RESEARCHARTICLE Topology, Cross-Frequency, and Same- Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column RobertoC.Sotero HotchkissBrainInstitute,DepartmentofRadiology,UniversityofCalgary,Calgary,AB,Canada [email protected] a11111 Abstract Phase-amplitudecoupling(PAC),atypeofcross-frequencycoupling(CFC)wherethe phaseofalow-frequencyrhythmmodulatestheamplitudeofahigherfrequency,isbecom- inganimportantindicatorofinformationtransmissioninthebrain.However,theneurobio- OPENACCESS logicalmechanismsunderlyingitsgenerationremainundetermined.Arealistic,yet Citation:SoteroRC(2016)Topology,Cross- Frequency,andSame-FrequencyBandInteractions tractablecomputationalmodelofthephenomenonisthusneeded.Hereweanalyzeaneu- ShapetheGenerationofPhase-AmplitudeCoupling ralmassmodelofacorticalcolumn,comprisingfourteenneuronalpopulationsdistributed inaNeuralMassModelofaCorticalColumn.PLoS acrossfourlayers(L2/3,L4,L5andL6).Acontrolanalysisshowedthattheconditional ComputBiol12(11):e1005180.doi:10.1371/ transferentropy(cTE)measureisabletocorrectlyestimatetheflowofinformationbetween journal.pcbi.1005180 neuronalpopulations.Then,wecomputedcTEfromthephasestotheamplitudesofthe Editor:JeanDaunizeau,BrainandSpineInstitute oscillationsgeneratedinthecorticalcolumn.Thisapproachprovidesinformationregarding (ICM),FRANCE directionalitybydistinguishingPACfromAPC(amplitude-phasecoupling),i.e.theinforma- Received:February22,2016 tiontransferfromamplitudestophases,andcanbeusedtoestimateothertypesofCFC Accepted:September29,2016 suchasamplitude-amplitudecoupling(AAC)andphase-phasecoupling(PPC).While Published:November1,2016 experimentsoftenonlyfocusononeortwoPACcombinations(e.g.,theta-gammaor Copyright:©2016RobertoC.Sotero.Thisisan alpha-gamma),wefoundthatacorticalcolumncansimultaneouslygeneratealmostall openaccessarticledistributedunderthetermsof possiblePACcombinations,dependingonconnectivityparameters,timeconstants,and theCreativeCommonsAttributionLicense,which externalinputs.PACinteractionswithandwithoutananatomicalequivalent(directandindi- permitsunrestricteduse,distribution,and rectinteractions,respectively)wereanalyzed.WefoundthatthestrengthofPACbetween reproductioninanymedium,providedtheoriginal authorandsourcearecredited. twopopulationswasstronglycorrelatedwiththestrengthoftheeffectiveconnections betweenthepopulationsand,onaverage,didnotdependonwhetherthePACconnection DataAvailabilityStatement:Allrelevantdataare withinthepaper. wasdirectorindirect.Whenconsideringacorticalcolumncircuitasacomplexnetwork,we foundthatneuronalpopulationsmakingindirectPACconnectionshad,onaverage,higher Funding:Thisworkwaspartiallysupportedby grantRGPIN-2015-05966fromNaturalSciences localclusteringcoefficient,efficiency,andbetweennesscentralitythanpopulationsmaking andEngineeringResearchCouncilofCanada.The directconnectionsandpopulationsnotinvolvedinPACconnections.Thissuggeststhat fundershadnoroleinstudydesign,datacollection theirinteractionsweremoreeffectivewhentransmittinginformation.Sinceapproximately andanalysis,decisiontopublish,orpreparationof 60%oftheobtainedinteractionsrepresentedindirectconnections,ourresultshighlightthe themanuscript. importanceofthetopologyofcorticalcircuitsforthegenerationofthePACphenomenon. CompetingInterests:Theauthorhasdeclaredthat Finally,ourresultsdemonstratedthatindirectPACinteractionscanbeexplainedbya nocompetinginterestsexist. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 1/29 Phase-AmplitudeCouplingintheCorticalColumn cascadeofdirectCFCandsame-frequencybandinteractions,suggestingthatPACanaly- sisofexperimentaldatashouldbeaccompaniedbytheestimationofothertypesoffre- quencyinteractionsforanintegrativeunderstandingofthephenomenon. AuthorSummary Formanydecades,thestudyofoscillatorybrainactivityfocusedontheseparateanalysis ofitsdifferentfrequencybands(fromdeltatogamma).However,neurons,andneuronal populationsarenonlinearsystems,andasinusoidalinputwillproducenewfrequency componentsintheiroutput.Thisinducescross-frequencycoupling(CFC)betweenany twosources(e.g.neuronalpopulations,orbrainregions)whentherearebidirectionalcon- nectionsbetweenthem,asisoftenthecaseinthebrain.Cascadesofnonlinearsourcescan alsoproduceCFCbetweensourcesthatarenotdirectlyconnected.Althoughseveraltypes ofCFCarepossible,thereisanincreasinginterestinphase-amplitudecoupling(PAC), the phenomenonwheretheamplitudeofahighfrequencyoscillation(e.g.gamma)ismodu- latedbythephaseofalowerfrequency(e.g.theta).PAC hasbeenhypothesizedtomediate theintegrationofdistributedinformationinthebrain,buttheexactlocalandglobal mechanismsresponsibleforthisprocessingremainunknown.Herewefocusonthegener- ationofPAC atthelocalscale,inthecorticalcolumn,andstudyhowthebiophysicsofthe neuronalpopulationsinvolved,influencethegenerationofthephenomenon.Ourresults highlighttheimportanceofthetopologyofthecorticalcolumnnetworkonthegeneration ofPAC, andshowthatindirectPAC connectionscanbepredictedbyacascadeofdirect same-frequencycoupling(SFC)andCFCconnections. Introduction Ithasbeenhypothesizedthatphase-amplitudecoupling(PAC) ofneurophysiologicalsignals playsaroleintheshapingoflocalneuronaloscillationsandinthecommunicationbetween corticalareas[1].PAC occurswhenthephaseofalowfrequencyoscillationmodulatesthe amplitudeofahigherfrequencyoscillation.Atypicalexampleofthisphenomenonwasregis- teredintheCA1regionofthehippocampus[2],wherethephaseofthethetabandmodulated thepowerofthegamma-band.Computationalmodelsofthetheta-gammaPAC generationin thehippocampushavebeenproposed[3]andarebasedontwomaintypesofmodels.Thefirst typeofmodelsconsistsofanetworkofinhibitoryneurons(I-Imodel)[4],whereasthesecond modelisbasedonthereciprocalconnectionsbetweennetworksofexcitatorypyramidalcells andinhibitoryneurons(E-Imodel)[3,5].Insuchmodels,fastexcitationanddelayedfeedback inhibitionalternate,andwithappropriatestrengthofexcitationandinhibition,oscillatory behavioroccurs.WhenthegammaactivityproducedbytheE-IorI-Imodelsisperiodically modulatedbyathetarhythmimposedbyeitheranexternalsourceorthetaresonantcells withinthenetwork[4],atheta-gammaPAC isproduced.Recently,thegenerationoftheta- gammaPAC wasstudied[6]usinganeuralmassmodel(NMM)proposedbyWilsonand Cowan[7].InNMMs,spatiallyaveragedmagnitudesareassumedtocharacterizethecollective behaviorofpopulationsofneuronsofagiventypeinsteadofmodelingsinglecellsandtheir interactionsinarealisticnetwork[7,8].Specifically,theWilsonandCowanmodelconsistsof excitatoryandinhibitoryneuralpopulationswhicharemutuallyconnected. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 2/29 Phase-AmplitudeCouplingintheCorticalColumn Whilethemodelsmentionedabovehaveimprovedourunderstandingofthephysiological mechanismsthatgiverisetotheta-gammaPAC, welackmodelinginsightsintothegeneration ofPAC involvingotherfrequencypairs[9].Thisiscriticalbecauseexperimentalstudieshave shownthatthePAC phenomenonisnotrestrictedtoeitherthehippocampusortotheta- gammainteractions.Infact,PAC hasbeendetectedinpairsinvolvingallpossiblecombina- tionsoflowandhighfrequencies:delta-theta[10],delta-alpha[11,12],delta-beta[11,13], delta-gamma[13–17],theta-alpha[11],theta-beta[11,13],theta-gamma[10,15,16,18–21], alpha-beta[22],alpha-gamma[23–26],andbeta-gamma[23,27].Althoughexperimentalstud- iesusuallyfocusononeortwoPAC combinations,mostofthecombinationsmentionedabove canbedetectedinasingleexperiment[22].Furthermore,PAC canrepresentindirectinterac- tions,butmodellingstudies[6]havefocusedonPAC mediatedbydirect(anatomical)connec- tions.IfPAC isinvolvedinthetransmissionofinformationbetweenbrainregionsthenwe needtounderstandhowindirectPAC connectionsarecreated. TheissuesmentionedabovesuggestadiversityandcomplexityofthePAC phenomenon thathasbeenoverlookedbyprevioustheoreticalstudies.Similarly,thereisaneedforfurther improvementinthemathematicalmethodsusedtodetectPAC. Althoughalargenumberof methodshavebeenproposed[28,29],nogoldstandardhasemerged. Inthiswork,weanalyzeaneuralmassmodelofacorticalcolumnthatcomprises4cortical layersand14neuronalpopulations[30,31],andstudythesimultaneousgenerationofallPAC combinationsmentionedabove.To estimatePAC weuseameasureoftheinformationtransfer fromthephaseofthelowfrequencyrhythmtotheamplitudeofthehigherfrequencyoscilla- tion,whichisknownasconditionaltransferentropy(cTE)[32].Thismultivariateapproach providesinformationaboutthedirectionalityoftheinteractions,thusdistinguishingPAC fromtheinformationtransferfromtheamplitudetothephases(i.e.amplitude-phasecoupling, orAPC)whichhasbeenexperimentallydetected[33].Thisisdoneincontrasttoprevious methodswhichwereeitherbasedonpairwisecorrelationsbetweentheselectedphaseand amplitude[28,34],orprovideddirectionalityusingpairwiseapproaches[33],orweremulti- variatebutdidnotprovidedirectionality[35].ByestimatingcTEfromphasestoamplitudes, weobtainaclearerviewofthemechanismsunderlyingthegenerationofPAC inthecortical column.Specifically,wefocusonthelinkbetweenanatomicalandeffectivePAC structures.In theexamplesshowninthispaper,theneuronalpopulationshavenaturalfrequenciesinthe theta,alphaandgammabands.However,duetotheeffectiveconnectivitybetweenpopula- tions,oscillationsinthedeltaandbetabandsappearandresultinPAC involvingthesefre- quencies.We focusedonthreePAC combinations(delta-gamma,theta-gamma,andalpha- gamma)andexploredhowchangesinmodelparameterssuchasthestrengthoftheconnec- tions,timeconstantsorexternalinputsstrengthenorweakenthePAC phenomenon.We foundthatapproximately60%oftheobtainedPAC interactionsresultfromindirectconnec- tionsandthat,onaverage,theseinteractionshavethesameimpactasdirect(anatomical)con- nections.Thecorticalcolumncircuitwasanalyzedasacomplexnetworkandthreedifferent localtopologicalmeasureswerecomputed:theclusteringcoefficient(C ),theefficiency(E ) m m andbetweennesscentrality(B )whichquantifyhowefficientlytheinformationistransmitted m withinthenetwork.Accordingtoourresults,neuronalpopulationssending(receiving)indirect PAC connectionshadhigherlocalC ,E ,andB coefficients,thanpopulationssending m m m (receiving)directPAC connectionsandpopulationsnotinvolvedinPAC interactions.This suggeststhatthetopologyofcorticalcircuitsplaysacentralroleinthegenerationofthePAC phenomenon. Finally,althoughthispaperfocusesonthePAC phenomenon,ourtheoreticalresultssug- gestthatinordertounderstandthegenerationofindirectPAC connectionswemayneedto estimateothertypesofcross-frequencycouplingsuchasAPC,amplitude-amplitudecoupling PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 3/29 Phase-AmplitudeCouplingintheCorticalColumn (AAC),andphase-phasecoupling(PPC),aswellasinteractionswithinthesamefrequency band(orsame-frequencycoupling,SFC).We computedthesemeasuresinasimplifiedthree- populationmodelandusedthemaspredictorsofindirectPAC inalinearregressionanalysis. We demonstratedthatindirectPAC connectionscanbepredictedbyacascadeofdirectCFC andSFCinteractions,suggestingthatPAC analysisofexperimentaldatashouldbeaccompa- niedbytheestimationofothertypesofinteractionsforanintegrativeunderstandingofthe phenomenon. AlistoftheabbreviationsusedinthispaperispresentedinTable 1. Methods Aneuralmassmodelofacorticalcolumn Fig1showstheproposedmodelobtainedbydistributingfourcellclassesinfourcorticallayers (L2/3,L4,L5,andL6).Thisproduced14differentneuronalpopulations,sincenotallcelltypes arepresentineachlayer[31].Excitatoryneuronswereeitherregularspiking(RS)orintrinsi- callybursting(IB),andinhibitoryneuronswereeitherfast-spiking(FS),orlow-thresholdspik- ing(LTS)neurons.We omittedlayer1,becauseitdoesnotincludesomas[36].Basedon experimentalreportsonthestrengthoftheinputstoeachlayer[36,37],weonlyconsider externalinputstotheRSandFSpopulationsinlayer4,thusneglectingpossibleexternalinputs tootherlayers. Theevolutionofeachpopulationdynamicsrestsontwomathematicaloperations.Post-syn- apticpotentials(PSP)attheaxonalhillockwereconvertedintoanaveragefiringrateusingthe sigmoidfunction[8]: e SðxÞ¼ 0 ð1Þ 1þerðv0(cid:0) xÞ Table1. Listofabbreviations. Abbreviation Meaning AAC Amplitude-amplitudecoupling APC Amplitude-phasecoupling CFC Cross-frequencycoupling cMI Conditionalmutualinformation cTE Conditionaltransferentropy ECoG Electrocorticography EEG Electroencephalography ESC Envelope-to-signalcorrelation FS Fast-spiking IB Intrinsicallybursting LFP Localfieldpotential LTS Low-threshold Midx Modulationindex NMM Neuralmassmodel PAC Phase-amplitudecoupling PFC Phase-frequencycoupling PPC Phase-phasecoupling PSP Postsynapticpotential RS Regularspiking SFC Same-frequencycoupling doi:10.1371/journal.pcbi.1005180.t001 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 4/29 Phase-AmplitudeCouplingintheCorticalColumn Fig1.Proposedneuralmassmodelofthecorticalcolumn.A)Layerdistributionofthefourneuronaltypes.Theexcitatory populationsaretheintrinsicallybursting(IB),andtheregulatoryspiking(RS).Theinhibitorypopulationsarelow-threshold spiking(LTS)andfastspiking(FS).B)Connectivitymatrixvaluesusedforcouplingthe14populationsmodeled.Negative valuescorrespondtoinhibitoryconnections. doi:10.1371/journal.pcbi.1005180.g001 wherethevariablexrepresentsthePSPandparameterse ,v andrrepresentthemaximalfir- 0 0 ingrate,thePSPcorrespondingtothemaximalfiringratee ,andthesteepnessofthesigmoid 0 function,respectively.Foramorerealisticmodelofthepotentialtoratetransformationsee [38].Thesecondoperationwastheconversionoffiringrateatthesomaanddendritesinto PSP, whichwasdonebymeansofalinearconvolutionwithanimpulseresponseh(t)givenby: hðtÞ¼Ggte(cid:0) gt ð2Þ whereGcontrolsthemaximumamplitudeofPSPandgisthesumofthereciprocaloftheaver- agetimeconstant[8].Theconvolutionmodelwithimpulseresponse(2)canbetransformed intoasecondorderdifferentialequation[8,39].ThetemporaldynamicsoftheaveragePSPin eachneuronalpopulationx isdescribedbyasystemof14secondorderdifferentialequations: m d2x ðtÞ dx ðtÞ P m ¼(cid:0) 2g m (cid:0) g2x ðtÞþG g ðp þ 14 G Sðx ðtÞÞÞ ð3Þ dt2 m dt m m m m m n¼1 nm n wheren=1,...,14andm=1,...,14.Thepopulationsarenumberedfrom1to14followingthe order:[L2RS,L2IB,L2LTS,L2FS,L4RS,L4LTS,L4FS,L5RS,L5IB,L5LTS,L5FS,L6RS,L6LTS, L6FS].Notethatlayer2/3wassimplylabelledasL2.Ascanbeseenin(3),neuronalpopula- tionsinteractviatheconnectivitymatrixΓ .Thisisan‘anatomicallyconstrained’effective nm connectivitymatrix[30]inthesensethatitselementsrepresentanatomical(i.e.,direct)con- nections,buttheirstrength(excepttheonessettozero)canvarywithaconditionortask. Externalinputstothecorticalcolumnareaccountedforviap ,whichcanbeanyarbitrary m function,includingwhitenoise[8].Thus,Eq(3)representsasystemof14randomdifferential equations[40,41].Eq(3)istheequationofadampedoscillatorwithadampingparameterset to1.InthisworkwegeneralizeEq(3)byintroducingthedampingparameterb : m d2x ðtÞ dx ðtÞ P m ¼(cid:0) 2g b m (cid:0) g2x ðtÞþG g ðp þ 14 G Sðx ðtÞÞÞ ð4Þ dt2 m m dt m m m m m n¼1 nm n PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 5/29 Phase-AmplitudeCouplingintheCorticalColumn Parameterb criticallydeterminesthebehaviorofthesystem.Iftheconnectionsbetween m thepopulationsaresettozero(Γ =0,n6¼m),thenforb >1(overdampedoscillator)and nm m b =1(criticallydampedoscillator),eachneuronalpopulationwillevolvetoafixedpoint (cid:0)m (cid:1) dxmðtÞ¼0 withoutoscillating.Ifb <1(underdampedoscillator),eachpopulationiscapable dt m ofproducingoscillationseveniftheinter-populationcouplingissettozero.Asmentionedpre- viously,thecaseb =1correspondstotheJansenandRitmodel[8],whichhasbeenexten- m sivelyusedintheliterature[39,42–48].Thus,in[8]andthemodelsbasedonit,anindividual populationisnotcapableofoscillating,andthebalancebetweenexcitationandinhibitionis whatproducesoscillatorybehaviorthatmimicsobservedElectroencephalography(EEG)sig- nals.Itshouldbenotedthatrealisticmodelsofasingleinhibitoryneuralpopulationareableto produceoscillations[49],butthatexcitatorypopulationswerebelievedtoonlyproduce unstructuredpopulationbursts[50].Thisviewhasbeenchallengedrecentlybybothexperi- mentalandcomputationalstudies[51,52].To accountforthepossibilityofoscillatoryactivity insinglepopulations,weusetheparameterb withvaluesb <1. m m To numericallysolveourmodel,wesplitsystem(4)intoasystemof28firstorderdifferen- tialequations: dx ðtÞ m ¼y ðtÞ dt m ! ð5Þ dy ðtÞ X14 m ¼(cid:0) 2g b y ðtÞ(cid:0) g2x ðtÞþG g p þ G Sðx ðtÞÞ dt m m m m m m m m nm n n¼1 Whiletherearemanydifferentmethodsforsolvingsystem(5)weselectedalocallineariza- tionschemethatisknowntoimprovetheorderofconvergenceandstabilitypropertiesofcon- ventionalnumericalintegratorsforrandomdifferentialequations[39]. S1Table presentstheparametersofthemodelandtheirinterpretation.Asshowninthetable FSpopulationshavethefastesttimeconstants,followedbyIB,RS,andLTS,inthatorder.S2Table showsthestandardvaluesoftheanatomicallyconstrainedeffectiveconnectivitymatrixΓ . nm Estimationofphase-amplitudecoupling SeveralmathematicalmethodsfordetectingPAC havebeenproposed[1,28,29,33,35],butno goldstandardhasemerged.Althoughdiverse,thebasisforthesemethodsistotestthecorrela- tionbetweentheinstantaneousphaseofalowerfrequencyrhythmandtheinstantaneous amplitudeofthehigherfrequencyrhythm.To computeanyoneofthesemeasures,signalsgen- eratedwithmodel(5)needtobeband-passfilteredintodifferentfrequencybands.Inthis paperweusethefollowingbands:delta(0.1–4Hz),theta(4–8Hz),alpha(8–12Hz),beta(12– 30Hz),andgamma(30–120Hz).To thisend,wedesignedFIRfiltersusingMATLAB’s signal processingtoolboxfunctionfirls.m.To removeanyphasedistortion,thefilterswereappliedto theoriginaltimeseriesintheforwardandthenthereversedirectionusingMATLAB’s function filtfilt.m[28].Theanalyticrepresentationy (t)ofeachfilteredsignalx (wherem=1,..,5 mk mk standsfortheindexofthefrequencyband,andk=1,..,14,indexestheneuronalpopulations) wasobtainedusingtheHilberttransformHilbert(x (t)): mk y ðtÞ¼x ðtÞþiHilbertðx ðtÞÞ¼a ðtÞeiφmkðtÞ ð6Þ mk mk mk mk wherea (t)andφ (t)aretheinstantaneousamplitudesandphases,andiistheimaginary mk mk number.Amplitudeswerenormalizedbysubtractingthetemporalmeananddividingthe resultbythetemporalstandarddeviationtocreatethesetofnormalizedband-passedsignals. Normalizationwasdonetofacilitatecomparisonbetweendifferentfrequencybands. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 6/29 Phase-AmplitudeCouplingintheCorticalColumn TwoexamplesofPAC measuresfrequentlyusedintheliteraturearethemodulationindex (Midx)[34]andtheenvelope-to-signalcorrelation(ESC)[28]: P Midx ¼j a ðtÞeiφmkðtÞj ð7Þ t nl ESC¼corrðcosðφ ðtÞÞ;a ðtÞÞ ð8Þ mk nl wheresubindexesmandncorrespondtodifferentfrequencybandsandsubindexeskandlcor- respondtodifferentneuronalpopulations.However,ESCandMidxarepairwisemeasuresof thecorrelationbetweenphasesandamplitudesandthuscannotdetectdirectionalityinthe interaction.MeasuressuchascTE[32]whicharebasedontheinformationtransmitted betweensignalsshouldprovideaclearerpictureofthemechanismsgeneratingPAC thancor- relation-basedmeasures. cTEcanbecomputedusingtheconditionalmutualinformation(cMI)measure[53].First, wedefinethecMIbetweenthephaseφ andtheamplitudea ,givenalltheotherphases(F) mk nl andamplitudes(A),I(φ ;a |M),usingthemutualinformationchainrule[53]: mk nl Iðφ ;a jMÞ¼Iðφ ;a ;MÞ(cid:0) Iðφ ;MÞ ð9Þ mk nl mk nl mk whereM=[F,A]isamatrixcomprisingallphasesandamplitudesinallpopulations,except φ anda ,I(φ ;M)isthemutualinformationbetweenφ andM,andI(φ ;a ,M)isthe mk nl mk mk mk nl mutualinformationbetweenφ ,a ,andM[53].To computecMIweuseatoolbox(http:// mk nl www.cs.man.ac.uk/~pococka4/MIToolbox.html)whichcomputesseveralinformationmea- suresusingtheconditionallikelihoodmaximizationalgorithm[54].cMIdoesnotprovide informationaboutthedirectionalityofthecouplingbetweenphasesandamplitudes,whichisa problembecauseboththeoretical[55]andexperimental[33]studiesindicatethepossibilityof aninformationflowfromamplitudestophases.Ontheotherhand,cTEprovidesdirectionality byestimatingthecMIbetweenonesignal(thephaseinourcase)andtheothersignal(the amplitude)shiftedδstepsintothefuture.Inthispaper,toestimatecTEfromthephasetothe amplitude(denotedascTE ),wecomputecMIforNdifferentδsandaveragetheresults φmk,!anl [32,56,57]: 1P cTE ¼ N Iðφ ;adjMeÞ ð10Þ φmk,!anl N d¼1 mk nl wheread isderivedfromtheamplitudetimeseriesa atδstepsintothefuture,i.e. nl nl ad ¼a ðtþdÞ,andMe isamatrixcomprisingallphasesandamplitudesinallpopulations, nl nl exceptφ .InthispaperweuseN=100.Sinceweuseatimestepof10−4sinallsimulations, mk weareaveragingthecMIuptoaperiodof10msintothefuture. Asignificancevaluecanbeattachedtoanyoftheabovemeasuresbymeansofasurrogate dataapproach[28,34],whereweoffsetφ anda byarandomtimelag.We canthuscom- mk nl pute1000surrogateMidx,ESC,cMIandcTEvalues.Fromthesurrogatedatasetwefirstcom- putethemeanμandstandarddeviationσ,andthencomputeaz-scoreas: cMI(cid:0) m cMI(cid:0) m cMI(cid:0) m cTE(cid:0) m Z ¼ 1 ; Z ¼ 2 ; Z ¼ 3; Z ¼ 4 ð11Þ 1 s 2 s 3 s 4 s 1 2 3 4 Thep-valuethatcorrespondstothestandardGaussianvariateisalsocomputed.Zvalues satisfying|Z|>1.96aresignificantwithα=0.05.Masksofzeros(fornon-significantZvalues) andones(forsignificantZ-values)arecreatedandmultipliedtoMidx,ESC,cMI,andcTE. Finally,amultiplecomparisonanalysisbasedontheFalseDiscoveryRate[58]isperformed usingthecomputedp-values. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 7/29 Phase-AmplitudeCouplingintheCorticalColumn AproblemcommontoallmethodsusedforestimatingPAC fromrealdataisthelackofa universalminimalintervallengththatguaranteeanunbiaseddetectionofPAC inallcases. However,forsimulatedsignalswithoutnoise,orwithlowlevelsofnoise,suchastheones usedhere,PAC canbeestimatedusingveryshortsegmentsofdata,providedthephaseand amplitudetimeseriesarelongerthanafullcycleoftheslowestfrequencyofinterest[29].For instance,insimulationsweretheslowestfrequencyofinterestcorrespondsto0.1Hz(delta oscillation),theminimumlengthofthetimeseriesshouldbetenseconds.Additionally,we selectasmallstepsize(10−4s)tohaveenoughdatapointstoensureaproperestimationof cMI[59]. ModelingindirectPACconnections Neuronalpopulationscaninteractthroughdirect(anatomical)connectionsorindirectlyvia pathscomposedofconsecutivedirectconnections.Inthissection,forthesakeofsimplicitywe willfocusonthreeinterconnectedpopulationsy !y !y .Ourgoalistoanalyzehowthe 1 2 3 indirectconnectionfrompopulation1topopulation3ðcTE Þisrelatedtothedirectcon- y1⇝y3 nectionfrompopulation1topopulation2ðcTE ! Þ,andfrompopulation2topopulation3 y1 y2 ðcTE ! Þ.Notethatdirectconnectionsarerepresentedbyastraightarrow(!),indirectcon- y2 y3 nectionsbyasquigglearrow(⇝),andconnectionsnotlabeledasdirectorindirect(seeEq10) byanarrowwithhook(,!). Usingthemutualinformationchainrule(9)wewritethecMIcorrespondingtothethree connections,Iðy ;ydjy ;y Þ,Iðy ;ydjy ;y Þ,Iðy ;ydj y ;y Þ,as: 1 3 2 3 1 2 2 3 2 3 1 3 Iðy ;ydjy ;y Þ¼Iðy ; y ; y ;ydÞ(cid:0) Iðy ; y ; y Þ ð12Þ 1 3 2 3 1 2 3 3 1 2 3 Iðy ;ydjy ;y Þ¼Iðy ; y ;yd;y Þ(cid:0) Iðy ; y ; y Þ ð13Þ 1 2 2 3 1 2 2 3 1 2 3 Iðy ;ydj y ;y Þ¼Iðy ; y ; y ;ydÞ(cid:0) Iðy ; y ; y Þ ð14Þ 2 3 1 3 2 1 3 3 2 1 3 Substituting(13)and(14)in(12)weobtain: Iðy ;ydjy ;y Þ¼Iðy ;ydjy ;y ÞþIðy ;ydjy ;y ÞþIðy ; y ; y ;ydÞþIðy ; y ; y Þ(cid:0) Iðy ; y ;yd;y Þ 1 3 2 3 1 2 2 3 2 3 1 3 1 2 3 3 2 1 3 1 2 2 3 (cid:0) Iðy ; y ; y ;ydÞ ð15Þ 2 1 3 3 Ifweaverage(15)overNdifferentlagsweobtain: cTE ¼cTE ! þcTE ! þeI ð16Þ y1⇝y3 y1 y2 y2 y3 1P eI ¼Iðy ; y ; y Þþ N ðIðy ; y ; y ;ydÞ(cid:0) Iðy ; y ;yd;y Þ(cid:0) Iðy ; y ; y ;ydÞÞ ð17Þ 2 1 3 N d¼1 1 2 3 3 1 2 2 3 2 1 3 3 Accordingto(16),theindirectconnectionfrompopulation1topopulation3(y ⇝y )can 1 3 becomputedasthesumofthedirectconnectionsy !y andy !y plusatermeI compris- 1 2 2 3 ingasumofmutualinformationterms.We nowgivey theinterpretationoftheinstantaneous 1 phaseinpopulation1,andy theinterpretationofinstantaneousamplitudeinpopulation3: 3 cTE ¼cTE ! þcTE ! þeI ð18Þ φ1⇝a3 φ1 y2 y2 a3 1P eI ¼Iðy ;φ ;a Þþ N ðIðφ ; y ;a ;adÞ(cid:0) Iðφ ; y ;yd;a Þ(cid:0) Iðy ; φ ; a ;adÞÞ ð19Þ 2 1 3 N d¼1 1 2 3 3 1 2 2 3 2 1 3 3 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 8/29 Phase-AmplitudeCouplingintheCorticalColumn Thevariabley canhavetheinterpretationofphase,amplitude,oreveninstantaneousfre- 2 quency[60].Thus,Eqs(18)and(19)generalizetheideaofacascadeofPAC [10],andshows thatindirectPAC canbemediatedbyothertypesofCFC.Furthermore,sincethereisnofre- quencyconstraintfory2,cTEφ1!y2 orcTEy2!a3,mayrepresentinteractionswithinthesame frequencyband(i.e,SFC).Thus,weconcludethatinthecascadey !y !y ,cTE canbe 1 2 3 y1⇝y3 mediatedbybothCFCandSFC. Topologicalpropertiesofthecorticalcolumnnetwork Complexnetworkanalysishaveprovenusefulforstudyingtherelationshipbetweenstructure andfunctioninbrainnetworks[61].Inthispaperweareinterestedinstudyinghowthetopol- ogyoftheconnectivitymatrixΓ influencesthePAC phenomenon.Specifically,wewantto nm answerthequestionofwhetherthepopulationsinvolvedindirectandindirectPAC interac- tionspresentthesametopologicalproperties.Thismeansweneedtofocusonlocalproperties ofthenetworkinsteadofglobalones.Inthispaperwearegoingtocomputethreesuchproper- ties:thelocalclusteringcoefficient,thelocalefficiency,andthelocalbetweennesscentrality,for thesendingandreceivingpopulationsinvolvedineachdirectorindirectPAC interaction. Inthissectionwearenotgoingtodistinguishbetweeninhibitoryandexcitatoryconnec- tions,andtheanalysiswillbedonetotheabsolutevalueoftheconnectivitymatrix:W=|Γ |. nm Nodes(populations)ofanetworkcanbecharacterizedbythestructureoftheirlocalneigh- borhood.Theconceptofclusteringofanetworkreferstothetendencytoformcliquesinthe neighborhoodofanygivennode[62].Thismeansthatifnodemisconnectedtonoden,while atthesametimenodenisconnectedtonodes,thereisahighprobabilitythatnodemisalso connectedtonodes.LetA={a }bethedirectedadjacencymatrix[63]ofthenetwork(a = mn mn 1whenthereisaconnectionfrommton,a =0otherwise).Letalsodtot bethetotaldegreeof P mn m nodem,andd$ ¼ a a .Thelocalclusteringcoefficientofnodemforweightednet- m m6¼n mn nm worksis[64]: ðWcþWcTÞ3 C ¼ mm ð20Þ m 2½dtotðdtot (cid:0) 1Þ(cid:0) 2d$(cid:138) m m m whereWc ¼W1=3,andðWcþWcTÞ3 isthemthelementofthemaindiagonalofðWcþWcTÞ3. mm Thesecondmeasurewearegoingtocomputeisthelocalefficiency,calculatedas[65,66]: 1 P ! E ¼ ð l Þ(cid:0) 1 ð21Þ m N(cid:0) 1 j;j6¼m mj ! where l istheshortestweightedpathlengthfrommtoj.Thus,E isinverselyrelatedtothe mj m pathlength,andmeasureshowefficientlythenetworkexchangesinformationonalocalscale. To accountquantitativelyfortheroleofnodesthatcanbecrucialforconnectingdifferent regionsofthenetworkbyactingasbridges,theconceptofbetweennesscentralitywasintro- duced[67].Thelocalweightedbetweennesscentralityofnodemiscomputedas[66]: 1 P r ðmÞ B ¼ hj ð22Þ m ðN(cid:0) 1ÞðN(cid:0) 2Þ h;j r hj j6¼m;h6¼m;j6¼h whereρ isthenumberofshortestpathsbetweenhandj,andρ (m)isthenumberofshortest hj hj pathsbetweenhandjthatpassthroughm.Anodewithhighcentralityisthuscrucialtoeffi- cientcommunication. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 9/29 Phase-AmplitudeCouplingintheCorticalColumn To computeC ,E ,andB ,weuseMatlabfunctionsprovidedinthebrainconnectivity m m m toolbox(https://sites.google.com/site/bctnet/). Nonlinearcorrelationcoefficient GiventhenonlinearnatureofthePAC phenomenon,studyingthelinkbetweentheparameters ofthemodelandthestrengthofPAC cannotbedoneonlywiththePearsoncorrelationcoeffi- cient,whichmeasuresthelinearcorrelationbetweentwovariables.Nonlinearmeasuresare alsorequired.TheunderlyingideaisthatifthevalueofthevariableYisconsideredasanonlin- earfunctionofthevariableX,thevalueofYgivenXcanbepredictedaccordingtoanonlinear regression[68].Inthispaper,wecomputedthenonlinearregressionbyfittingthevectorYof PAC valueswithaFourierseries: P YbðXÞ¼a þ K a sinðb Xþc Þ ð23Þ 0 k¼1 k k k whereK=10andXisthevectorofparameters.Thenonlinearcorrelationcoefficientr isthen nl b thevalueofthelinearcorrelationbetweenYandthepredictedsignalY. Results DetectingPAC:controlanalysis We connectedthreeexcitatoryneuronalpopulations,labeled1,2and3(Fig2Aand2B).The temporaldynamicsofthethreepopulationsaredescribedbyasystemofrandomdifferential equationsidenticalto(5),butwithn=1:3andm=1:3.AsshowninFig2A,thereisnoconnec- tionbetweenpopulations1and3andbotharedrivenbypopulation2.Theparametersusedin Fig2.Threepopulationtoymodel.A)Themodelcomprisesthreeneuronalpopulationslabelledas‘1’,‘2’,and‘3’,colouredin blue,redandgreen,respectively.Thiscolorlegendisusedacrossallpanelsinthefigure.B)Connectivitymatrix.C)Temporal dynamicsofthethreeneuronalpopulations.D)Spectraldensity.Thelowfrequency(4.40Hz)ismodulatingthehigher frequencies(50and57.8HZ)whichisdemonstratedbytheappearanceofsecondarypeaksatfrequencies50Hz±4.40Hzand 57.8Hz±4.40Hzonbothsidesofthemainpeaks.Thesecondarypeaksareindicatedwitharrows.E)Spectraldensitywhen substitutingthesigmoidfunctionwiththelinearfunctionS(x)=x. doi:10.1371/journal.pcbi.1005180.g002 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005180 November1,2016 10/29
Description: