj|=C2...) UU2′j2−j−11 U1j−1 U′1j−1 U2j−1 U′2j−1 ··· Umj−1 U′mj−1 Tmj (ifxj|=Cm) UUm′jm−j−11 Fig.5.P,therulesforG⊤:Fixedpartonleft,conditionalpartonright. j J avaluationforx :G⊤ picks“x =⊤”whileG⊥ picks“x =⊥”.ThistransformsUj−1 j j j j j i intoUj,andTj−1intoTj,movingthemtothenextlevel.Furthermore,anundetermined i i i Uj−1 can be transformedinto Tj ifC is satisfied by x . In addition,and because G⊤ i i i j j andG⊥musthavedisjointoutputalphabets,thesymbolsintheV ’scomeintwocopies j j (hencetheV′’s) thatbehaveidenticallywhentheyareinputinthetransformerforthe j nextstep. The reductionis concludedwith the followingclaim that we proveby combining Corollaries6.5and6.8below. F issatisfiableiffU0U0···U0g⇒2mnTnTn···Tng 1 2 m GF 1 2 m iffU0U0···U0g⇒≤2mnTnTn···Tng (Correctness) 1 2 m GF 1 2 m iffU0U0···U0g⇒∗ TnTn···Tng. 1 2 m GF 1 2 m ObservefinallythatGF isanacyclicgrammarinthesenseof[JL07],thatistosay, its rules define an acyclic “may-act-upon”relation between symbols. Such grammars are much weaker than generalLGr’s since, e.g., languagesrecognized by LGr’s with acyclicdeletionrules(andarbitraryinsertionrules)areregular[JL07]. Remark6.2. TheconstructionofGF fromF ,mostlyamountingtocopyingoperations fortheG⊤’sandG⊥’s,totype-checkingandsets-joiningoperationsforthecomposition j j oftheLTr’s,canbecarriedoutinlogarithmicspace. ⊓⊔ 6.2 CorrectnessoftheReduction Wesaythataworduis j-cleanifithasexactlymsymbolsandifu[i]∈{Tj,T′j,Uj,U′j} i i i i foralli=1,...,m.Itis⊤-homogeneous(resp.⊥-homogeneous)ifitdoesnotcontain any(resp.,onlycontains)primedsymbols. Let0≤ j≤nandq be a Booleanvaluationofx ,...,x :we say thata j-cleanu j 1 j respects(F under)q when,foralli=1,...,m,q |=C whenu[i]isdetermined(i.e., j j i ∈Tj+T′j).Finallyucodes(F under)q ifadditionallyeachu[i]isdeterminedwhen i i j q |=C.Thus,aworduthatcodessomeq exactlylists(viadeterminedsymbols)the j i j clausesofF madevalidbyq ,andtheonlyflexibilityinuisinusingtheprimedorthe j unprimedcopyofthesymbols.Hencethereisonlyone j-cleanucodingq thatis⊤- j homogeneous,andonlyonethatis⊥-homogeneous.Ifurespectsq insteadofcoding j it, morelatitudeexistssince symbolsmaybeundeterminedevenifthe corresponding

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.