ebook img

Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of PDF

29 Pages·2016·5.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of

RESEARCHARTICLE Topology, Cross-Frequency, and Same- Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column RobertoC.Sotero HotchkissBrainInstitute,DepartmentofRadiology,UniversityofCalgary,Calgary,AB,Canada [email protected] a11111 Abstract Phase-amplitudecoupling(PAC),atypeofcross-frequencycoupling(CFC)wherethe phaseofalow-frequencyrhythmmodulatestheamplitudeofahigherfrequency,isbecom- inganimportantindicatorofinformationtransmissioninthebrain.However,theneurobio- OPENACCESS logicalmechanismsunderlyingitsgenerationremainundetermined.Arealistic,yet Citation:SoteroRC(2016)Topology,Cross- Frequency,andSame-FrequencyBandInteractions tractablecomputationalmodelofthephenomenonisthusneeded.Hereweanalyzeaneu- ShapetheGenerationofPhase-AmplitudeCoupling ralmassmodelofacorticalcolumn,comprisingfourteenneuronalpopulationsdistributed inaNeuralMassModelofaCorticalColumn.PLoS acrossfourlayers(L2/3,L4,L5andL6).Acontrolanalysisshowedthattheconditional ComputBiol12(11):e1005180.doi:10.1371/ transferentropy(cTE)measureisabletocorrectlyestimatetheflowofinformationbetween journal.pcbi.1005180 neuronalpopulations.Then,wecomputedcTEfromthephasestotheamplitudesofthe Editor:JeanDaunizeau,BrainandSpineInstitute oscillationsgeneratedinthecorticalcolumn.Thisapproachprovidesinformationregarding (ICM),FRANCE directionalitybydistinguishingPACfromAPC(amplitude-phasecoupling),i.e.theinforma- Received:February22,2016 tiontransferfromamplitudestophases,andcanbeusedtoestimateothertypesofCFC Accepted:September29,2016 suchasamplitude-amplitudecoupling(AAC)andphase-phasecoupling(PPC).While Published:November1,2016 experimentsoftenonlyfocusononeortwoPACcombinations(e.g.,theta-gammaor Copyright:©2016RobertoC.Sotero.Thisisan alpha-gamma),wefoundthatacorticalcolumncansimultaneouslygeneratealmostall openaccessarticledistributedunderthetermsof possiblePACcombinations,dependingonconnectivityparameters,timeconstants,and theCreativeCommonsAttributionLicense,which externalinputs.PACinteractionswithandwithoutananatomicalequivalent(directandindi- permitsunrestricteduse,distribution,and rectinteractions,respectively)wereanalyzed.WefoundthatthestrengthofPACbetween reproductioninanymedium,providedtheoriginal authorandsourcearecredited. twopopulationswasstronglycorrelatedwiththestrengthoftheeffectiveconnections betweenthepopulationsand,onaverage,didnotdependonwhetherthePACconnection DataAvailabilityStatement:Allrelevantdataare withinthepaper. wasdirectorindirect.Whenconsideringacorticalcolumncircuitasacomplexnetwork,we foundthatneuronalpopulationsmakingindirectPACconnectionshad,onaverage,higher Funding:Thisworkwaspartiallysupportedby grantRGPIN-2015-05966fromNaturalSciences localclusteringcoefficient,efficiency,andbetweennesscentralitythanpopulationsmaking andEngineeringResearchCouncilofCanada.The directconnectionsandpopulationsnotinvolvedinPACconnections.Thissuggeststhat fundershadnoroleinstudydesign,datacollection theirinteractionsweremoreeffectivewhentransmittinginformation.Sinceapproximately andanalysis,decisiontopublish,orpreparationof 60%oftheobtainedinteractionsrepresentedindirectconnections,ourresultshighlightthe themanuscript. importanceofthetopologyofcorticalcircuitsforthegenerationofthePACphenomenon. CompetingInterests:Theauthorhasdeclaredthat Finally,ourresultsdemonstratedthatindirectPACinteractionscanbeexplainedbya nocompetinginterestsexist. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 1/29 Phase-AmplitudeCouplingintheCorticalColumn cascadeofdirectCFCandsame-frequencybandinteractions,suggestingthatPACanaly- sisofexperimentaldatashouldbeaccompaniedbytheestimationofothertypesoffre- quencyinteractionsforanintegrativeunderstandingofthephenomenon. AuthorSummary Formanydecades,thestudyofoscillatorybrainactivityfocusedontheseparateanalysis ofitsdifferentfrequencybands(fromdeltatogamma).However,neurons,andneuronal populationsarenonlinearsystems,andasinusoidalinputwillproducenewfrequency componentsintheiroutput.Thisinducescross-frequencycoupling(CFC)betweenany twosources(e.g.neuronalpopulations,orbrainregions)whentherearebidirectionalcon- nectionsbetweenthem,asisoftenthecaseinthebrain.Cascadesofnonlinearsourcescan alsoproduceCFCbetweensourcesthatarenotdirectlyconnected.Althoughseveraltypes ofCFCarepossible,thereisanincreasinginterestinphase-amplitudecoupling(PAC), the phenomenonwheretheamplitudeofahighfrequencyoscillation(e.g.gamma)ismodu- latedbythephaseofalowerfrequency(e.g.theta).PAC hasbeenhypothesizedtomediate theintegrationofdistributedinformationinthebrain,buttheexactlocalandglobal mechanismsresponsibleforthisprocessingremainunknown.Herewefocusonthegener- ationofPAC atthelocalscale,inthecorticalcolumn,andstudyhowthebiophysicsofthe neuronalpopulationsinvolved,influencethegenerationofthephenomenon.Ourresults highlighttheimportanceofthetopologyofthecorticalcolumnnetworkonthegeneration ofPAC, andshowthatindirectPAC connectionscanbepredictedbyacascadeofdirect same-frequencycoupling(SFC)andCFCconnections. Introduction Ithasbeenhypothesizedthatphase-amplitudecoupling(PAC) ofneurophysiologicalsignals playsaroleintheshapingoflocalneuronaloscillationsandinthecommunicationbetween corticalareas[1].PAC occurswhenthephaseofalowfrequencyoscillationmodulatesthe amplitudeofahigherfrequencyoscillation.Atypicalexampleofthisphenomenonwasregis- teredintheCA1regionofthehippocampus[2],wherethephaseofthethetabandmodulated thepowerofthegamma-band.Computationalmodelsofthetheta-gammaPAC generationin thehippocampushavebeenproposed[3]andarebasedontwomaintypesofmodels.Thefirst typeofmodelsconsistsofanetworkofinhibitoryneurons(I-Imodel)[4],whereasthesecond modelisbasedonthereciprocalconnectionsbetweennetworksofexcitatorypyramidalcells andinhibitoryneurons(E-Imodel)[3,5].Insuchmodels,fastexcitationanddelayedfeedback inhibitionalternate,andwithappropriatestrengthofexcitationandinhibition,oscillatory behavioroccurs.WhenthegammaactivityproducedbytheE-IorI-Imodelsisperiodically modulatedbyathetarhythmimposedbyeitheranexternalsourceorthetaresonantcells withinthenetwork[4],atheta-gammaPAC isproduced.Recently,thegenerationoftheta- gammaPAC wasstudied[6]usinganeuralmassmodel(NMM)proposedbyWilsonand Cowan[7].InNMMs,spatiallyaveragedmagnitudesareassumedtocharacterizethecollective behaviorofpopulationsofneuronsofagiventypeinsteadofmodelingsinglecellsandtheir interactionsinarealisticnetwork[7,8].Specifically,theWilsonandCowanmodelconsistsof excitatoryandinhibitoryneuralpopulationswhicharemutuallyconnected. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 2/29 Phase-AmplitudeCouplingintheCorticalColumn Whilethemodelsmentionedabovehaveimprovedourunderstandingofthephysiological mechanismsthatgiverisetotheta-gammaPAC, welackmodelinginsightsintothegeneration ofPAC involvingotherfrequencypairs[9].Thisiscriticalbecauseexperimentalstudieshave shownthatthePAC phenomenonisnotrestrictedtoeitherthehippocampusortotheta- gammainteractions.Infact,PAC hasbeendetectedinpairsinvolvingallpossiblecombina- tionsoflowandhighfrequencies:delta-theta[10],delta-alpha[11,12],delta-beta[11,13], delta-gamma[13–17],theta-alpha[11],theta-beta[11,13],theta-gamma[10,15,16,18–21], alpha-beta[22],alpha-gamma[23–26],andbeta-gamma[23,27].Althoughexperimentalstud- iesusuallyfocusononeortwoPAC combinations,mostofthecombinationsmentionedabove canbedetectedinasingleexperiment[22].Furthermore,PAC canrepresentindirectinterac- tions,butmodellingstudies[6]havefocusedonPAC mediatedbydirect(anatomical)connec- tions.IfPAC isinvolvedinthetransmissionofinformationbetweenbrainregionsthenwe needtounderstandhowindirectPAC connectionsarecreated. TheissuesmentionedabovesuggestadiversityandcomplexityofthePAC phenomenon thathasbeenoverlookedbyprevioustheoreticalstudies.Similarly,thereisaneedforfurther improvementinthemathematicalmethodsusedtodetectPAC. Althoughalargenumberof methodshavebeenproposed[28,29],nogoldstandardhasemerged. Inthiswork,weanalyzeaneuralmassmodelofacorticalcolumnthatcomprises4cortical layersand14neuronalpopulations[30,31],andstudythesimultaneousgenerationofallPAC combinationsmentionedabove.To estimatePAC weuseameasureoftheinformationtransfer fromthephaseofthelowfrequencyrhythmtotheamplitudeofthehigherfrequencyoscilla- tion,whichisknownasconditionaltransferentropy(cTE)[32].Thismultivariateapproach providesinformationaboutthedirectionalityoftheinteractions,thusdistinguishingPAC fromtheinformationtransferfromtheamplitudetothephases(i.e.amplitude-phasecoupling, orAPC)whichhasbeenexperimentallydetected[33].Thisisdoneincontrasttoprevious methodswhichwereeitherbasedonpairwisecorrelationsbetweentheselectedphaseand amplitude[28,34],orprovideddirectionalityusingpairwiseapproaches[33],orweremulti- variatebutdidnotprovidedirectionality[35].ByestimatingcTEfromphasestoamplitudes, weobtainaclearerviewofthemechanismsunderlyingthegenerationofPAC inthecortical column.Specifically,wefocusonthelinkbetweenanatomicalandeffectivePAC structures.In theexamplesshowninthispaper,theneuronalpopulationshavenaturalfrequenciesinthe theta,alphaandgammabands.However,duetotheeffectiveconnectivitybetweenpopula- tions,oscillationsinthedeltaandbetabandsappearandresultinPAC involvingthesefre- quencies.We focusedonthreePAC combinations(delta-gamma,theta-gamma,andalpha- gamma)andexploredhowchangesinmodelparameterssuchasthestrengthoftheconnec- tions,timeconstantsorexternalinputsstrengthenorweakenthePAC phenomenon.We foundthatapproximately60%oftheobtainedPAC interactionsresultfromindirectconnec- tionsandthat,onaverage,theseinteractionshavethesameimpactasdirect(anatomical)con- nections.Thecorticalcolumncircuitwasanalyzedasacomplexnetworkandthreedifferent localtopologicalmeasureswerecomputed:theclusteringcoefficient(C ),theefficiency(E ) m m andbetweennesscentrality(B )whichquantifyhowefficientlytheinformationistransmitted m withinthenetwork.Accordingtoourresults,neuronalpopulationssending(receiving)indirect PAC connectionshadhigherlocalC ,E ,andB coefficients,thanpopulationssending m m m (receiving)directPAC connectionsandpopulationsnotinvolvedinPAC interactions.This suggeststhatthetopologyofcorticalcircuitsplaysacentralroleinthegenerationofthePAC phenomenon. Finally,althoughthispaperfocusesonthePAC phenomenon,ourtheoreticalresultssug- gestthatinordertounderstandthegenerationofindirectPAC connectionswemayneedto estimateothertypesofcross-frequencycouplingsuchasAPC,amplitude-amplitudecoupling PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 3/29 Phase-AmplitudeCouplingintheCorticalColumn (AAC),andphase-phasecoupling(PPC),aswellasinteractionswithinthesamefrequency band(orsame-frequencycoupling,SFC).We computedthesemeasuresinasimplifiedthree- populationmodelandusedthemaspredictorsofindirectPAC inalinearregressionanalysis. We demonstratedthatindirectPAC connectionscanbepredictedbyacascadeofdirectCFC andSFCinteractions,suggestingthatPAC analysisofexperimentaldatashouldbeaccompa- niedbytheestimationofothertypesofinteractionsforanintegrativeunderstandingofthe phenomenon. AlistoftheabbreviationsusedinthispaperispresentedinTable 1. Methods Aneuralmassmodelofacorticalcolumn Fig1showstheproposedmodelobtainedbydistributingfourcellclassesinfourcorticallayers (L2/3,L4,L5,andL6).Thisproduced14differentneuronalpopulations,sincenotallcelltypes arepresentineachlayer[31].Excitatoryneuronswereeitherregularspiking(RS)orintrinsi- callybursting(IB),andinhibitoryneuronswereeitherfast-spiking(FS),orlow-thresholdspik- ing(LTS)neurons.We omittedlayer1,becauseitdoesnotincludesomas[36].Basedon experimentalreportsonthestrengthoftheinputstoeachlayer[36,37],weonlyconsider externalinputstotheRSandFSpopulationsinlayer4,thusneglectingpossibleexternalinputs tootherlayers. Theevolutionofeachpopulationdynamicsrestsontwomathematicaloperations.Post-syn- apticpotentials(PSP)attheaxonalhillockwereconvertedintoanaveragefiringrateusingthe sigmoidfunction[8]: e SðxÞ¼ 0 ð1Þ 1þerðv0(cid:0) xÞ Table1. Listofabbreviations. Abbreviation Meaning AAC Amplitude-amplitudecoupling APC Amplitude-phasecoupling CFC Cross-frequencycoupling cMI Conditionalmutualinformation cTE Conditionaltransferentropy ECoG Electrocorticography EEG Electroencephalography ESC Envelope-to-signalcorrelation FS Fast-spiking IB Intrinsicallybursting LFP Localfieldpotential LTS Low-threshold Midx Modulationindex NMM Neuralmassmodel PAC Phase-amplitudecoupling PFC Phase-frequencycoupling PPC Phase-phasecoupling PSP Postsynapticpotential RS Regularspiking SFC Same-frequencycoupling doi:10.1371/journal.pcbi.1005180.t001 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 4/29 Phase-AmplitudeCouplingintheCorticalColumn Fig1.Proposedneuralmassmodelofthecorticalcolumn.A)Layerdistributionofthefourneuronaltypes.Theexcitatory populationsaretheintrinsicallybursting(IB),andtheregulatoryspiking(RS).Theinhibitorypopulationsarelow-threshold spiking(LTS)andfastspiking(FS).B)Connectivitymatrixvaluesusedforcouplingthe14populationsmodeled.Negative valuescorrespondtoinhibitoryconnections. doi:10.1371/journal.pcbi.1005180.g001 wherethevariablexrepresentsthePSPandparameterse ,v andrrepresentthemaximalfir- 0 0 ingrate,thePSPcorrespondingtothemaximalfiringratee ,andthesteepnessofthesigmoid 0 function,respectively.Foramorerealisticmodelofthepotentialtoratetransformationsee [38].Thesecondoperationwastheconversionoffiringrateatthesomaanddendritesinto PSP, whichwasdonebymeansofalinearconvolutionwithanimpulseresponseh(t)givenby: hðtÞ¼Ggte(cid:0) gt ð2Þ whereGcontrolsthemaximumamplitudeofPSPandgisthesumofthereciprocaloftheaver- agetimeconstant[8].Theconvolutionmodelwithimpulseresponse(2)canbetransformed intoasecondorderdifferentialequation[8,39].ThetemporaldynamicsoftheaveragePSPin eachneuronalpopulationx isdescribedbyasystemof14secondorderdifferentialequations: m d2x ðtÞ dx ðtÞ P m ¼(cid:0) 2g m (cid:0) g2x ðtÞþG g ðp þ 14 G Sðx ðtÞÞÞ ð3Þ dt2 m dt m m m m m n¼1 nm n wheren=1,...,14andm=1,...,14.Thepopulationsarenumberedfrom1to14followingthe order:[L2RS,L2IB,L2LTS,L2FS,L4RS,L4LTS,L4FS,L5RS,L5IB,L5LTS,L5FS,L6RS,L6LTS, L6FS].Notethatlayer2/3wassimplylabelledasL2.Ascanbeseenin(3),neuronalpopula- tionsinteractviatheconnectivitymatrixΓ .Thisisan‘anatomicallyconstrained’effective nm connectivitymatrix[30]inthesensethatitselementsrepresentanatomical(i.e.,direct)con- nections,buttheirstrength(excepttheonessettozero)canvarywithaconditionortask. Externalinputstothecorticalcolumnareaccountedforviap ,whichcanbeanyarbitrary m function,includingwhitenoise[8].Thus,Eq(3)representsasystemof14randomdifferential equations[40,41].Eq(3)istheequationofadampedoscillatorwithadampingparameterset to1.InthisworkwegeneralizeEq(3)byintroducingthedampingparameterb : m d2x ðtÞ dx ðtÞ P m ¼(cid:0) 2g b m (cid:0) g2x ðtÞþG g ðp þ 14 G Sðx ðtÞÞÞ ð4Þ dt2 m m dt m m m m m n¼1 nm n PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 5/29 Phase-AmplitudeCouplingintheCorticalColumn Parameterb criticallydeterminesthebehaviorofthesystem.Iftheconnectionsbetween m thepopulationsaresettozero(Γ =0,n6¼m),thenforb >1(overdampedoscillator)and nm m b =1(criticallydampedoscillator),eachneuronalpopulationwillevolvetoafixedpoint (cid:0)m (cid:1) dxmðtÞ¼0 withoutoscillating.Ifb <1(underdampedoscillator),eachpopulationiscapable dt m ofproducingoscillationseveniftheinter-populationcouplingissettozero.Asmentionedpre- viously,thecaseb =1correspondstotheJansenandRitmodel[8],whichhasbeenexten- m sivelyusedintheliterature[39,42–48].Thus,in[8]andthemodelsbasedonit,anindividual populationisnotcapableofoscillating,andthebalancebetweenexcitationandinhibitionis whatproducesoscillatorybehaviorthatmimicsobservedElectroencephalography(EEG)sig- nals.Itshouldbenotedthatrealisticmodelsofasingleinhibitoryneuralpopulationareableto produceoscillations[49],butthatexcitatorypopulationswerebelievedtoonlyproduce unstructuredpopulationbursts[50].Thisviewhasbeenchallengedrecentlybybothexperi- mentalandcomputationalstudies[51,52].To accountforthepossibilityofoscillatoryactivity insinglepopulations,weusetheparameterb withvaluesb <1. m m To numericallysolveourmodel,wesplitsystem(4)intoasystemof28firstorderdifferen- tialequations: dx ðtÞ m ¼y ðtÞ dt m ! ð5Þ dy ðtÞ X14 m ¼(cid:0) 2g b y ðtÞ(cid:0) g2x ðtÞþG g p þ G Sðx ðtÞÞ dt m m m m m m m m nm n n¼1 Whiletherearemanydifferentmethodsforsolvingsystem(5)weselectedalocallineariza- tionschemethatisknowntoimprovetheorderofconvergenceandstabilitypropertiesofcon- ventionalnumericalintegratorsforrandomdifferentialequations[39]. S1Table presentstheparametersofthemodelandtheirinterpretation.Asshowninthetable FSpopulationshavethefastesttimeconstants,followedbyIB,RS,andLTS,inthatorder.S2Table showsthestandardvaluesoftheanatomicallyconstrainedeffectiveconnectivitymatrixΓ . nm Estimationofphase-amplitudecoupling SeveralmathematicalmethodsfordetectingPAC havebeenproposed[1,28,29,33,35],butno goldstandardhasemerged.Althoughdiverse,thebasisforthesemethodsistotestthecorrela- tionbetweentheinstantaneousphaseofalowerfrequencyrhythmandtheinstantaneous amplitudeofthehigherfrequencyrhythm.To computeanyoneofthesemeasures,signalsgen- eratedwithmodel(5)needtobeband-passfilteredintodifferentfrequencybands.Inthis paperweusethefollowingbands:delta(0.1–4Hz),theta(4–8Hz),alpha(8–12Hz),beta(12– 30Hz),andgamma(30–120Hz).To thisend,wedesignedFIRfiltersusingMATLAB’s signal processingtoolboxfunctionfirls.m.To removeanyphasedistortion,thefilterswereappliedto theoriginaltimeseriesintheforwardandthenthereversedirectionusingMATLAB’s function filtfilt.m[28].Theanalyticrepresentationy (t)ofeachfilteredsignalx (wherem=1,..,5 mk mk standsfortheindexofthefrequencyband,andk=1,..,14,indexestheneuronalpopulations) wasobtainedusingtheHilberttransformHilbert(x (t)): mk y ðtÞ¼x ðtÞþiHilbertðx ðtÞÞ¼a ðtÞeiφmkðtÞ ð6Þ mk mk mk mk wherea (t)andφ (t)aretheinstantaneousamplitudesandphases,andiistheimaginary mk mk number.Amplitudeswerenormalizedbysubtractingthetemporalmeananddividingthe resultbythetemporalstandarddeviationtocreatethesetofnormalizedband-passedsignals. Normalizationwasdonetofacilitatecomparisonbetweendifferentfrequencybands. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 6/29 Phase-AmplitudeCouplingintheCorticalColumn TwoexamplesofPAC measuresfrequentlyusedintheliteraturearethemodulationindex (Midx)[34]andtheenvelope-to-signalcorrelation(ESC)[28]: P Midx ¼j a ðtÞeiφmkðtÞj ð7Þ t nl ESC¼corrðcosðφ ðtÞÞ;a ðtÞÞ ð8Þ mk nl wheresubindexesmandncorrespondtodifferentfrequencybandsandsubindexeskandlcor- respondtodifferentneuronalpopulations.However,ESCandMidxarepairwisemeasuresof thecorrelationbetweenphasesandamplitudesandthuscannotdetectdirectionalityinthe interaction.MeasuressuchascTE[32]whicharebasedontheinformationtransmitted betweensignalsshouldprovideaclearerpictureofthemechanismsgeneratingPAC thancor- relation-basedmeasures. cTEcanbecomputedusingtheconditionalmutualinformation(cMI)measure[53].First, wedefinethecMIbetweenthephaseφ andtheamplitudea ,givenalltheotherphases(F) mk nl andamplitudes(A),I(φ ;a |M),usingthemutualinformationchainrule[53]: mk nl Iðφ ;a jMÞ¼Iðφ ;a ;MÞ(cid:0) Iðφ ;MÞ ð9Þ mk nl mk nl mk whereM=[F,A]isamatrixcomprisingallphasesandamplitudesinallpopulations,except φ anda ,I(φ ;M)isthemutualinformationbetweenφ andM,andI(φ ;a ,M)isthe mk nl mk mk mk nl mutualinformationbetweenφ ,a ,andM[53].To computecMIweuseatoolbox(http:// mk nl www.cs.man.ac.uk/~pococka4/MIToolbox.html)whichcomputesseveralinformationmea- suresusingtheconditionallikelihoodmaximizationalgorithm[54].cMIdoesnotprovide informationaboutthedirectionalityofthecouplingbetweenphasesandamplitudes,whichisa problembecauseboththeoretical[55]andexperimental[33]studiesindicatethepossibilityof aninformationflowfromamplitudestophases.Ontheotherhand,cTEprovidesdirectionality byestimatingthecMIbetweenonesignal(thephaseinourcase)andtheothersignal(the amplitude)shiftedδstepsintothefuture.Inthispaper,toestimatecTEfromthephasetothe amplitude(denotedascTE ),wecomputecMIforNdifferentδsandaveragetheresults φmk,!anl [32,56,57]: 1P cTE ¼ N Iðφ ;adjMeÞ ð10Þ φmk,!anl N d¼1 mk nl wheread isderivedfromtheamplitudetimeseriesa atδstepsintothefuture,i.e. nl nl ad ¼a ðtþdÞ,andMe isamatrixcomprisingallphasesandamplitudesinallpopulations, nl nl exceptφ .InthispaperweuseN=100.Sinceweuseatimestepof10−4sinallsimulations, mk weareaveragingthecMIuptoaperiodof10msintothefuture. Asignificancevaluecanbeattachedtoanyoftheabovemeasuresbymeansofasurrogate dataapproach[28,34],whereweoffsetφ anda byarandomtimelag.We canthuscom- mk nl pute1000surrogateMidx,ESC,cMIandcTEvalues.Fromthesurrogatedatasetwefirstcom- putethemeanμandstandarddeviationσ,andthencomputeaz-scoreas: cMI(cid:0) m cMI(cid:0) m cMI(cid:0) m cTE(cid:0) m Z ¼ 1 ; Z ¼ 2 ; Z ¼ 3; Z ¼ 4 ð11Þ 1 s 2 s 3 s 4 s 1 2 3 4 Thep-valuethatcorrespondstothestandardGaussianvariateisalsocomputed.Zvalues satisfying|Z|>1.96aresignificantwithα=0.05.Masksofzeros(fornon-significantZvalues) andones(forsignificantZ-values)arecreatedandmultipliedtoMidx,ESC,cMI,andcTE. Finally,amultiplecomparisonanalysisbasedontheFalseDiscoveryRate[58]isperformed usingthecomputedp-values. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 7/29 Phase-AmplitudeCouplingintheCorticalColumn AproblemcommontoallmethodsusedforestimatingPAC fromrealdataisthelackofa universalminimalintervallengththatguaranteeanunbiaseddetectionofPAC inallcases. However,forsimulatedsignalswithoutnoise,orwithlowlevelsofnoise,suchastheones usedhere,PAC canbeestimatedusingveryshortsegmentsofdata,providedthephaseand amplitudetimeseriesarelongerthanafullcycleoftheslowestfrequencyofinterest[29].For instance,insimulationsweretheslowestfrequencyofinterestcorrespondsto0.1Hz(delta oscillation),theminimumlengthofthetimeseriesshouldbetenseconds.Additionally,we selectasmallstepsize(10−4s)tohaveenoughdatapointstoensureaproperestimationof cMI[59]. ModelingindirectPACconnections Neuronalpopulationscaninteractthroughdirect(anatomical)connectionsorindirectlyvia pathscomposedofconsecutivedirectconnections.Inthissection,forthesakeofsimplicitywe willfocusonthreeinterconnectedpopulationsy !y !y .Ourgoalistoanalyzehowthe 1 2 3 indirectconnectionfrompopulation1topopulation3ðcTE Þisrelatedtothedirectcon- y1⇝y3 nectionfrompopulation1topopulation2ðcTE ! Þ,andfrompopulation2topopulation3 y1 y2 ðcTE ! Þ.Notethatdirectconnectionsarerepresentedbyastraightarrow(!),indirectcon- y2 y3 nectionsbyasquigglearrow(⇝),andconnectionsnotlabeledasdirectorindirect(seeEq10) byanarrowwithhook(,!). Usingthemutualinformationchainrule(9)wewritethecMIcorrespondingtothethree connections,Iðy ;ydjy ;y Þ,Iðy ;ydjy ;y Þ,Iðy ;ydj y ;y Þ,as: 1 3 2 3 1 2 2 3 2 3 1 3 Iðy ;ydjy ;y Þ¼Iðy ; y ; y ;ydÞ(cid:0) Iðy ; y ; y Þ ð12Þ 1 3 2 3 1 2 3 3 1 2 3 Iðy ;ydjy ;y Þ¼Iðy ; y ;yd;y Þ(cid:0) Iðy ; y ; y Þ ð13Þ 1 2 2 3 1 2 2 3 1 2 3 Iðy ;ydj y ;y Þ¼Iðy ; y ; y ;ydÞ(cid:0) Iðy ; y ; y Þ ð14Þ 2 3 1 3 2 1 3 3 2 1 3 Substituting(13)and(14)in(12)weobtain: Iðy ;ydjy ;y Þ¼Iðy ;ydjy ;y ÞþIðy ;ydjy ;y ÞþIðy ; y ; y ;ydÞþIðy ; y ; y Þ(cid:0) Iðy ; y ;yd;y Þ 1 3 2 3 1 2 2 3 2 3 1 3 1 2 3 3 2 1 3 1 2 2 3 (cid:0) Iðy ; y ; y ;ydÞ ð15Þ 2 1 3 3 Ifweaverage(15)overNdifferentlagsweobtain: cTE ¼cTE ! þcTE ! þeI ð16Þ y1⇝y3 y1 y2 y2 y3 1P eI ¼Iðy ; y ; y Þþ N ðIðy ; y ; y ;ydÞ(cid:0) Iðy ; y ;yd;y Þ(cid:0) Iðy ; y ; y ;ydÞÞ ð17Þ 2 1 3 N d¼1 1 2 3 3 1 2 2 3 2 1 3 3 Accordingto(16),theindirectconnectionfrompopulation1topopulation3(y ⇝y )can 1 3 becomputedasthesumofthedirectconnectionsy !y andy !y plusatermeI compris- 1 2 2 3 ingasumofmutualinformationterms.We nowgivey theinterpretationoftheinstantaneous 1 phaseinpopulation1,andy theinterpretationofinstantaneousamplitudeinpopulation3: 3 cTE ¼cTE ! þcTE ! þeI ð18Þ φ1⇝a3 φ1 y2 y2 a3 1P eI ¼Iðy ;φ ;a Þþ N ðIðφ ; y ;a ;adÞ(cid:0) Iðφ ; y ;yd;a Þ(cid:0) Iðy ; φ ; a ;adÞÞ ð19Þ 2 1 3 N d¼1 1 2 3 3 1 2 2 3 2 1 3 3 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 8/29 Phase-AmplitudeCouplingintheCorticalColumn Thevariabley canhavetheinterpretationofphase,amplitude,oreveninstantaneousfre- 2 quency[60].Thus,Eqs(18)and(19)generalizetheideaofacascadeofPAC [10],andshows thatindirectPAC canbemediatedbyothertypesofCFC.Furthermore,sincethereisnofre- quencyconstraintfory2,cTEφ1!y2 orcTEy2!a3,mayrepresentinteractionswithinthesame frequencyband(i.e,SFC).Thus,weconcludethatinthecascadey !y !y ,cTE canbe 1 2 3 y1⇝y3 mediatedbybothCFCandSFC. Topologicalpropertiesofthecorticalcolumnnetwork Complexnetworkanalysishaveprovenusefulforstudyingtherelationshipbetweenstructure andfunctioninbrainnetworks[61].Inthispaperweareinterestedinstudyinghowthetopol- ogyoftheconnectivitymatrixΓ influencesthePAC phenomenon.Specifically,wewantto nm answerthequestionofwhetherthepopulationsinvolvedindirectandindirectPAC interac- tionspresentthesametopologicalproperties.Thismeansweneedtofocusonlocalproperties ofthenetworkinsteadofglobalones.Inthispaperwearegoingtocomputethreesuchproper- ties:thelocalclusteringcoefficient,thelocalefficiency,andthelocalbetweennesscentrality,for thesendingandreceivingpopulationsinvolvedineachdirectorindirectPAC interaction. Inthissectionwearenotgoingtodistinguishbetweeninhibitoryandexcitatoryconnec- tions,andtheanalysiswillbedonetotheabsolutevalueoftheconnectivitymatrix:W=|Γ |. nm Nodes(populations)ofanetworkcanbecharacterizedbythestructureoftheirlocalneigh- borhood.Theconceptofclusteringofanetworkreferstothetendencytoformcliquesinthe neighborhoodofanygivennode[62].Thismeansthatifnodemisconnectedtonoden,while atthesametimenodenisconnectedtonodes,thereisahighprobabilitythatnodemisalso connectedtonodes.LetA={a }bethedirectedadjacencymatrix[63]ofthenetwork(a = mn mn 1whenthereisaconnectionfrommton,a =0otherwise).Letalsodtot bethetotaldegreeof P mn m nodem,andd$ ¼ a a .Thelocalclusteringcoefficientofnodemforweightednet- m m6¼n mn nm worksis[64]: ðWcþWcTÞ3 C ¼ mm ð20Þ m 2½dtotðdtot (cid:0) 1Þ(cid:0) 2d$(cid:138) m m m whereWc ¼W1=3,andðWcþWcTÞ3 isthemthelementofthemaindiagonalofðWcþWcTÞ3. mm Thesecondmeasurewearegoingtocomputeisthelocalefficiency,calculatedas[65,66]: 1 P ! E ¼ ð l Þ(cid:0) 1 ð21Þ m N(cid:0) 1 j;j6¼m mj ! where l istheshortestweightedpathlengthfrommtoj.Thus,E isinverselyrelatedtothe mj m pathlength,andmeasureshowefficientlythenetworkexchangesinformationonalocalscale. To accountquantitativelyfortheroleofnodesthatcanbecrucialforconnectingdifferent regionsofthenetworkbyactingasbridges,theconceptofbetweennesscentralitywasintro- duced[67].Thelocalweightedbetweennesscentralityofnodemiscomputedas[66]: 1 P r ðmÞ B ¼ hj ð22Þ m ðN(cid:0) 1ÞðN(cid:0) 2Þ h;j r hj j6¼m;h6¼m;j6¼h whereρ isthenumberofshortestpathsbetweenhandj,andρ (m)isthenumberofshortest hj hj pathsbetweenhandjthatpassthroughm.Anodewithhighcentralityisthuscrucialtoeffi- cientcommunication. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 9/29 Phase-AmplitudeCouplingintheCorticalColumn To computeC ,E ,andB ,weuseMatlabfunctionsprovidedinthebrainconnectivity m m m toolbox(https://sites.google.com/site/bctnet/). Nonlinearcorrelationcoefficient GiventhenonlinearnatureofthePAC phenomenon,studyingthelinkbetweentheparameters ofthemodelandthestrengthofPAC cannotbedoneonlywiththePearsoncorrelationcoeffi- cient,whichmeasuresthelinearcorrelationbetweentwovariables.Nonlinearmeasuresare alsorequired.TheunderlyingideaisthatifthevalueofthevariableYisconsideredasanonlin- earfunctionofthevariableX,thevalueofYgivenXcanbepredictedaccordingtoanonlinear regression[68].Inthispaper,wecomputedthenonlinearregressionbyfittingthevectorYof PAC valueswithaFourierseries: P YbðXÞ¼a þ K a sinðb Xþc Þ ð23Þ 0 k¼1 k k k whereK=10andXisthevectorofparameters.Thenonlinearcorrelationcoefficientr isthen nl b thevalueofthelinearcorrelationbetweenYandthepredictedsignalY. Results DetectingPAC:controlanalysis We connectedthreeexcitatoryneuronalpopulations,labeled1,2and3(Fig2Aand2B).The temporaldynamicsofthethreepopulationsaredescribedbyasystemofrandomdifferential equationsidenticalto(5),butwithn=1:3andm=1:3.AsshowninFig2A,thereisnoconnec- tionbetweenpopulations1and3andbotharedrivenbypopulation2.Theparametersusedin Fig2.Threepopulationtoymodel.A)Themodelcomprisesthreeneuronalpopulationslabelledas‘1’,‘2’,and‘3’,colouredin blue,redandgreen,respectively.Thiscolorlegendisusedacrossallpanelsinthefigure.B)Connectivitymatrix.C)Temporal dynamicsofthethreeneuronalpopulations.D)Spectraldensity.Thelowfrequency(4.40Hz)ismodulatingthehigher frequencies(50and57.8HZ)whichisdemonstratedbytheappearanceofsecondarypeaksatfrequencies50Hz±4.40Hzand 57.8Hz±4.40Hzonbothsidesofthemainpeaks.Thesecondarypeaksareindicatedwitharrows.E)Spectraldensitywhen substitutingthesigmoidfunctionwiththelinearfunctionS(x)=x. doi:10.1371/journal.pcbi.1005180.g002 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 10/29

Description:
Chaos. 2012; 22(2). 52. Allene C, Cattani A, Ackman JB, Bonifazi P, Aniksztejn L, Ben-Ari Y, et al. Sequential generation of two distinct synapse-driven network patterns in developing neocortex. J Neurosci. 2008; 28. (48):12851–63. doi: 10.1523/JNEUROSCI.3733-08.2008 PMID: 19036979. 53. MacKay
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.