Topology Optimization for Additive Manufacturing s i s e h T D h P Anders Clausen DCAMM Special Report No. S214 September 2016 P D H THESIS TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING PhDthesisbyAndersClausen Supervisor: ProfessorOleSigmund Co-supervisors: AssociateProfessorNielsAage ProfessorHansNørgaardHansen Titleofthethesis: Topologyoptimizationforadditivemanufacturing PhDstudent: AndersClausen E-mail: [email protected] Supervisors: OleSigmund E-mail: [email protected] NielsAage E-mail: [email protected] HansNørgaardHansen E-mail: [email protected] Address: DepartmentofMechanicalEngineering,SolidMechanics TechnicalUniversityofDenmark NilsKoppelsAllé,Building404,2800Kgs. Lyngby,Denmark Copyright c 2016AndersClausen (cid:13) DCAMMSpecialReportno. S214 ISBN:978-87-7475-466-4 Preface This thesis is submitted as part of the requirements for obtaining the degree of PhD in mechanicalengineeringattheTechnicalUniversityofDenmark(DTU).ThePhDproject was funded by the Villum Foundation (the NextTop project) and DTU Mechanical En- gineering, andwascarriedoutattheDepartmentofMechanicalEngineering, Sectionof SolidMechanicsatDTUduringtheperiodfromMarch1st,2013,toSeptember16th,2016, at a capacity corresponding to a total of three years of full time employment. The main supervisor was Professor Ole Sigmund. Associate Professor Niels Aage and Professor HansNørgaardHansenactedasco-supervisors. A number of people have contributed to this work, either directly or by providing greatsupport. ForthisIamverygrateful. First of all, I want to thank my supervisors Ole and Niels for excellent guidance and for always being very supportive, accessible and responsive, and Hans for sharing his manufacturingexpertiseandforsupportingandco-fundingtheprojectinthefirstplace. I want to thank my colleagues in 404 for creating a pleasant working environment, andtheTopOptgroupandmyofficematesinthePhDroomformanygooddiscussions. Special thanks to Joe Alexandersen for help and input on a range of topics, and to Erik Andreassenformuchhelp,input,discussionsandgreatcollaboration. IwanttothankKlausLoftHøjbjerreforsharinghisexpertisewithinAMandprovid- ingfeedbackonideas. ThankstoAsbjørnSøndergaard,DanaMaierandOdedAmirfor aninterestingcollaborationonarchitecturalapplicationsoftopologyoptimization. PartoftheworkwascarriedoutduringaresearchstayattheLewisGroupatHarvard SEAS, the Wyss Institute, Cambridge, MA, USA. I want to thank Professor Jennifer A. Lewis for accepting me as a visiting scholar allowing me this great experience, and the entiregroupforbeingextremelyhelpfulandforwelcomingmeduringmystay. Special thanks to Joseph Muth and Jordan Raney for both their scientific and social support. Also,IwanttothankFengwenWang,mycollaboratorfromDTU,forherhardworkand impressiveefficiencyingeneratingnewsetsofdesignsasexperimentsprogressed. Moreover, I want to thank former Head of Department, Professor Emeritus Henrik Carlsen,andagainmysupervisorOleforagreeingtotheparttimesetupallowingmeto pursuemystartupambitionsinparalleltothePhD. Finally, I want to thank my girlfriend Ditte for being extremely supportive and our sonsAkselandLauritsforguaranteeingthatmymindhasbeeneffectivelyclearedevery dayafterwork. Kgs. Lyngby,September16th,2016 AndersClausen i Dansk resumé (in Danish) Denneph.d.-afhandlingomhandlerkombinationenaftopologioptimeringogadditivfrem- stilling(AM,ogsåkendtsom3D-print). Forudenmitegetarbejdeindeholderafhandlin- genenbrederegennemgangogvurderingafdenøvrigelitteraturindenforfeltet. Afhandlingen indledes med en klassificering af de forskellige AM-teknologier, en gennemgang af relevante produktionsmaterialer, disses egenskaber i det additivt frem- stilledeemne,samtproduktionsbegrænsningermedpotentialefordesignoptimering. Herefter gennemgås specifikke formuleringer inden for topologioptimering som er relevante for de væsentligste AM-relaterede produktionsbegrænsninger. Disse begræn- sningerinddelesiretningsbestemteogikke-retningsbestemtebegrænsninger. Ikke-retningsbestemtebegrænsningeromhandlerminimum/uniformlængdeskalaog hulrumsbegrænsning. Detvises,atmodificeredefilterrandbetingelserernødvendigefor at den såkaldt robuste optimeringsmetode sikrer overholdelse af mindste længdeskala i nærhedenafdomæneranden. Den vigtigste retningsbestemte begrænsning er en såkaldt overhængsbegrænsning (overhangconstraint),hvorprimærttoformuleringerfralitteraturendiskuteres. Mit eget arbejde har hovedsageligt omhandlet en bedre udnyttelse af de nye pro- duktionsmuligheder, som AM har bidraget med. Disse behandles under kategorierne multi-materiale-ogmulti-skala-design, samtinterface-problemersomberørerbeggekat- egorier. Det vises, hvordan mikrostrukuren for et materiale med foreskrevet, næsten konstant Poisson’s forhold for store tøjninger kan designes og fremstilles ved hjælp af direct ink writing. Strukturer opnås for et Poisson’s forhold i hele intervallet [-0.8, 0.8], alle med uniform detaljestørrelse og sikring af en kontinuert værktøjsbane, således at strukturerneharpotentialeforskalerbarfremstilling. Under interface-problemer vises det, hvordan et fleksibelt tomt område kan inklud- eresietsædvanligttopologioptimeringsproblemvedhjælpafetekstradesignvariabelfelt og brug af et sensitivitetsfilter. Det vises endvidere hvordan design af coatede struk- turer kan modelleres som et differentiabelt topologioptimeringsproblem. Dette gøres ved dels at benytte rumlige gradienter af densitetsvariablen i interpolationsfunktionen mellem designvaribel og fysiske variable, dels ved at anvende et to-skridtsfilter til at styre gradientfeltet. Metoden eftervises for både to- og tredimensionelle problemer. Et specialtilfælde af denne type problemer er porøse skalstrukturer, som ofte anvendes in- den for 3D-print. Baseret på såvel numeriske som eksperimentelle studier vises det, at sådannestrukturerharlaverestivhedendfuldtmassivestrukturer,mentilgengældud- viser markant forbedrede bulingsegenskaber og bedre modstår uforudsete lasttilfælde. Disse egenskaber opnås implicit med den givne formulering, det vil sige uden eksplicit definitionafyderligerebegrænsninger. ii Abstract ThisPhDthesisdealswiththecombinationoftopologyoptimizationandadditiveman- ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis containsabroaderreviewandassessmentoftheliteraturewithinthefield. The thesis first presents a classification of the various AM technologies, a review of relevantmanufacturingmaterials,thepropertiesofthesematerialsintheadditivelyman- ufacturedpart,aswellasmanufacturingconstraintswithapotentialfordesignoptimiza- tion. Subsequently, specific topology optimization formulations relevant for the most im- portant AM-related manufacturing constraints are presented. These constraints are di- videdintodirectionalandnon-directionalconstraints. Non-directionalconstraintsincludeminimum/uniformlengthscaleandacavitycon- straint. Itisshownthatmodifiedfilterboundaryconditionsarerequiredinorderforthe so-called robust formulation to ensure satisfaction of the minimum feature size in the vicinityofthedesigndomainboundary. Themostimportantdirectionalconstraintisaso-calledoverhangconstraint. Inrela- tiontothis,mainlytwoformulationsfromtheliteraturearediscussed. My own work has mainly been focused on better exploiting the new opportunities provided by AM. These are treated under the categories of multi-material applications, multi-scale approaches, and interface problems which incorporates elements from both of the preceding categories. It is shown how the material microstructure for a mate- rial with programmable, nearly constant Poisson’s ratio for large deformations may be designed and fabricated using direct ink writing. Structures are generated for the full interval [ 0.8,0.8], all with uniform feature size and a continuous print path, ensuring − thepotentialforscalablemanufacturing. Inrelationtointerfaceproblemsitisshownhowaflexiblevoidareamaybeincluded into a standard minimum compliance problem by employing an additional design vari- ablefieldandasensitivityfilter. Furthermore,itisshownhowthedesignofcoatedstruc- tures may be modeled as a differentiable topology optimization problem. This is done partlybyusingspatialgradientsofthedensityvariableintheinterpolationfunctionbe- tween the design variable field and physical variables, partly by employing a two-step filtering scheme in order to control the gradient field. The approach is implemented for both 2D and 3D problems. A special case of this type of design problem is porous shell structureswhichareoftenusedwithinAM.Basedonnumericalaswellasexperimental studiesitisshownthatsuchstructureshavealowerstiffnessthanfullysolidstructures, however, they possess significantly improved buckling properties and are less sensitive towardsloadperturbations. Thesepropertiesareinherentlyensured,thatis,withoutthe explicitdefinitionofadditionalconstraints. iii Publications Thefollowingjournalpublicationsarepartofthethesis: [P1] Clausen, A., Wang, F., Jensen, J. S., Sigmund, O., and Lewis, J. A. (2015c). “Topol- ogy optimized architectures with programmable Poisson’s ratio over large defor- mations”. AdvancedMaterials27(37),pp.5523–5527 [P2] Clausen, A., Aage, N., andSigmund, O.(2014). “Topologyoptimizationwithflexi- blevoidarea”. StructuralandMultidisciplinaryOptimization50(6),pp.927–943 [P3] Clausen,A.,Aage,N.,andSigmund,O.(2015b). “Topologyoptimizationofcoated structuresandmaterialinterfaceproblems”. ComputerMethodsinAppliedMechanics andEngineering290,pp.524–541 [P4] Clausen, A., Aage, N., and Sigmund, O. (2016). “Exploiting additive manufactur- ing infill in topology optimization for improved buckling load”. Engineering 2 (2), pp.250–257 [P5] Clausen, A. and Andreassen, E. “On filter boundary conditions in topology opti- mization”. Inreview [P6] Clausen, A., Andreassen, E., and Sigmund, O. “Topology optimization of 3D shell structureswithporousinfill”. Inpreparation The following conference proceedings publications were published during the PhD project(notincludedintheappendix): [P7] Aage, N., Amir, O., Clausen, A., Hadar, L., Maier, D., and Søndergaard, A.(2015a). “AdvancedTopologyOptimizationMethodsforConceptualArchitecturalDesign”. AdvancesinArchitecturalGeometry2014. Springer,pp.159–179 [P8] Clausen, A., Andreassen, E., and Sigmund, O. (2015a). “Topology optimization for coated structures”. In: Q. Li, G. P. Steven, Z. Zhang, eds. Proceedings of WCSMO-11. Sydney: ISSMO,pp.25–30 iv Contents Preface i Publications iv Contents v 1 Introduction 1 1.1 Projectbackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesisstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Thecontributionsofthiswork . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Additivemanufacturing 5 2.1 Additivevs. conventional,subtractivemanufacturing . . . . . . . . . . . . 5 2.2 AMtechnologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Materialoptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Partqualityandmaterialproperties . . . . . . . . . . . . . . . . . . 9 2.2.3 Supportstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Infill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Newcostdrivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Combiningtopologyoptimizationandadditivemanufacturing 15 3.1 Briefintroductiontotopologyoptimization . . . . . . . . . . . . . . . . . . 15 3.2 TopologyoptimizationandAM-theidealmarriage . . . . . . . . . . . . . 17 3.3 Datastructuresandtransmission . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Manufacturingconstraints 19 4.1 Non-directionalconstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.1 Featuresizecontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 Cavityconstraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Directionalconstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 Overhangsupport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Warping—theneedforadequateprocesssimulation. . . . . . . . . 27 4.2.3 Layer-inducedanisotropy . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Relevanceofconstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 v vi Contents 5 Newdesignopportunities 31 5.1 Multi-materialapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Multi-scaleapproachesanddesignwithmicrostructure . . . . . . . . . . . 32 5.2.1 Parameterizedmicrostructure . . . . . . . . . . . . . . . . . . . . . . 33 5.2.2 Architectedmaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.3 Fullyresolvedmulti-scale . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 Materialinterfaceproblems . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.1 Flexiblevoidarea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3.2 Coatingapproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3.3 Shellstructureswithlocallyoptimizedmicrostructure . . . . . . . 54 5.3.4 Otherapplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Concludingremarks 57 References 59 A ListofcommoncommercialAMtechnologies 67 [P1]TopologyoptimizedarchitectureswithprogrammablePoisson’sratiooverlarge deformations 68 [P2]Topologyoptimizationwithflexiblevoidarea 80 [P3]Topologyoptimizationofcoatedstructuresandmaterialinterfaceproblems 98 [P4]Exploitingadditivemanufacturinginfillintopologyoptimizationforimproved bucklingload 117 [P5]Onfilterboundaryconditionsintopologyoptimization 127 [P6] Topology optimization of 3D shell structures with porous infill (in prepara- tion) 137
Description: