ScienceoftheTotalEnvironment626(2018)684–688 ContentslistsavailableatScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Total systemic failure? PhilipGarnett YorkCross-disciplinaryCentreforSystemsAnalysis&SchoolofManagement,UniversityofYork,Heslington,YorkYO105GD,UnitedKingdom H I G H L I G H T S • Isthepotentialfortotalsystemicfailuresomethingthatweshouldbeactivelyconcernedabout? • ComplexitytheoryandcomplexnetworksshouldbepartofthemethodologicaltoolkitthatweusetomodelandunderstandtheAnthropocene. • Artificialintelligencecouldbeusedtohelpusmeasureandinterveneincomplexsystems. A R T I C L E I N F O A B S T R A C T Articlehistory: Whiletheworldarguesaboutwhetherclimatechangeisreal,whatifallsystemsarefailing?Thispaper Received8November2017 seekstoignitefurtherdiscussionconcerninghumanimpactonallaspectsofourenvironmentaswemove Receivedinrevisedform8January2018 furtherintotheAnthropocene,notonlyintermsofthepressureweproduce,butalsohowouractivity Accepted8January2018 changesthenatureoftherelationshipsbetweenEarth’ssystems.Thepapersuggeststhatwecurrentlylack Availableonline19February2018 thetoolsandanalyticalcapacitytounderstandthesignificanceofthesechangesandthereforewecannot answerthequestion,“areallsystemsfailing?”.Wediscusshowcomplexitytheory,complexnetworks,and Editor:D.Barcelo ArtificialIntelligence,couldcontributepartofasolution. CrownCopyright©2018PublishedbyElsevierB.V.Allrightsreserved. Keywords: Complexity Networks Systemic Failure Anthropocene ArtificialIntelligence 1. Introduction lack sufficient knowledge in a number of key areas, including the extenttowhichglobalsystemsarethreatened,thedegreetowhich Helbing(2013)proposedtheestablishmentofaGlobalSystems systemsareinter-dependentandconnected,andsignificantlyhow Science as a response to the problems of instability in our highly thiscomplexnetworkofsystemswillrespondtochangeorfailure connectedworld.Thisproposalwaspartlyinrecognitionthatthere inconnectingsystems.Welackdetailedunderstandingofthenature needstobegreaterfocusontheconsequencesofincreasingconnec- or character of the connections between and within systems, and tivitybetween(andperhapswithin)systemsforthestabilityofthe thereforethesignificanceoftheirlossisalsounknown.Putsimply globalsystem-of-systemsthatisourenvironment.Thesereal-world oursystemicunderstandingoftheworldneedsimprovementifwe complexadaptivesystemsoftendisplayresilienceto,andtheability are to understand the consequences of the changes that mark the toadaptto,internalchangeandexternaldrivers(Gunderson,2000; Anthropocene. Walkeretal.,2004).However,whatwedonotknowishowfarthese Ifweacceptthatweliveinaglobalsystem-of-systems,whereitis systemscanbepushedbeforetheyeitherradicallyshift(intoaper- notunreasonabletosuggestthatfeedbacksexistwithinandbetween hapsunrecognisablestate),or fail altogether,althoughsome work allsystemsthathaveasignificantroleinthesecurityofhumancivil- hasstartedtotrytoaddress,oratleastdrawattentiontothisissue isation,abandoninganypossibilitythattheglobalenvironmentisa (Carpenteretal.,2011;Daietal.,2012;Brooketal.,2013;Hughes setofdiscretesystems.Wehavetoacceptthatchangesorfailures et al., 2013; Lenton and Williams, 2013; Bentley et al., 2014). We inonesystemfeedbackintotheothersystems;thatallsystemsare intimatelyconnectedinwaysthatwecurrentlydonotfullyunder- stand(Buldyrevetal.,2010;Helbing,2013).Forglobalsystemsthat E-mail address:[email protected]. areincreasinglyunderpressurefromhumanactivity,whatarethe https://doi.org/10.1016/j.scitotenv.2018.01.075 0048-9697/CrownCopyright©2018PublishedbyElsevierB.V.Allrightsreserved. P.Garnett/ScienceoftheTotalEnvironment626(2018)684–688 685 potentialconsequencesofthisconnectivityandfeedbackforsystem thathasanopiniononthevalueofthecurrentstate.Howeverwe stability,andwhataretheconsequencesofourlackofknowledge as elements in a system would like to have that ability, and with ofhowsystemsrespondtointernaldynamicsandexternaldrivers ittheknowledgetosteerasystemintoastatethatismoreadvan- toourunderstandingofhowsystemsmightfailintherealworld? tageous to our survival. (In some ways this was the holy grail of Thispaperseekstopromotediscussionoftheseproblems,andwill systemsresearch,theabilitytomakeprecisechangesthataffected explorethepossibilitythathumancivilisationcouldundergototal systemstate.)Largeglobalcomplexsystemsareatbestquasi-stable, systemic failure. Failure that could in part be due to the connec- systemscomeunderexogenousandendogenousinfluencesallthe tivity in global systems. Lack of knowledge means that we do not timeandasaconsequencearenevertrulystatic.Thecurrentstate know if this failure is inevitable and already happening (perhaps mightbeenoughofanattractorthatthequasi-stabilityisrelatively on a temporal scale what we are not sensitive to), or if the global stable,orthesystemmightbeslowlymovingthroughphase-space system-of-systems will prove resilient. Perhaps most likely, and onatrajectoryofchangingstate.Alternatively,aswouldbethecase therefore most importantly, our future security as a species will forsomethinglikeaLorenzattractor,thesystemmightbeorbiting require significant changes in our behaviour, and interventions in anattractor,buthavethecapacitytojumpandorbitanewattractor global systems. Knowing how and where to make those interven- (Lorenz, 1963). Each representing different states for that system. tionsisessential. Theproblemhowever,ifwetaketheclimatesystemasanexample, thereis nothingtoguarantee that bothstateswill support human life. 2. Complexadaptivesystems,networks,andchaos Climatechangeispotentiallyagoodexampleofthis.Ourplanet willlikelyhavesomesortofclimateforaverylongtime,itmight Onedefinitionofasystemisasetofelementsorobjectsthatact justnotbeonewhichcansupportlife.Theever-increasingquanti- together as part of a process or mechanism (Turcotte and Rundle, ties of CO2 in the atmosphere may result in a state change in the 2002), or form part of an network (Boccaletti et al., 2006). For climate system. That could be a slow trajectory of ever-increasing examplethefinancialsystemistheresultoftheinteractionsofaset temperatures (potentially reversible), or perhaps a rapid jump to offinancialorganisations,suchasbanks,hedgefunds,andregulators. a new state of significantly increased temperatures (potentially The complexity comes in the form of the difficulty (or potential irreversible,orsignificantlyhardertoreverse),aprocessknownas impossibility)ofpredictinghowthatsystemwillbehavebylooking hysteresis(Barnoskyetal.,2012). attheinteractions(orrelationships)ofthepartsalone.Wemaythink System behaviour gets even more complex when we consider thatweunderstandthetypesofinteractionsoccurringbetweenthe thatsystemsdonotstandinisolation,freefrominterferencefrom banks,hedgefunds,andregulatorsforexample.However,complex- their environment or other systems (their environment of other itytheoryshowsusthatthisisnotenoughtopredictthebehaviour systems).Theyarehighlyconnected,tothepointwherewithmany ofthefinancialsystem.Simpleinteractionsbetweenthepartsofa systemsitisdifficulttodeterminethestart ofoneandtheendof complexsystemcanresultinemergentbehaviours(Funtowiczand another,ortheendofthesystemandthestartofitsenvironment Ravetz,1994),apropertyelegantlydemonstratedbyConway’sGame (Vespignani,2010).Forglobalsystemsthereisnooutside;allglobal ofLife(fordescriptionseeSchulmanandSeiden(1978)).Theglobal systemsareconnected,andweareinthem.(Itisoftennecessary,and behaviour of the system is often referred to as its state, and we advantageous,forresearcherstodrawarbitraryboundariesaround talkaboutsystemschangingstateandthereforechangingbehaviour. systems to have any hope of understanding their system of study Complex systems are able to adapt to changing external inputs (Allen,2001).Thesesimplificationsarearequirementoftractability, fromtheirenvironment,thepartscanchangethewaytheyinteract but could introduce flawed assumptions, possibly rendering the witheachother,andthepartsthemselvescanalsochange,without modelofthesysteminvalid). therenecessarilybeingasignificantchangeintheemergentglobal behaviourorsystemstate(Holland,1992). Unfortunately we cannot yet predict or measure how much 3. Systemicfailure change would equate to a perceptibly different system. A system could go through a slow and smooth transition over a period of Hereitisusefultoconsidertwopossiblewaysthatasystemcan timelongenoughthatthesystemsarounditadaptinthesameway, fail.Oneisfromthepointofviewofthesystem,andtheotheristhe and tous (withour short memories)theymight fail toregisteras pointofviewofsomeorallofthepartsinthesystem.Inthefirst different.Alternativelyasystemcouldshiftrapidly,causingamajor instanceasystemicfailurewoulddescribeasituationwhereafailure disruption;atippingpoint(Brooketal.,2013;Bentleyetal.,2014). inonepartofthesystem,orpartsofthesystem,propagatesthrough Whetherornotatippingpointismoresignificantthanslowevolu- thewholesystemresultinginthedisappearanceoftheglobalsystem tionofasystemisdebatable.Aslowandgradualchangeintoahostile behaviour.Theinteractingpartscannolongerproducethatemer- statestillbringsyoutothathostilesate,andslownessismerelya gentglobalbehaviour(oranyotheremergentbehaviour),theparts questionofrelativescale.Ourobsessionwithrapidchangesismore arenotinteractinganymore.Thiscouldbeduetolossofnodesfrom downtoourrelativelyshort-termoutlookasaspecies,oraconse- thesystem,orthebreakdownoftherelationshipsbetweennodes. quenceoftheshortnessofourindividuallifespanswhencompared Wehavetobealittlecautiousinhowwedescribethisdisruption withchangesintheenvironment.Iftheresultisahostileenviron- to the emergent system behaviour. It is not the same as a system mentweshouldbeasconcernedaboutslowsystemicshiftsasweare changingstate,itisthetotallossofthesystemicbehaviour. tippingpoints.Giventimeallstatechangesaresignificanttohumans Thesecondpossibilityforfailurecouldbefromthepointofview asapopulation,betheytippingpointfailures,collapse,orslowand of some parts of the system. Here the system becomes hostile to relentlessshift.Themaindifferencesbeingthatifthechangeisslow some of its parts, that might have severe consequences for those andgradualitmightbeeasiertoreversethechangeandsteerthe parts,butrepresentsmerelyaprocessofadaptationorchangeatthe systembacktowardsamoreadvantageousstate. systemlevel.Theseeventsareundoubtedlyhappeningallthetime, Thisnotionofchangingofstateisperhapsinitselfproblematic. particularlyinnaturalsystems.Itisfromourpointofview(asapart) Totalkofmaintainingaparticularstate,oronestatebeingadvanta- where these changes might appear as a systemic failure. Where a geoustoanother,makessensefromtheviewofaparticularelement systemthatwerelyonappearstofailcatastrophicallyandcanno of that system (i.e. humans), but does not really mean very much longerperformthefunctiononwhichwearedependent,butreally frompositionofthesystemasawhole.Thereisnocentralevaluator itiscarryingoninsomeotherstate. 686 P.Garnett/ScienceoftheTotalEnvironment626(2018)684–688 Propagationoffailure,andthereforehowsystemsfail,isdifficult and understanding safe operating spaces for social-ecological sys- topredict(Alexanderetal.,2004).Asystemcouldlosenodes(parts tems is non-trivial(Rockstrom et al., 2009; Dearing et al., 2014) . ofthesystem),ornumerousedges(relationshipsbetweentheparts) How close these systems are to failure is a difficult question to couldbebroken,andverylittlevisiblechangemayoccur.However, address,as“wedonotknowexactlywheretolocatethresholdsof atsomepointthelossorbreakagemightgettoapointwherethesys- irreversibility”(FalkandStein,1970). tem’sfailurestopsbeingsolelycausedbyexternalforcesandstarts Onesystemthatdidatleastappeartobeclosetosystemicfail- beingdrivenbytheinternaldynamicsofthesystemitself.Thefailure ure was global finance during the crash of 2008, where according couldthenpropagaterapidlythroughouttheentiresystem(Watts, to media reports banks in the UK were perhaps only hours away 2002;Wuetal.,2006).The2007–8bankingcrisiscouldpotentially fromswitchingoffthecashmachines.Theexperienceofthefinan- havebeenasystemicfailureofthistype,partsstartedtofailiniso- cialandbankingsectorduringthefinancialcrisisallowsustomakea lationatfirstbutitquicklystartedtolooklikethewholebanking numberofimportantpointsanddrawanumberofcomparisons.The systemwasunderthreat(HaldaneandMay,2011). crashof2008wasanunexpectedsystemiccrisis,thatwasatleastin Failure can become even more unpredictable when we think partduetotheconnectivityofthesystemandalackofunderstand- inthecontextofsystems-of-systems.Theinteractionbetweentwo ingofhowthepartswereinteracting.Therewasaglobalresponse semi-discretesystemsmaymakeitevenmoredifficulttodetermine to the crisis, and the world mobilised very quickly in response to that a system is under threat and how significant that threat is. It theexistentialriskoffinancialcatastrophe,withlargebail-outsand couldbethebreakageandlossesinadifferentbutconnectedsys- otherformsofliquiditybeingprovidedtothesector.Anexacttotal temthatcausethesuddenandunforeseenfailureofasystemthat cost of the financial crisis would be difficult to calculate, however wasthoughttoberobust(Vespignani,2010;Motter,2004).Wealso the reported total EU bailouts of member states is approximately have to consider that relationships betweensystems might be the €544billion(fromsuccessiveroundsoffinancialsupport(EU,2016)). product of relationships between emergent processes, rather than TheUKNationalAuditOfficereportsthatpeaksupportforUKbanks the interactions of simple elements. An intuitive example of this was around UK£1.162 trillion (NAO), the US treasury’s Emergency wouldbehumansociety,whereeachindividualisacomplexsystem, EconomicStabilizationActof2008providedUS$700billiontobanks and the society is an emergent property of the interactions of the (Economic,2008),andtheChineseeconomicstimulusprogramwas individuals. This complexity at multiple scales (both physical and reported to be US$586 billion (Barboza, 2008). In addition there temporal)makesthesystemlevelbehavioursevenmoredifficultto has been successive rounds of quantitative easing in the US, UK, predict,astheyareemergentpropertiesofemergentrelationships. Japan, and Sweden. Was this the best response to the crisis? Per- Thereisonefurtherfeatureofcomplexsystemsthatweshould hapsnot,and itcould beargued thatthefinancialsystemhas not consider,inertia.Systeminertiaiswhereitwouldappearthatsub- fullyrecovered,andwedonotknowwhatmightbecominginthe sequenttoashockasystemdoesnotappeartochange.Thiscould future.Hadwehadabetterunderstandingofglobalfinanceasacom- either be because the system is resilient to the shock, or because plexsystem,then(assumingthatthecrisiswasnotsimplyavoided) thereissufficientinertiainthesystemthatthechangedoesnotreg- perhapsamoretargetedresponsecouldhavebeenmade. ister immediately, but it could come at some point in the future. Whatisalsointerestingabouttheresponsetoanexistentialrisk We should entertain the possibility that the inertia in global sys- to the financial system is that there was in fact a global response, tems is the reason why we are not witnessing significant changes with similar tools being deployed by multiple nations together. It inresponsetotheforcesandshocksimposedbyhumanactivity.It has also been noted that bailouts dwarf spending on other global isnotbecausetheyareresilient,butbecausesysteminertiasimply crises(Andersonetal.,2008).Thisagainhighlightsthesignificance meansthatthereactiontoouractionhasjustnotarrivedyet,fail- oftheinteractionsandfeedbacksbetweenglobalsystems.Different urecouldbecoming.Hereitisthemultipletemporalscalesthatis socialandpoliticalsystems(whicharetightlylinkedtothefinancial significant,failurecouldbeoccurringonadifferenttemporalscale system),allowedfortheinterventioninthefinancialsystem.There tohumanlife.Fordecadesthecompositionoftheatmospherehas was resistance (from the ‘people’) however it was not enough to beenchanging,andfordecadesverylittleseemedtobehappening. stoptheresponse(orchangeitsnature)andforbetterorworsethe Onlynowarewestartingtoseethesystemreactasaveragesurface financialsystemwasbailedout.Socialandpoliticalsystemsarealso temperatureshavestartedtochange(Mannetal.,2008),potentially tightlylinkedtotheclimatesystem,howeverinthiscaseweseem thereforeitishappeningatadifferenttemporalscale.Wecouldeas- tobestrugglingtorespondinacoordinatedway,oronasufficient ilybeseeingtheverybeginningofthereactiontoouraction,andthat scale,andtheresistancethistimeseemstobemorepolitical. reactioncouldmassivelyaccelerateinfuturedecades. TheSternReviewontheEconomicsofClimateChange,produced for the United Kingdom Government late in 2006, made a central recommendationthat1%perannumofthethenglobalGDPshould 3.1. Totalsystemicfailure? be spent to stabilise global atmospheric CO2e at around 500 to 550ppm, which was then later revised to 2% of global GDP per Ifweacceptthatweexistwithinacomplexsystems-of-systems, annum in 2008 (Stern, 2007; Jowit and Wintour, 2008). In 2006 builtbytheinteractionsbetweenpartsthatproduceemergentsys- global GDP was reported by the World Bank to be approximately tem behaviours, and that the emergent behaviour of the supra- US$51.3trillion,risingtoUS$63.4trillionin2008,anditcurrently system is therefore an emergent property of the interactions standsataboutUS$75.8trillion(WorldBank,2017).2%of$70trillion betweensubsystems.Thenwhatcanwesayaboutwhether,atleast dollarswouldberoughlyUS$1.4trillionperyearfor8years,orabout from the point of view of human civilisation, we are likely to be US$11.4 trillion. Not an insignificant sum of money, however not confronted with total systemic failure? Or indeed whether we are beyondwhatcountriescouldaffordshould‘they’wantto,andisnot alreadyexperiencingtotalsystemicfailure? that different in magnitude to the funds provided to the financial Realworldexamplesofsystemicfailureinsocial,ecological,and sector.Theexactcomparativecostisnottheimportantissue,both physicalsystemsarethankfullyhistoricallyrare,althoughunfortu- costcalculationsarefraughtwithdifficultiesbecauseitisnotsim- nately not historically absent (Kappenman, 2003; La Forgia et al., ply the case that money is spent but assets are also acquired and 2004; Karabanov et al., 2004; Freed and Samson, 2004). However, economiesstimulatedincomplexways(itsacomplexsystem).What this is small comfort as we do not have to look very hard to see isanimportantissueisthatinthecaseofthefinancialsystemwe thatnumeroussystemsareundersignificantpressure(Fahrig,2003; wereunabletoseethecrisiscoming,andthereforewerenotableto Guerraetal.,2006;Bradshawetal.,2007;Tscharntkeetal.,2012), respondappropriately,andnowmusthopethatinthelongtermour P.Garnett/ScienceoftheTotalEnvironment626(2018)684–688 687 interventionprovestobesuccessfulandnotactuallyhavedonemore grailofcomplexitytheory,anabilitytodeterminewhichpartsofa harm than good. In the case of the climate system it would seem system should be altered to produce the desired systemic change, thatinalllikelihoodwecanseethecrisiscomingbutareunableto mightnotbeimpossible.However,complexnetworksmightallow collectivelyrespond.Ourthinkingisnotsystemic. ustoassessglobalsystemsasasystemicwhole,ratherthandiscrete Atpresentwedonothavethetools(computationalorotherwise), parts,andAIcouldbeusedtoassistwiththedesignofthemodels language,orunderstandingtoaddressthisproblemofknowinghow totesthypotheses,andtheanalysisandcollectionofsensorydata. andwhenasystemisgoingtoreact.Ourabilitytoevenmapcomplex The possibility of the human civilisation undergoing systemic systems,particularlyintherealworld,islimited,andtheholygrail failure is not new, ideas such as the limits of growth and sus- ofcomplexityscienceofbeingabletothenmakepreciseinterven- tainabledevelopmenthavebeendiscussedatleastsincethe1970s tions that produce predictable changes remains elusive (Brehmer, (Ekins, 1993). The central problem with this debate seems to be 1992;Allen,2001).Itmightevenbethecasethatthelevelofpreci- aroundwhetherornothumanactivityishavingasignificantimpact siondreamtofisimpossible;therearenoleverstopull.Weshould on global systems. The idea that our environment is composed of alsobemindfulthatinterventionmightalsohaveitsownunintended isolated,discretesystems,thatdonotinfluenceeachothershould consequences,knowingwhennottoactbecauseasystemisinthe beabandoned.Fromacomplexsystemsperspectiveitsimplymakes processofadaptingisasimportant.Whatthereforecanwedo? nosensethatourpresenceandactivityarenotimpactingallglobal systems.Thequestionshouldbetowhatdegreearethesesystems connected,whatfeedbacksexist,andwhereishumanactivitycre- 4. ComplexnetworksandArtificialIntelligence atingthemostpressure.Ultimately,weshouldseektounderstand howglobalsystemsmightfail,whatsystemicfailuremightlooklike Complex networks are an intuitive method by which complex intherealworld,andhowclosesystemsaretofailure. systemscanbecharacterisedandperhapsunderstood.Networksare Unfortunately that does not seem to be happening. The nature made up of nodes that often represent objects, such as a bank, or ofourresponsetothepossibilityofagivensystemicfailurewould person.Edges(connections)betweenthenodescapturesomerela- appear to be more dependant on ideology than systemic thinking, tionship between the two objects; Bank A owes money to Bank B, andinthecaseofclimatechangethiscouldprovecatastrophic.The Alice is friends with Bob, Bob owes money to Bank B. For this rea- possibilityofseverechangesinourclimateshouldnotbedismissed soncomplexitytheorymapswellontocomplexnetworks(Mitchell, as‘fakenews’,ahoax,orconspiraciesagainsteconomicdevelopment, 2006). andthefactthatitiscouldprovetobeacontributingfactorinthe Network structure, as defined by connections between the failureoftheclimatesystem.Fromthepointofviewofasystemic nodes,tellsussomethingaboutthatsystem,e.g.friendshipgroups response to the possibility of climate change, the paralysis in the (communities)orinformationflow.Theseregions(alongwithother politicalsystemcouldconstituteasystemsfailureinitsownright. warning signals (Schefferet al., 2009, 2012))might provide a way A failure in the political system would feedback into the climate ofcharacterisingthestateofasystem.Differentnetworkstructures system.Couldthatresultinacascadefailureofbothsystems? could be associated with stability, or with instability. Others still Tomitigatethepossibilityoftotalsystemicfailureregionalinter- mightmaptoregionsofstructuraldependency,and/orthepropen- estswouldneedtogivewaytoglobalinterest,andwewouldneed sityforfailure.Thisisnotapreciseleverofchange,butmoreaway tomobilisearesponsegreaterandevenmorecoordinatedthanour ofassessingthehealthofasystem,andprovidingsomeindicationof responsetothepossiblefailureofthefinancialsectorin2008.The wherewemightintervene.Thusperhapscomplexnetworkspresent questionishow?Sucharesponselooksincreasinglylesslikely,par- anapproachtomodellingtheAnthropocene(Lövbrandetal.,2009; ticularlyinaworldofincreasingisolationism,self-interest,andsocial Verburgetal.,2016).Networksofglobalsystemscouldbebuilt,and andmediaechochambers.Globalcomplexsystemsdonotrespect modelsdevelopedtohighlightareasofpotentialconcern,computer borders, making it hard to see how any state or group could act modellingcouldthenbeusedtosimulatewhatcouldhappentothese alone.Perhapsthenweneedtothinkmoreintermsofdistributed systemsinthefuture. interventions in systems, rather than top-down global regulation. Mapping and then analysing systems, particularly those on a Natural systems do not have centralised control systems, the con- global scale, is a significant challenge. The analysis of dynamic trol is decentralised and is in fact an emergent property of the networks,wherenodesandedgescomeandgo,isparticularlychal- interaction of the parts of the system. With gridlock and division lenging as it is difficult to robustly attach significance to any one in global politics (Hale et al., 2013), perhaps numerous adaptive, node or edge, or predict if any given node or edge might disap- decentralised, smaller interventions (supported by data collection, pearornewoneform(Newmanetal.,2011).Notonlythenetwork modelling, and AI) offer a solution where no global consensus is structure(topology)isofsignificance,butalsothecharacterofthe forthcoming. If we can make creative use of technologies, such as components and how the network changes. The increasing capac- sensorynetworkssupportedordesignedbyAI,locallydeployedbut ityinartificialintelligence(AI)andcomputingpowerpresentsitself globallylinked,perhapsthiscouldsupportadecentralisedresponse asanopportunity.PerhapsAIcouldbeusedtodesignthesensory toglobalsystemicissues. networks, and build the appropriately abstracted models required tomonitorandanalyseglobalsystems.Weourselvesmightstruggle Acknowledgements todeterminethesignificantofconnectivityinsystems,howeverwe mightbesuccessfulindesigningAIsthatcan. ThisworkdrawsfromresearchconductedontheTippingPoints project supported by the Leverhulme Trust at Durham University, 5. Conclusions UK. Complexity,althoughnotanewidea,perhapsoffersboththeory and method required to tackle the global problems of today. This References paperisnotanexhaustivediscussionofthepossibleroleof,andprob- lemsposedby,systemsthinking.Itseekstohighlightthatcomplexity Alexander,R.,Hall-May,M.,Kelly,T.,2004.Characterisationofsystemsofsystems theory and complex networks could contribute to the solution, as failures.Proceedingsofthe22ndInternationalSystemSafetyConference.pp. 499–508. both methods are aimed squarely at attempting to aid our under- Allen,P.,2001.Whatiscomplexityscience?Knowledgeofthelimitstoknowledge. standingofsystemscomposedofmanyinteractingparts.Theholy Emergence3(1),24–42.Apr. 688 P.Garnett/ScienceoftheTotalEnvironment626(2018)684–688 Anderson,S.,Cavanagh,J.,Redman,J.,2008.HowtheBailoutsdwarfOtherglobalCrisis Jowit,J.,Wintour,P.,2008.Costoftacklingglobalclimatechangehasdoubled,warns Spending.Tech.rep.,InstituteforPolicyStudies.Nov. Stern.TheGuardianJun.https://www.theguardian.com/environment/2008/jun/ Barboza,D.,2008.Chinaunveils$586billionstimulusplan.N.Y.TimesNov.http:// 26/climatechange.scienceofclimatechange(Accesseddate17November2017). www.nytimes.com/2008/11/10/world/asia/10iht-10china.17673270.html (Data Kappenman,J.G.,2003.Systemicfailureonagrandscale:the14August2003North accessed5July2017). Americanblackout.SpaceWeather1(2).n/a—n/a. Barnosky,A.D.,Hadly,E.A.,Bascompte,J.,Berlow,E.L.,Brown,J.H.,Fortelius,M.,Getz, Karabanov, E., Williams, D., Kuzmin, M., Sideleva, V., Khursevich, G., Prokopenko, W.M.,Harte,J.,Hastings,A.,Marquet,P.A.,Martinez,N.D.,Mooers,A.,Roopnarine, A.,Solotchina,E.,Tkachenko,L.,Fedenya,S.,Kerber,E.,Gvozdkov,A.,Khlustov, P.,Vermeij,G.,Williams,J.W.,Gillespie,R.,Kitzes,J.,Marshall,C.,Matzke,N., O.,Bezrukova,E.,Letunova,P.,Krapivina,S.,2004.EcologicalcollapseofLake Mindell,D.P.,Revilla,E.,Smith,A.B.,2012.ApproachingastateshiftinEarth/’s BaikalandLakeHovsgolecosystemsduringtheLastGlacialandconsequences biosphere.Nature486(7401),52–58.Jun. foraquaticspeciesdiversity.Palaeogeogr.Palaeoclimatol.Palaeoecol.209(14), Bentley,R.A.,Maddison,E.J.,Ranner,P.H.,Bissell,J.,Caiado,C.C.D.S.,Bhatanacharoen, 227–243.Jul. P.,Clark,T.,Botha,M.,Akinbami,F.,Hollow,M.,Michie,R.,Huntley,B.,Curtis,S.E., LaForgia,G.,Levine,R.,Díaz,A.,Rathe,M.,2004.Fendforyourself:systemicfailurein Garnett,P.,2014.SocialTippingPointsandEarthSystemsDynamics. theDominicanhealthsystem.HealthPolicy67(2),173–186.Feb. Boccaletti,S.,Latora,V.,Moreno,Y.,Chavez,M.,Hwang,D.,2006.Complexnetworks: Lenton,T.M.,Williams,H.T.P.,2013.Ontheoriginofplanetary-scaletippingpoints. structureanddynamics.Phys.Rep.424(4-5),175–308.Feb. TrendsEcol.Evol.(Pers.Ed.)28(7),380–382.Jul. Bradshaw,C.J.A.,Sodhi,N.S.,Peh,K.S.-H.,Brook,B.W.,2007.Globalevidencethatdefor- Lorenz,E.N.,1963,mar.Deterministicnonperiodicflow.J.Atmos.Sci.20(2),130–141. estationamplifiesfloodriskandseverityinthedevelopingworld.Glob.Chang. Lövbrand,E.,Stripple,J.,Wiman,B.,2009.Earthsystemgovernmentality:reflections Biol.13(11),2379–2395.Nov. onscienceintheanthropocene.Glob.Environ.Change19(1),7–13.Feb. Brehmer,B.,1992.Dynamicdecisionmaking:humancontrolofcomplexsystems.Acta Mann,M.E.,Zhang,Z.,Hughes,M.K.,Bradley,R.S.,Miller,S.K.,Rutherford,S.,Ni,F., Psychol.81(3),211–241.Dec. 2008.Proxy-basedreconstructionsofhemisphericandglobalsurfacetempera- Brook,B.W.,Ellis,E.C.,Perring,M.P.,Mackay,A.W.,Blomqvist,L.,2013.Doestheter- turevariationsoverthepasttwomillennia.Proc.Natl.Acad.Sci.U.S.A.105(36), restrialbiospherehaveplanetarytippingpoints?TrendsEcol.Evol.(Pers.Ed.)28 13252–13257.Sep. (7),396–401.Jul. Mitchell, M., 2006. Complex systems: network thinking. Artif. Intell. 170 (18), Buldyrev,S.V.,Parshani,R.,Paul,G.,Stanley,H.E.,Havlin,S.,2010.Catastrophiccascade 1194–1212.Dec. offailuresininterdependentnetworks.Nature464(7291),1025–1028.Apr. Motter,A.E.,2004.Cascadecontrolanddefenseincomplexnetworks.Phys.Rev.Lett. Carpenter,S.R.,Cole,J.J.,Pace,M.L.,Batt,R.,Brock,W.A.,Cline,T.,Coloso,J.,Hodgson, 93(9),98701.Aug. J.R.,Kitchell,J.F.,Seekell,D.A.,Smith,L.,Weidel,B.,2011.Earlywarningsofregime NAO,TaxpayerSupportforUKbanks:FAQs-NationalAuditOffice(NAO). shifts: a whole-ecosystem experiment. Science (New York, N.Y.) 332 (6033), Newman, M., Barabási, A.-L., Watts, D.J., 2011. The Structure and Dynamics of 1079–1082.May. Networks.PrincetonUniversityPress.Oct. Dai, L., Vorselen, D., Korolev, K.S., Gore, J., 2012. Generic Indicators for loss of Rockstrom,J.,Steffen,W.,Noone,K.,Persson,A.,Chapin,F.S.,Lambin,E.F.,Lenton, resilience before a tipping point leading to population collapse. Science 336 T.M.,Scheffer,M.,Folke,C.,Schellnhuber,H.J.,Nykvist,B.,deWit,C.A.,Hughes, (6085),1175–1177.Jun. T., van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, Dearing,J.A.,Wang,R.,Zhang,K.,Dyke,J.G.,Haberl,H.,Hossain,M.S.,Langdon,P.G., U.,Falkenmark,M.,Karlberg,L.,Corell,R.W.,Fabry,V.J.,Hansen,J.,Walker,B., Lenton,T.M.,Raworth,K.,Brown,S.,Carstensen,J.,Cole,M.J.,Cornell,S.E.,Dawson, Liverman,D.,Richardson,K.,Crutzen,P.,Foley,J.A.,2009.Asafeoperatingspace T.P.,Doncaster,C.P.,Eigenbrod,F.,Flörke,M.,Jeffers,E.,Mackay,A.W.,Nykvist,B., forhumanity.Nature461(7263),472–475.Sep. Poppy,G.M.,2014.Safeandjustoperatingspacesforregionalsocial-ecological Scheffer,M.,Bascompte,J.,Brock,W.A.,Brovkin,V.,Carpenter,S.R.,Dakos,V.,Held,H., systems.Glob.Environ.Chang.28(SupplementC),227–238.Sep. vanNes,E.H.,Rietkerk,M.,Sugihara,G.,2009.Early-warningsignalsforcritical Economic,E.,2008.Divisiona-emergencyeconomic.PublicLaw110, 343. transitions.Nature461, 53–59. Ekins, P., 1993. Limits to growth’ and sustainable development’: grappling with Scheffer,M.,Carpenter,S.R.,Lenton,T.M.,Bascompte,J.,Brock,W.,Dakos,V.,vande ecologicalrealities.Ecol.Econ.8(3),269–288.Dec. Koppel,J.,vandeLeemput,I.A.,Levin,S.A.,vanNes,E.H.,Pascual,M.,Vandermeer, EU,2016.EUFinancialAssistance.https://ec.europa.eu/info/business-economy-euro/ J.,2012.Anticipatingcriticaltransitions.Science338(6105),344–348.Oct. economic-and-fiscal-policy-coordination/eu-financial-assistance_en.Sep. Schulman,L.S.,Seiden,P.E.,1978.Statisticalmechanicsofadynamicalsystembased Fahrig,L.,2003.Effectsofhabitatfragmentationonbiodiversity.Annu.Rev.Ecol.Evol. onConway’sgameofLife.J.Stat.Phys.19(3),293–314. Syst.34(1),487–515. Stern,N.,2007.EconomicsClimateChangeSternReview–ClimatologyandClimate Falk,R.A.,Stein,R.E.,1970.Towardequilibriumintheworldordersystem.Am.J.Int. Change.Jan. Law64(4),217–226.Sep.CR-Copyright©1970AmericanSociet. Tscharntke,T.,Clough,Y.,Wanger,T.C.,Jackson,L.,Motzke,I.,Perfecto,I.,Vandermeer, Freed,C.D.,Samson,M.,2004.NativeAlaskandropoutsinWesternAlaska:systemic J.,Whitbread,A.,2012.Globalfoodsecurity,biodiversityconservationandthe failureinnativeAlaskanschools.J.Am.IndianEduc.43(2),33–45. futureofagriculturalintensification.Biol.Conserv.151(1),53–59.Jul. Funtowicz,S.,Ravetz,J.R.,1994.Emergentcomplexsystems.Futures26(6),568–582. Turcotte,D.L.,Rundle,J.B.,2002.Self-organizedcomplexityinthephysical,biological, Jul. andsocialsciences.Proc.Natl.Acad.Sci.U.S.A.99Suppl1, 2463–2465.Feb. Guerra, C.A., Snow, R.W., Hay, S.I., 2006. A global assessment of closed forests, Verburg,P.H.,Dearing,J.A.,Dyke,J.G.,vanderLeeuw,S.,Seitzinger,S.,Steffen,W., deforestationandmalariarisk.Ann.Trop.Med.Parasitol.100(3),189–204.Apr. Syvitski,J.,2016.MethodsandapproachestomodellingtheAnthropocene.Glob. Gunderson,L.H.,2000.EcologicalResilience-intheoryandapplication.Annu.Rev.Ecol. Environ.Change39(SupplementC),328–340.Jul. Syst.31, 425–439.Jan. Vespignani,A.,2010.Complexnetworks:thefragilityofinterdependency.Nature464 Haldane, A.G., May, R.M., 2011. Systemic risk in banking ecosystems. Nature 469 (7291),984–985. (7330),351–355.Jan. Walker,B.,Holling,C.S.,Carpenter,S.R.,Kinzig,A.,2004.Resilience,adaptabilityand Hale,T.,Held,D.,Young,K.,2013.Gridlock:WhyGlobalCooperationisFailingwhen transformabilityinsocial-ecologicalsystems.Ecol.Soc.9, 5. weNeeditMost.Polity. Watts,D.J.,2002.Asimplemodelofglobalcascadesonrandomnetworks.Proc.Natl. Helbing,D.,2013.Globallynetworkedrisksandhowtorespond.Nature497(7447), Acad.Sci.99(9),5766–5771.Apr. 51–59. WorldBank,2017.GDP–Data.https://data.worldbank.org/indicator/NY.GDP.MKTP. Holland,J.H.,1992.Complexadaptivesystems.Daedalus121(1),17–30.Jan.CR- CD. Copyright©1992AmericanAcademy. Wu,J.j.,Gao,Z.-y.,Sun,H.-j.,2006.Cascadeandbreakdowninscale-freenetworkswith Hughes,T.P.,Carpenter,S.,Rockström,J.,Scheffer,M.,Walker,B.,2013.Multiscale communitystructure.Phys.Rev.E74(6),66111.Dec. regime shifts and planetary boundaries. Trends Ecol. Evol. (Pers. Ed.) 28 (7), 389–395.Jul.