ebook img

Topology PDF

315 Pages·2015·4.139 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topology

Marco Manetti Topology T T X X E E TT II NN 123 UU UNITEXT - La Matematica per il 3+2 Volume 91 Editor-in-chief A. Quarteroni Series editors L. Ambrosio P. Biscari C. Ciliberto M. Ledoux W.J. Runggaldier More information about this series at http://www.springer.com/series/5418 Marco Manetti Topology 123 MarcoManetti Department ofMathematics Sapienza -UniversitàdiRoma Rome Italy TranslatedbySimonG.Chiossi,UFBA—UniversidadeFederaldaBahia,Salvador(Brazil). TranslationfromtheItalianlanguageedition:Topologia,MarcoManetti,©Springer-Verlag Italia, Milano 2014.All rights reserved. ISSN 2038-5722 ISSN 2038-5757 (electronic) UNITEXT- La Matematica peril3+2 ISBN978-3-319-16957-6 ISBN978-3-319-16958-3 (eBook) DOI 10.1007/978-3-319-16958-3 LibraryofCongressControlNumber:2014945348 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Coverdesign:SimonaColombo,GiochidiGrafica,Milano,Italy Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) Preface To the Student Thistextbookoffersaprimeringeneraltopology(point-settopology),togetherwith an introduction to algebraic topology. It is meant primarily for students with a mathematical background that is usually taught in the first year of undergraduate degrees in Mathematics and Physics. Point-settopologyisthelanguageinwhichaconsiderablepartofmathematicsis written.Itisnotanaccidentthattheoriginalname‘analytictopology’wasreplaced by‘generaltopology’,amoreapttermforthatpartoftopologythatisusedbythevast majorityofmathematiciansandisfundamentalinmanyareasofmathematics.Over timeitsunabatedemploymenthashadaconstantpolishingeffectonitstheoremsand definitions,thusrenderingitanextraordinarilyelegantsubject.Thereisnodoubtthat point-settopologyhasasignificantformativevalue,inthatitforcesthebrain—and trains it at the same time—to handle extremely abstract objects, defined solely by axioms. In studying on this book, you will experience hands-on that the point-set topology resembles a language more than a theory. There are endless terms and definitionstobelearnt,amyriadoftheoremswhoseproofisoftenrathereasy,only occasionallyexceeding20lines.Thereare,obviously,alsodeepandfar-from-trivial results,suchasthetheoremsofBaire,AlexanderandTychonov. Thepartonalgebraictopology,detailsofwhichwewillgiveinChap.9together withthemandatorymotivations,isdevotedtothestudyofhomotopy,fundamental groups and covering spaces. Iincludedaround500exercisesinthetext:tryingtosolvethemwithdedication is the best way to attain a firm hold on the matter, adapt it to your own way of thinkingandalsolearntodeveloporiginalideas.Someexercisesaresolveddirectly inthetext,eitherinfulloralmost.Theyarecalled‘Examples’,andtheirimportance should not be underestimated: understanding them is the correct way to make abstract notions concrete. Exercises marked with ~, instead, are solved in Chap. 16. v vi Preface It is a matter of fact that the best way to learn a new subject is by attending lectures, or studying on books, and trying to understand definitions, theorems and the interrelationships properly. At the same time you should solve the exercises, withoutthefearofmakingmistakes,andthencomparethesolutionswith theones in the text, or those provided by teacher, classmates or the internet. This book also proposes a number of exercises marked with , which I per- sonallybelievetobeharderthanthetypicalexamquestion.Theseexercisesshould thereforebetakenasendeavourstointelligence,andincentivestobecreative:they requirethatweabandonourselvestonewsynergiesofideasandaccepttobeguided by subtler analogies, rather than trail patiently along a path paved by routine ideas and standard suggestions. To the Lecturer In the academic years 2004–2005 and 2005–2006, I taught a lecture course called ‘Topology’ for the Bachelor’s degree in Mathematics at University of Rome ‘La Sapienza’. The aim was to fit the newly introduced programme specifications for mathematical teaching in that part of the syllabus traditionally covered in ‘Geometry 2’ course of the earlier 4-year degrees. The themes were carefully chosensotokeepintoaccountononesidetheformativeandculturalfeaturesofthe singletopics,ontheothertheirusefulnessinthestudyofmathematicsandresearch alike. Some choices certainly break with a long-standing and established tradition of topology teaching in Italy, and with hindsight I suspect they might have been elicited by my own research work in algebra and algebraic geometry. I decided it would be best to get straight to the point and state key results and definitions as early as possible, thus fending off the terato(po)logical aspects. From the initial project to the final layout of my notes, I tried to tackle the conceptual obstacles gradually, and make both theory and exercises as interesting andentertainingaspossibleforstudents.WhetherIachievedthesegoalsthereader will tell. Thebackgroundnecessarytobenefitfromthebookisstandard,astaughtinfirst- yearMathsandPhysicsundergraduatecourses.Solidknowledgeofthelanguageof sets,oflinearalgebra,basicgrouptheory,thepropertiesofrealfunctions,seriesand sequences from ‘Calculus’ are needed. The second chapter is dedicated to the arithmeticofcardinalnumbersandZorn’slemma,twopivotalprerequisitesthatare not always addressed during the first year: it will be up to the lecturer to decide— after assessing the students’ proficiency—whether to discuss these topics or not. The material present here is more than sufficient for 90 hours of lectures and exercise classes, even if, nowadays, mathematics syllabi tend to allocate far less time totopology.Inorder tohelp teachersdecide whattoskip Iindicated with the symbolyancillarytopics,whichmaybeleftoutatfirstreading.Ithastobesaid, though,thatChaps.3–6(withtheexceptionofthesectionsdisplayingy),formthe backbone of point-set topology and, as such, should not be excluded. Preface vii The bibliography is clearly incomplete and lists manuals that I found most useful,plusaselectionofresearcharticlesandbookswherethewillingstudentcan find further information about the topics treated, or mentioned in passing, in this volume. Acknowledgments I am grateful to Ciro Ciliberto and Domenico Fiorenza for reading earlier versions andforthetipstheygaveme.IwouldliketothankFrancescaBonadeiofSpringer- VerlagItaliaforhelpingwiththefinallayout,andallthestudents(‘victims’)ofmy lectures on topology for the almost-always-useful and relevant observations that allowed me to amend and improve the book. This volume is based on the second Italian edition. Simon G. Chiossi has done an excellent work of translation; he also pointed out a few inaccuracies and pro- posed minor improvements. To him and the staff at Springer, I express here my heartfelt gratitude. Future updates can be found at http://www.mat.uniroma1.it/people/manetti/librotopology.html. Rome, February 2015 Marco Manetti Contents 1 Geometrical Introduction to Topology. . . . . . . . . . . . . . . . . . . . . 1 1.1 A Bicycle Ride Through the Streets of Rome. . . . . . . . . . . . 1 1.2 Topological Sewing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The Notion of Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Homeomorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Facts Without Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Notations and Basic Concepts. . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Induction and Completeness. . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Cardinality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 The Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 The Cardinality of the Product . . . . . . . . . . . . . . . . . . . . . . 36 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 Topological Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1 Topological Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Interior of a Set, Closure and Neighbourhoods . . . . . . . . . . . 43 3.3 Continuous Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Subspaces and Immersions. . . . . . . . . . . . . . . . . . . . . . . . . 55 3.6 Topological Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 Hausdorff Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Connectedness and Compactness. . . . . . . . . . . . . . . . . . . . . . . . . 63 4.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Connected Components. . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Covers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ix x Contents 4.4 Compact Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Wallace’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Topological Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.7 Exhaustions by Compact Sets. . . . . . . . . . . . . . . . . . . . . . . 83 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Topological Quotients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1 Identifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Quotient Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Quotients by Groups of Homeomorphisms. . . . . . . . . . . . . . 92 5.4 Projective Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.5 Locally Compact Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.6 The Fundamental Theorem of Algebra y . . . . . . . . . . . . . . 101 6 Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1 Countability Axioms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.3 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 Compact Metric Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.5 Baire’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.6 Completions y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.7 Function Spaces and Ascoli-Arzelà Theorem y . . . . . . . . . . 122 6.8 Directed Sets and Nets (Generalised Sequences) y. . . . . . . . 125 7 Manifolds, Infinite Products and Paracompactness. . . . . . . . . . . . 129 7.1 Sub-bases and Alexander’s Theorem. . . . . . . . . . . . . . . . . . 129 7.2 Infinite Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.3 Refinements and Paracompactness y . . . . . . . . . . . . . . . . . 133 7.4 Topological Manifolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.5 Normal Spaces y. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.6 Separation Axioms y. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 More Topics in General Topology y. . . . . . . . . . . . . . . . . . . . . . 143 8.1 Russell’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.2 The Axiom of Choice Implies Zorn’s Lemma. . . . . . . . . . . . 144 8.3 Zermelo’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.4 Ultrafilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.5 The Compact-Open Topology. . . . . . . . . . . . . . . . . . . . . . . 151 8.6 Noetherian Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 8.7 A Long Exercise: Tietze’s Extension Theorem . . . . . . . . . . . 157 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.