ebook img

Topology, Calculus and Approximation PDF

383 Pages·2017·2.101 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topology, Calculus and Approximation

Springer Undergraduate Mathematics Series Vilmos Komornik Topology, Calculus and Approximation Springer Undergraduate Mathematics Series AdvisoryBoard M.A.J.Chaplain,UniversityofSt.Andrews,St.Andrews,Scotland,UK A.MacIntyre,QueenMaryUniversityofLondon,London,England,UK S.Scott,King’sCollegeLondon,London,England,UK N.Snashall,UniversityofLeicester,Leicester,England,UK E.Süli,UniversityofOxford,Oxford,England,UK M.R.Tehranchi,UniversityofCambridge,Cambridge,England,UK J.F.Toland,UniversityofCambridge,Cambridge,England,UK Moreinformationaboutthisseriesathttp://www.springer.com/series/3423 Vilmos Komornik Topology, Calculus and Approximation 123 VilmosKomornik DepartmentofMathematics UniversityofStrasbourg Strasbourg,France TranslationfromtheFrenchlanguageedition: Précisd’analyseréelle-Topologie-Calculdifférentiel-Méthodesd’approximations,vol-1 byVilmosKomornik Copyright©2001EditionMarketingS.A. www.editions-ellipses.fr/ AllRightsReserved. ISSN1615-2085 ISSN2197-4144 (electronic) SpringerUndergraduateMathematicsSeries ISBN978-1-4471-7315-1 ISBN978-1-4471-7316-8 (eBook) DOI10.1007/978-1-4471-7316-8 LibraryofCongressControlNumber:2017935974 MathematicsSubjectClassification(2010):41-01,41A05,41A10,41A15,41A50 ©Springer-VerlagLondonLtd.2017 Theauthor(s)has/haveassertedtheirright(s)tobeidentifiedastheauthor(s)ofthisworkinaccordance withtheCopyright,DesignsandPatentsAct1988. Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagLondonLtd. Theregisteredcompanyaddressis:236Gray’sInnRoad,LondonWC1X8HB,UnitedKingdom ForGod’ssake, Ibeseech you,giveit up. Fearitno lessthansensualpassionsbecause ittoomaytakeallyour timeanddepriveyou ofyour health,peaceofmindand happiness inlife... LetterofFarkas Bolyai tohis son,April4, 1820. Icreated a new,differentworldout of nothing... LetterofJános Bolyaito hisfather, November2, 1823. Preface Thistextbookcontainsthelecturenotesofthreeone-semestercoursesgivenbythe author to third year students at the University of Strasbourg. We assume that the readerisfamiliarwiththecalculusofonerealvariable.ThefirstpartonTopologyis usedeverywhereinthesequel.ThefollowingtwopartsonDifferentialcalculusand Approximationmethodsarelogicallyindependent. We have made much effort to select the material covered by the lectures, to formulateaestheticalandgeneralstatements,toseekshortandelegantproofs,and to illustrate the results with simple but pertinent examples. (See also the remarks onp.369.)OurworkisstronglyinfluencedbythebeautifullecturesofProfessors ÁkosCsászár andLászlóCzáchduringthe1970sattheEötvösLorándUniversity inBudapest,andmoregenerallybythemathematicaltraditioncreatedbyLeopold Fejér,FrédéricRiesz,PaulTurán,PaulErdo˝sandothers. Onp.337wecitemanypapersofhistoricalimportance,indicatingtheoriginof mostofthenotionsandtheoremstreatedhere.Theyoftencontaindifferentversions ofthetheoremswetreat,illustratingthegenesisofmathematicalinterest. Wesuggestthat,onthefirstreading,thereadershouldskipthematerialmarked by (cid:2). At the end of each chapter we give some exercises. However, the most important exercises are incorporated into the text as examples and remarks, and thereaderisexpectedtofillinthemissingdetails. Welistonp.ixsomebooksofgeneralmathematicalinterest. We thank Á. Besenyei, C. Baud, L. Czách, C. Disdier, D. Dumont, J. Gerner, P. Loreti, C.-M. Marle, P. Martinez, M. Mehrenberger, P.P. Pálfy, M. Pedicini, P. Pilibossian, J. Saint Jean Paulin, Z. Sebestyén, A. Simonovits, L. Simon, Mrs. B. Szénássy,G.Szigeti, J. Vancostenoble,Zs.Votiskyandthe editorsofSpringerfor theirprecioushelp. ThisbookisdedicatedtothememoryofPaulErdo˝s. Strasbourg,France VilmosKomornik March26,2017 vii Some Books of General Interest 1.M.Aigner,G.M.Ziegler,ProofsfromtheBook,4thed.,Springer,2010. 2.P.S.Alexandroff,ElementaryConceptsofTopology,Dover,NewYork,1961. 3.E.T.Bell,MenofMathematics,SimonandSchuster,NewYork,1965. 4.V.G.Boltyanskii,V.A.Efremovich,IntuitiveCombinatorialTopology,Springer, 2001. 5.J. Bolyai, Appendix. The Theory of Space. With Introduction, Comments, and AddendaeditedbyF.Kárteszi,AkadémiaiKiadó,Budapest,1987. 6.D.Bressoud,ARadicalApproachtoRealAnalysis,TheMathematicalAssocia- tionofAmerica,Washington,1994. 7.R. Courant, H. Robbins, What is Mathematics? An Elementary Approach to IdeasandMethods,OxfordUniv.Press,1941. 8.H.S.M.Coxeter,S.L.Greitzer,GeometryRevisited,TheMathematicalAssocia- tionofAmerica,Washington,1967. 9.W. Dunham, Journey Through Genius. The Great Theorems of Mathematics, JohnWiley&Sons,NewYork,1990. 10.P.Erdo˝s,J.Surányi,TopicsintheTheoryofNumbers,Springer,2003. 11.E.Hairer,G.Wanner,AnalysisbyItsHistory,Springer,NewYork,1996. 12.G.H.Hardy,AMathematician’sApology,CambridgeUniv.Press,1940. 13.P.Hoffman,TheManWhoLovedOnlyNumbers,Hyperion,NewYork,1998. 14.M.Kac,S.M.Ulam,MathematicsandLogic,Dover,NewYork,1992. 15.A.Y.Khintchin,ThreePearlsofNumberTheory,Graylock,Rochester,1952. 16.T.W.Körner,FourierAnalysis,CambridgeUniv.Press,1988. 17.J.Kürschák,G.Hajós,G.Neukomm,J.Surányi,HungarianProblemBookI-IV, Math.Assoc.ofAmerica,1963–2011. 18.M.Laczkovich,Conjectureandproof,CambridgeUniversityPress,2001. 19.J.Muir,OfMenandNumbers.TheStoryofGreatMathematicians,Dover,New York,1996. 20.J.Newman(ed.),TheWorldofMathematicsI-IV,Dover,NewYork,2000. 21.B. Schechter, My Brain is Open: The Mathematical Journeys of Paul Erdo˝s, Simon&Schuster,1998. ix x SomeBooksofGeneralInterest 22.H.Steinhaus,MathematicalSnapshots,Dover,NewYork,1999. 23.I.Stewart,The ProblemsofMathematics,OxfordUniversityPress, NewYork, 1992. 24.D.J.Struik,AConciseHistoryofMathematics,Dover,NewYork,1987. Contents PartI Topology 1 MetricSpaces ............................................................... 3 1.1 DefinitionsandExamples .......................................... 3 1.2 Convergence,LimitsandContinuity............................... 8 1.3 Completeness:AFixedPointTheorem............................ 14 1.4 Compactness........................................................ 23 1.5 Exercises ............................................................ 30 2 TopologicalSpaces.......................................................... 37 2.1 DefinitionsandExamples .......................................... 37 2.2 Neighborhoods:ContinuousFunctions............................ 43 2.3 Connectedness ...................................................... 46 2.4 *Compactness...................................................... 50 2.5 *ConvergenceofNets.............................................. 55 2.6 Exercises ............................................................ 61 3 NormedSpaces.............................................................. 65 3.1 DefinitionsandExamples .......................................... 65 3.2 MetricandTopologicalProperties................................. 73 3.3 Finite-DimensionalNormedSpaces ............................... 78 3.4 ContinuousLinearMaps ........................................... 82 3.5 ContinuousLinearFunctionals..................................... 85 3.6 ComplexNormedSpaces........................................... 88 3.7 Exercises ............................................................ 89 PartII DifferentialCalculus 4 TheDerivative .............................................................. 97 4.1 DefinitionsandElementaryProperties............................. 97 4.2 MeanValueTheorems.............................................. 105 4.3 TheFunctionsRm ,!Rn........................................... 111 4.4 Exercises ............................................................ 115 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.