UUnniivveerrssiittyy ooff MMaassssaacchhuusseettttss AAmmhheerrsstt SScchhoollaarrWWoorrkkss@@UUMMaassss AAmmhheerrsstt Doctoral Dissertations Dissertations and Theses March 2016 TTooppoollooggyy ooff tthhee AAffiffinnee SSpprriinnggeerr FFiibbeerr iinn TTyyppee AA Tobias Wilson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Algebraic Geometry Commons RReeccoommmmeennddeedd CCiittaattiioonn Wilson, Tobias, "Topology of the Affine Springer Fiber in Type A" (2016). Doctoral Dissertations. 610. https://doi.org/10.7275/7932409.0 https://scholarworks.umass.edu/dissertations_2/610 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA ADissertationPresented by TOBIASWILSON SubmittedtotheGraduateSchoolofthe UniversityofMassachusettsAmherstinpartialfulfillment oftherequirementsforthedegreeof DOCTOROFPHILOSOPHY February2016 DepartmentofMathematicsandStatistics (cid:13)c CopyrightbyTobiasWilson2016 AllRightsReserved TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA ADissertationPresented by TOBIASWILSON Approvedastostyleandcontentby: AlexeiOblomkov,Chair TomBraden,Member JuliannaTymoczko,Member AndrewMcGregor ComputerScience,OutsideMember FarshidHajir,DepartmentHead MathematicsandStatistics ACKNOWLEDGEMENTS I would like to acknowledge my indebtedness to my advisor, Alexei Oblomkov, for his patience, guidance, and advice throughout the past 5 years. His assistance, sug- gestions, explanations, and re-explanations made this work possible. I am extremely grateful to Tom Braden, Julianna Tymoczko, and Andrew McGregor for many helpful conversationsaboutmywork. I have received a very great deal of support from family and friends while in grad- uate school. Fellow mathematicians Nico, Luke, Jeff, Steve, Jenn, and Tom provided much needed commiseration, advice, and occasional distraction. Laura and Nicky, al- ways integral parts of my educational career, offered regular sanity checks. Cat and Rosie have given me near-daily encouragement and, towards the end, a second home. My parents have been a constant source of support and advice. I am indebted to all of them,andothers. Andfinally,IoweendlessthankstoAndy,whohasbeenmyfavoritepartofthelast 6years. iv ABSTRACT TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA FEBRUARY2016 TOBIASWILSON M.S.,UNIVERSITYOFMASSACHUSETTSAMHERST Ph.D.,UNIVERSITYOFMASSACHUSETTSAMHERST Directedby: ProfessorAlexeiOblomkov We develop algorithms for describing elements of the affine Springer fiber in type A for certain γ ∈ g(C[[t]]). For these γ, which are equivalued, integral, and regular, it is known that the affine Springer fiber, X , has a paving by affines resulting from γ the intersection of Schubert cells with X . Our description of the elements of X allow γ γ us to understand these affine spaces and write down explicit dimension formulae. We also explore some closure relations between the affine spaces and begin to describe the momentmapfortheboththeregularandextendedtorusaction. v TABLE OF CONTENTS Page ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 AffineSpringerFibers . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MainResultsandOrganization . . . . . . . . . . . . . . . . . . . . 2 2. AFFINEGRASSMANNIANSANDAFFINESPRINGERFIBERS . . . . . 3 2.1 TheAffineGrassmannian . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 TorusAction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 AffineSpringerFiber . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 EquivariantCohomology . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 EquivariantCohomologyfortheAffineSpringerFiber . . . . . . . 9 3. DESCRIPTIONOFTHEAFFINESPACES . . . . . . . . . . . . . . . . . . 10 3.1 LatticeNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Two-DimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Three-DimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 GeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 LatticesandSchubertCells . . . . . . . . . . . . . . . . . . . . . . . 22 4. CLOSURERELATIONSHIPS . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 TwoDimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 LatticeDecompositions . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 FormingK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 ClosurePicture . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 ThreeDimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . 30 vi 4.3.1 ConstructingLatticesFromGr(K,m)t,γ . . . . . . . . . . . . 30 4.3.2 SummarizingLattices . . . . . . . . . . . . . . . . . . . . . . 34 4.4 SummarizingDimensionsandClosureRelations . . . . . . . . . . 35 4.5 GeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5. ONE-DIMENSIONALORBITSANDMOMENTGRAPHS . . . . . . . . 42 5.1 ZeroandOne-DimensionalOrbits . . . . . . . . . . . . . . . . . . 42 5.2 MomentGraphforn = 2andn = 3 . . . . . . . . . . . . . . . . . . 44 5.2.1 Index0Lattices . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Index1and2Lattices . . . . . . . . . . . . . . . . . . . . . . 48 5.2.3 One-DimensionalOrbits . . . . . . . . . . . . . . . . . . . . 51 6. DIRECTIONSFORFUTUREWORK . . . . . . . . . . . . . . . . . . . . . 54 APPENDICES A. POSSIBLELATTICETYPESWHENn = 3 . . . . . . . . . . . . . . . . . . 56 B. CLOSUREIN3DIMENSIONALCASE . . . . . . . . . . . . . . . . . . . 66 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 vii LIST OF TABLES Table Page 1. LatticeSubsetsInGenericClosure . . . . . . . . . . . . . . . . . . . . . . . 37 viii LIST OF FIGURES Figure Page 1. Two-dimensionallatticesandclosures . . . . . . . . . . . . . . . . . . . . . 30 2. Sub-varietiesintheclosureofagenericlatticevariety . . . . . . . . . . . . 37 3. Verticesoflatticeswithindex0labeledbyminimumdegree . . . . . . . . . 45 4. Arrangementofthevertices,coloredbytype. . . . . . . . . . . . . . . . . . 46 5. Arrangementofthevertices,coloredbydimension. . . . . . . . . . . . . . 47 6. Index1lattices,withverticescoloredbytype. . . . . . . . . . . . . . . . . . 49 7. Index1lattices,withverticescoloredbydimension. . . . . . . . . . . . . . 49 8. Index2vertices,coloredbytype. . . . . . . . . . . . . . . . . . . . . . . . . 50 9. Index2vertices,coloredbydimension. . . . . . . . . . . . . . . . . . . . . 50 10. One-dimensionalorbitsforwidelyspaceddegreetuples . . . . . . . . . . . 52 11. Allone-dimensionalorbitsinindex0 . . . . . . . . . . . . . . . . . . . . . . 53 ix
Description: