ebook img

Topology of the Affine Springer Fiber in Type A PDF

84 Pages·2017·0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topology of the Affine Springer Fiber in Type A

UUnniivveerrssiittyy ooff MMaassssaacchhuusseettttss AAmmhheerrsstt SScchhoollaarrWWoorrkkss@@UUMMaassss AAmmhheerrsstt Doctoral Dissertations Dissertations and Theses March 2016 TTooppoollooggyy ooff tthhee AAffiffinnee SSpprriinnggeerr FFiibbeerr iinn TTyyppee AA Tobias Wilson University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Algebraic Geometry Commons RReeccoommmmeennddeedd CCiittaattiioonn Wilson, Tobias, "Topology of the Affine Springer Fiber in Type A" (2016). Doctoral Dissertations. 610. https://doi.org/10.7275/7932409.0 https://scholarworks.umass.edu/dissertations_2/610 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA ADissertationPresented by TOBIASWILSON SubmittedtotheGraduateSchoolofthe UniversityofMassachusettsAmherstinpartialfulfillment oftherequirementsforthedegreeof DOCTOROFPHILOSOPHY February2016 DepartmentofMathematicsandStatistics (cid:13)c CopyrightbyTobiasWilson2016 AllRightsReserved TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA ADissertationPresented by TOBIASWILSON Approvedastostyleandcontentby: AlexeiOblomkov,Chair TomBraden,Member JuliannaTymoczko,Member AndrewMcGregor ComputerScience,OutsideMember FarshidHajir,DepartmentHead MathematicsandStatistics ACKNOWLEDGEMENTS I would like to acknowledge my indebtedness to my advisor, Alexei Oblomkov, for his patience, guidance, and advice throughout the past 5 years. His assistance, sug- gestions, explanations, and re-explanations made this work possible. I am extremely grateful to Tom Braden, Julianna Tymoczko, and Andrew McGregor for many helpful conversationsaboutmywork. I have received a very great deal of support from family and friends while in grad- uate school. Fellow mathematicians Nico, Luke, Jeff, Steve, Jenn, and Tom provided much needed commiseration, advice, and occasional distraction. Laura and Nicky, al- ways integral parts of my educational career, offered regular sanity checks. Cat and Rosie have given me near-daily encouragement and, towards the end, a second home. My parents have been a constant source of support and advice. I am indebted to all of them,andothers. Andfinally,IoweendlessthankstoAndy,whohasbeenmyfavoritepartofthelast 6years. iv ABSTRACT TOPOLOGYOFTHEAFFINESPRINGERFIBERINTYPEA FEBRUARY2016 TOBIASWILSON M.S.,UNIVERSITYOFMASSACHUSETTSAMHERST Ph.D.,UNIVERSITYOFMASSACHUSETTSAMHERST Directedby: ProfessorAlexeiOblomkov We develop algorithms for describing elements of the affine Springer fiber in type A for certain γ ∈ g(C[[t]]). For these γ, which are equivalued, integral, and regular, it is known that the affine Springer fiber, X , has a paving by affines resulting from γ the intersection of Schubert cells with X . Our description of the elements of X allow γ γ us to understand these affine spaces and write down explicit dimension formulae. We also explore some closure relations between the affine spaces and begin to describe the momentmapfortheboththeregularandextendedtorusaction. v TABLE OF CONTENTS Page ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 AffineSpringerFibers . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MainResultsandOrganization . . . . . . . . . . . . . . . . . . . . 2 2. AFFINEGRASSMANNIANSANDAFFINESPRINGERFIBERS . . . . . 3 2.1 TheAffineGrassmannian . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 TorusAction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 AffineSpringerFiber . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 EquivariantCohomology . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 EquivariantCohomologyfortheAffineSpringerFiber . . . . . . . 9 3. DESCRIPTIONOFTHEAFFINESPACES . . . . . . . . . . . . . . . . . . 10 3.1 LatticeNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Two-DimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Three-DimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 GeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 LatticesandSchubertCells . . . . . . . . . . . . . . . . . . . . . . . 22 4. CLOSURERELATIONSHIPS . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 TwoDimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 LatticeDecompositions . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 FormingK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 ClosurePicture . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 ThreeDimensionalCase . . . . . . . . . . . . . . . . . . . . . . . . 30 vi 4.3.1 ConstructingLatticesFromGr(K,m)t,γ . . . . . . . . . . . . 30 4.3.2 SummarizingLattices . . . . . . . . . . . . . . . . . . . . . . 34 4.4 SummarizingDimensionsandClosureRelations . . . . . . . . . . 35 4.5 GeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5. ONE-DIMENSIONALORBITSANDMOMENTGRAPHS . . . . . . . . 42 5.1 ZeroandOne-DimensionalOrbits . . . . . . . . . . . . . . . . . . 42 5.2 MomentGraphforn = 2andn = 3 . . . . . . . . . . . . . . . . . . 44 5.2.1 Index0Lattices . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.2.2 Index1and2Lattices . . . . . . . . . . . . . . . . . . . . . . 48 5.2.3 One-DimensionalOrbits . . . . . . . . . . . . . . . . . . . . 51 6. DIRECTIONSFORFUTUREWORK . . . . . . . . . . . . . . . . . . . . . 54 APPENDICES A. POSSIBLELATTICETYPESWHENn = 3 . . . . . . . . . . . . . . . . . . 56 B. CLOSUREIN3DIMENSIONALCASE . . . . . . . . . . . . . . . . . . . 66 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 vii LIST OF TABLES Table Page 1. LatticeSubsetsInGenericClosure . . . . . . . . . . . . . . . . . . . . . . . 37 viii LIST OF FIGURES Figure Page 1. Two-dimensionallatticesandclosures . . . . . . . . . . . . . . . . . . . . . 30 2. Sub-varietiesintheclosureofagenericlatticevariety . . . . . . . . . . . . 37 3. Verticesoflatticeswithindex0labeledbyminimumdegree . . . . . . . . . 45 4. Arrangementofthevertices,coloredbytype. . . . . . . . . . . . . . . . . . 46 5. Arrangementofthevertices,coloredbydimension. . . . . . . . . . . . . . 47 6. Index1lattices,withverticescoloredbytype. . . . . . . . . . . . . . . . . . 49 7. Index1lattices,withverticescoloredbydimension. . . . . . . . . . . . . . 49 8. Index2vertices,coloredbytype. . . . . . . . . . . . . . . . . . . . . . . . . 50 9. Index2vertices,coloredbydimension. . . . . . . . . . . . . . . . . . . . . 50 10. One-dimensionalorbitsforwidelyspaceddegreetuples . . . . . . . . . . . 52 11. Allone-dimensionalorbitsinindex0 . . . . . . . . . . . . . . . . . . . . . . 53 ix

Description:
Part of the Algebraic Geometry Commons . INTRODUCTION. 1.1 Affine Springer Fibers. The study of affine Springer fibers, originally defined by Kazhdan and Lusztig in. [5] was motivated by the theory of Springer Springer fiber remains less understood than the geometry of the finite Springer fibers.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.