Loughborough University Institutional Repository Topology optimization for additive manufacture ThisitemwassubmittedtoLoughboroughUniversity’sInstitutionalRepository by the/an author. Additional Information: • A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University. Metadata Record: https://dspace.lboro.ac.uk/2134/12833 Publisher: (cid:13)c Adedeji Aremu Please cite the published version. This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.lboro.ac.uk/) under the following Creative Commons Licence conditions. For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/ Topology Optimization for Additive Manufacture By Aremu Adedeji A Doctoral Thesis Submitted in Partial Fulfillment of the requirements for the Award of Doctor of Philosophy of Loughborough University Wolfson School of Mechanical and Manufacturing Engineering March 1, 2013 © by Adedeji Aremu 2013 Acknowledgements I am grateful to God for the successful completion of this work and for the opportunity to meet differentpeopleatLoughboroughUniversity. Iwouldliketothankmysupervisorsfortheopportu- nity to conduct research at a world class university. Thanks to Prof. Ian Ashcroft, Prof. Richard Hague, Prof. Ricky Wildman and Dr. Chris Tuck. I am also grateful to members of AMRG, for assisting with yearly oral examinations, administrative and technical issues. These include Prof. Vadim Silberschmidt, Prof. Jonathan Huntley, Prof. Rob Parkin, Prof. Phil Dickens, Dr. David Brackett,MarkHardy,MarkEast,PhilipBrindley,JoMason,AndyDean,BridgetShipman,Vince Scothern and Sally Alldritt. Also, funding provided by the IMCRC made this work possible. I am grateful to Euge´nie Hunsicker and Joshua Vande Hey for their help and support during the PhD. Speaking with some other people at international conferences helped overcome obstacles. I am grateful to Dr. Osvaldo Querin and Prof. David Rosen, their depth of understanding gave the required insight needed for different tasks. Also, thanks to Darren Engwirda and Dr. Xiaodong Huang for replying promptly to questions about their work and my examiners Prof. Jeremy Cou- plandandProf. PeterGoslingfortheirusefuladvice. Iwouldn’twanttoforgetmyundergraduate supervisor Dr. Leke Oluwole who initially introduced me to the finite element method. Finally, I would like to appreciate all members of my family for their patience and understand- ing. These include my father, Dr. Jonathan Aremu, mother, Joy Aremu, my siblings, Bayo, Bola and Kunle and my wife Favour Aremu. Thanks to my spiritual father, Bishop David Oyedepo, for his timely messages. May my heavenly father continue to enrich all your families in Jesus name. i Abstract Additivemanufacturing(AM)offersawaytomanufacturehighlycomplexdesignswithpotentially enhanced performance as it is free from many of the constraints associated with traditional man- ufacturing. However, current design and optimisation tools, which were developed much earlier than AM, do not allow efficient exploration of AM’s design space. Among these tools are a set of numerical methods/algorithms often used in the field of structural optimisation called topology optimisation (TO). These powerful techniques emerged in the 1980s and have since been used to achievestructuralsolutionswithsuperiorperformancetothoseofothertypesofstructuraloptimi- sation. However, such solutions are often constrained during optimisation to minimise structural complexities, thereby, ensuring that solutions can be manufactured via traditional manufacturing methods. With the advent of AM, it is necessary to restructure these techniques to maximise AM’s capabilities. Such restructuring should involve identification and relaxation of the optimisation constraints within the TO algorithms that restrict design for AM. These constraints include the initialdesign,optimisationparametersandmeshcharacteristicsoftheoptimisationproblembeing solved. AtypicalTOwithcertainmeshcharacteristicswouldinvolvethemovementofanassumed initial design to another with improved structural performance. It was anticipated that the com- plexityandperformanceofasolutionwouldbeaffectedbytheoptimisationconstraints. Thiswork restructured a TO algorithm called the bidirectional evolutionary structural optimisation (BESO) for AM. MATLAB and MSC Nastran were coupled to study and investigate BESO for both two and three dimensional problems. It was observed that certain parametric values promote the real- izationofcomplexstructuresandthiscouldbefurtherenhancedbyincludinganadaptivemeshing strategy (AMS) in the TO. Such a strategy reduced the degrees of freedom initially required for this solution quality without the AMS. ii Journal, Conferences and Workshops 1. Aremu A., Ashcroft I., Wildman R., Hague R., Tuck C., and Brackett, D., The effects of bidirectional evolutionary structural optimisation parameters on an industrial designed component for additive manufacture, Proceedings of the Institute of Mechanical Engineers, PartB:JournalofEngineeringManufacture,227(6),DOI:10.1177/0954405412463857,p794- 807, 2013. 2. Aremu A., BrackettD., Ashcroft I., Wildman R., HagueR., Tuck C., Topology Optimisation Using BESO for Additive Manufacture of a Metal Aerospace Component,The8th ASMOUK / IMSSO conference on engineering design optimisation. p26-37, 2010, London. 3. Aremu A., Ashcroft I., Wildman R., Hague R. and Tuck C., Suitability of SIMP and BESO topology optimisation Algorithms for additive manufacture, 21st Annual International Solid Freeform Fabrication Symposium, p679-692, 2010, Texas.(Reviewed) 4. AremuA.,AshcroftI.A.,WildmanR.,TuckC.,andHagueR,Investigationoffiniteelement modelling issues in the application of topological structural optimisation, 20th International Workshop on Computational Mechanics of Materials. 2010, Loughborough. 5. Aremu A., Brackett D., Ashcroft I., Wildman R., Hague R., Tuck C, An Adaptive Meshing BasedBESOTopologyOptimisation,9th WorldCongressonStructuralandMultidisciplinary Optimisation, 2011, Shizuoka. 6. AremuA.,AshcroftI.,WildmanR.,HagueR.,TuckC.,BrackettD.,A hybrid Algorithm for topology optimisation of Additive Manufactures Structures, 22nd Annual International Solid Freeform Fabrication Symposium, p279-289, 2011, Texas.(Reviewed) iii 7. Aremu A., Ashcroft I., Wildman R., Hague R., Tuck C., Brackett D.,An adaptive meshing algorithm for BESO optimisation of two dimensional parts, 21st International Workshop on Computational Mechanics of Materials, 2011, Limerick. iv Contents Acknowledgements i Abstract ii Journal, Conference And Workshop Pages iii List Of Figures xi List Of Tables xiii Nomenclature xix 1 Introduction 1 1.1 Additive Manufacturing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Premilinary Work on Design Optimization . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Structural Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Research Hypothesis, Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Scope and Thesis Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Literature Review: Design for Additive Manufacture and Topology Optimiza- tion 18 2.1 Design for Additive Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Definition of Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 History of Topology Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . 23 2.4 Topology Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Homogenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.2 Solid Isotropic Microstructure with Penalization . . . . . . . . . . . . . . . 26 2.4.3 Evolutionary Structural Optimization . . . . . . . . . . . . . . . . . . . . . 29 2.4.4 Application of Modern Algorithms for Topology Optimization . . . . . . . . 30 2.5 Commercial Topology Optimization Software . . . . . . . . . . . . . . . . . . . . . 32 2.6 Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6.2 Common Linear Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 v 2.6.3 Adaptive Mesh Improvement Strategies . . . . . . . . . . . . . . . . . . . . 38 2.7 Application of Adaptive Meshing in Engineering and Topology Optimization . . . 39 2.8 Evaluation of Research Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8.2 Hole Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.3 The Starting Design and Mesh Size. . . . . . . . . . . . . . . . . . . . . . . 41 2.8.4 Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.9 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.10 Simulation Design and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.11 Data Collection and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3 Two Dimensional Parametric, Probabilistic and Adaptive Studies 50 3.1 Theoretical Description of the FM-BESO Algorithm . . . . . . . . . . . . . . . . . 51 3.2 An Implementation Of the BESO Algorithm. . . . . . . . . . . . . . . . . . . . . . 54 3.3 Probabilistic BESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4 Benchmarking the Code Performance with the Literature . . . . . . . . . . . . . . 63 3.5 Two Dimensional Parametric Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.1 Simulations PS2-1 to PS2-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Simulations PS2-5 to PS2-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.3 Simulations PS2-9 to PS2-12 . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.4 Discussion and Analysis of Parametric Results . . . . . . . . . . . . . . . . 70 3.6 Probabilistic Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.1 Probabilistic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6.2 Analysis of Probabilistic Results . . . . . . . . . . . . . . . . . . . . . . . . 79 3.7 A Hybrid Algorithm for Two Dimensional Topology Optimization . . . . . . . . . 82 3.7.1 Modified BESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.7.2 Adaptive Meshing Strategy (AMS) . . . . . . . . . . . . . . . . . . . . . . . 84 3.7.3 Test Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.7.4 Test Of Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.7.5 Sensitivity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.7.6 Boundary Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.8 Benefits and Drawbacks of the Adaptive Meshing Strategy . . . . . . . . . . . . . . 97 3.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4 Three Dimensional Studies 99 4.1 A Single Load Case Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2 Results Of Three Dimensional Parametric Analysis . . . . . . . . . . . . . . . . . . 102 4.2.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.2.2 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2.3 Simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.4 Simulation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2.5 Three Dimensional BESO Parameter Relationships . . . . . . . . . . . . . . 111 vi 4.3 A Comparison Of The Two And Three Dimensional Parametric Analysis . . . . . 113 4.4 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.1 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4.2 Manufacturing: Selective Laser Sintering. . . . . . . . . . . . . . . . . . . . 119 4.4.3 Mechanical Tester And Rig . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4.4 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4.5 Results And Discussion Of Validation Experiments . . . . . . . . . . . . . . 124 4.4.6 Determination Of Error In Experimental Results . . . . . . . . . . . . . . . 128 4.5 Summary And Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 A Hybrid Algorithm For Three Dimensional Topology Optimization 133 5.1 Three Dimensional AMS-BESO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.1.1 Boundary Elements Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.1.2 Reduction Of the Design Domain . . . . . . . . . . . . . . . . . . . . . . . . 135 5.1.3 Element Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.1.4 Improvement of Mesh Quality . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2 Three Dimensional AMS-BESO Simulations . . . . . . . . . . . . . . . . . . . . . . 143 5.3 Results from Simulations A3-1, A3-2, A3-2 and A3-4 . . . . . . . . . . . . . . . . . 145 5.3.1 Effects Of Domain Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3.2 OptimalTopologiesAndPerformanceForSimulationsA3-1,A3-2,A3-3and A3-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4 Stiffness Determination For A3-1, A3-2, A3-3 and A3-4 . . . . . . . . . . . . . . . 151 5.5 Computational Time For A3-1, A3-2, A3-3 and A3-4 . . . . . . . . . . . . . . . . . 153 5.6 Boundary Smoothness Of Three Dimensional Solutions . . . . . . . . . . . . . . . . 156 5.7 A Comparison of Two and Three Dimensional Adaptive Topologies . . . . . . . . . 157 5.8 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6 Discussion, Conclusion and Recommendation for Further Work 159 6.1 General Summary and Major Findings . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2 Quantification of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 6.3 Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.4 Regions Of an Optimal Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.5 Computational Efficiency of AMS-BESO . . . . . . . . . . . . . . . . . . . . . . . . 166 6.6 A Comparison with Commercial Software . . . . . . . . . . . . . . . . . . . . . . . 167 6.6.1 Solution of the Three Dimensional Parametric Problem with OptiStruct . . 167 6.6.2 Solution Of the three Dimensional Cantilever Problem With OptiStruct . . 169 6.7 Implication of Results for Additively Manufactured Parts . . . . . . . . . . . . . . 170 6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 6.9 Recommendations For Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 173 List Of References 175 Appendix A: BESO Code Implemented with MATLAB and Nastran 188 vii
Description: