ebook img

Topological Structures in Ferroic Materials: Domain Walls, Vortices and Skyrmions PDF

249 Pages·2016·12.429 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topological Structures in Ferroic Materials: Domain Walls, Vortices and Skyrmions

Springer Series in Materials Science 228 Jan Seidel Editor Topological Structures in Ferroic Materials Domain Walls, Vortices and Skyrmions Springer Series in Materials Science Volume 228 Series editors Robert Hull, Charlottesville, USA Chennupati Jagadish, Canberra, Australia Yoshiyuki Kawazoe, Sendai, Japan Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Tae-Yeon Seong, Seoul, Korea, Republic of (South Korea) Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, China The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. More information about this series at http://www.springer.com/series/856 Jan Seidel Editor Topological Structures in Ferroic Materials Domain Walls, Vortices and Skyrmions 123 Editor Jan Seidel SchoolofMaterialsScienceandEngineering University of NewSouthWales Sydney,NSW Australia ISSN 0933-033X ISSN 2196-2812 (electronic) SpringerSeries inMaterials Science ISBN978-3-319-25299-5 ISBN978-3-319-25301-5 (eBook) DOI 10.1007/978-3-319-25301-5 LibraryofCongressControlNumber:2015958337 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Topological defects play important roles in nature. They are found in fields as diverse as cosmology, particle physics, superfluidity, liquid crystals, and metal- lurgy, manifesting themselves as screw/edge dislocations in liquid crystals, mag- netic flux tubes in superconductors, and vortices in superfluids, for example. They can also be found in ferroic materials, i.e., materials with a spontaneous reversible ordering, such as magnetic materials, ferroelectrics, and ferroelastic materials, which havebeenstudied for a long time andare usedwidely insensors, actuators, information technology, and other smart materials applications. Ferroic phases can arise in more than one distinct orientation of the order parameter, thus spatial variationsintheorientationsoftheorderparameterareaccommodatedthroughthe formation of discrete domain structures. Adjacent domains are separated by natu- rally occurring planar topological defects called domain walls. Over the last few years they have been intensively investigated with respect to their inherent func- tional behavior in various studies involving ceramics, thin films, and single crystalline material. The fact that the electronic conductivity of domain walls in ferroelectrics and multiferroics can be utilized for nanoscale functional elements and new concepts involving magnetic domain walls for memory and spintronic applications have sparked wide interest and have led to the finding of unique properties associated with such topological structures. The understanding of these phenomenahasprogressedtoapointwherewecansaythatthephysicalproperties of topological structures such as domain walls can be completely different from those of the parent bulk material phase. Although domain walls are the commonly understood concept offerroic order, they are not the only way in which spatially varying order parameters can be arranged. Alternatively, more complex patterns can develop in which the order parameterchangesindifferentwaysasdescribed,e.g.,bythetopologicaltheoryof defects in ordered media by N.D. Mermin. When combined with local defects or singularities,thenumberofpossiblegeometricalpatternsandtexturesthatarisecan be manifold and include vortex structures and skyrmions. Which kind of ferroic micro-ornanostructuredevelopmentsdependscriticallyontherelativemagnitudes v vi Preface ofvariousenergiesassociatedwithexchange,spin–orbitinteraction,crystallographic anisotropy, and surfaces and interfaces in ferroic materials. Physical dimensions of the specific material and its morphology are also important in determining the exact nature of the ferroic patterns that develop in equilibrium, which include flux-closurestructuresandothercomplextopologicalpatternssuchasperiodicarrays ofmagneticskyrmionsthatcanbeobserved,e.g.,bymagneticforcemicroscopy. It is only within the last few years that experiments have focused on trying to find and study suchtopological structuresin ferroic materials. It isclear today that these interesting structures can form in ferroelectrics and magnetic systems; however,thestudyoftheirbasicpropertiesandtheexplorationoftheirpotentialfor futureapplicationshasonlyjustbegun.Thisbookisanefforttocapturesomeofthe interesting developments in this rapidly changing field of research. Tuning, manipulating, and exploiting the physical properties of such topological structures providesanewplaygroundforcondensedmatterandfunctionalmaterialsresearch. In addition, it offers a novel platform for future nanotechnology. Sydney Jan Seidel Contents 1 Generic Aspects of Skyrmion Lattices in Chiral Magnets . . . . . . . 1 Andreas Bauer and Christian Pfleiderer 1.1 Introduction and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Skyrmion Lattice in Cubic Chiral Magnets. . . . . . . . . . . . . . . 2 1.3 Theoretical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Magnetic Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.1 Phase Transitions in the Susceptibility and Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.2 Magnetic Phase Diagrams for Different Materials . . . . 13 1.5 Emergent Electrodynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6 Conclusions and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Topological Skyrmion Dynamics in Chiral Magnets. . . . . . . . . . . 29 Markus Garst 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Effective Theory of Cubic Chiral Magnets. . . . . . . . . . . . . . . 32 2.3 Skyrmion Excitation of the Field-Polarized Phase. . . . . . . . . . 34 2.3.1 Magnon Spectrum in the Presence of a Skyrmion. . . . 36 2.3.2 Magnon Skew and Rainbow Scattering . . . . . . . . . . . 38 2.3.3 Spin-Magnus Force and Magnon Pressure . . . . . . . . . 39 2.4 Skyrmion Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.1 Excitations of the Skyrmion Crystal . . . . . . . . . . . . . 43 2.5 Spin-Transfer Torques on the Skyrmion Crystal . . . . . . . . . . . 44 2.5.1 Gradient in the Effective Spin-Transfer Torques . . . . . 45 2.6 Emergent Electrodynamics in Metallic Chiral Magnets . . . . . . 46 2.6.1 Topological Hall Effect . . . . . . . . . . . . . . . . . . . . . . 47 2.6.2 Skyrmion-Flow Hall Effect. . . . . . . . . . . . . . . . . . . . 49 2.6.3 Emergent Magnetic Monopoles. . . . . . . . . . . . . . . . . 49 2.7 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 vii viii Contents 3 Current-Driven Dynamics of Skyrmions . . . . . . . . . . . . . . . . . . . 55 Masahito Mochizuki 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Electric-Current Driven Dynamics of Skyrmions in Non-confined System . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Electric-Current Driven Dynamics of Skyrmions in Confined Geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4 Magnon-Current Driven Dynamics of Skyrmions . . . . . . . . . . 73 3.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 Functional Topologies in (Multi-) Ferroics: The Ferroelastic Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 E.K.H. Salje, O. Aktas and X. Ding 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2 Wall Interesections with the Surface . . . . . . . . . . . . . . . . . . . 85 4.3 Bending of Domain Walls, Needle Domains and 90(cid:1) Junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Adaptive Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.5 Wall Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.6 Vortices in Domain Walls . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7 Bloch Lines and Vortex Points. . . . . . . . . . . . . . . . . . . . . . . 96 4.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Charged Domain Walls in Ferroelectrics . . . . . . . . . . . . . . . . . . . 103 Tomas Sluka, Petr Bednyakov, Petr Yudin, Arnaud Crassous and Alexander Tagantsev 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Classification of Charged Domain Walls . . . . . . . . . . . . . . . . 105 5.2.1 Depolarizing Electric Field. . . . . . . . . . . . . . . . . . . . 110 5.2.2 Charged Domain Walls in Improper and Hybrid Improper Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . 112 5.2.3 Charged Domain Walls in Weak Ferroelectrics. . . . . . 112 5.3 Charged Domain Wall Screening . . . . . . . . . . . . . . . . . . . . . 113 5.3.1 Electron-Hole Screening in the Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3.2 Combined Free Carrier and Defect Screening in the Thermodynamic Equilibrium. . . . . . . . . . . . . . 123 5.4 Charged Domain Wall Formation: Factors Controlling the Formation Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.4.1 Electrically Isolated Ferroelectric: Bipolar Electron-Hole Screening. . . . . . . . . . . . . . . . . . . . . . 125 5.4.2 Electrically Isolated Ferroelectric: Unipolar Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Contents ix 5.4.3 Electrically Isolated Ferroelectric: Screening with Photon Generated Carriers. . . . . . . . . . . . . . . . . 126 5.4.4 Electrically Isolated Ferroelectric: Mixed Electron/ion Screening. . . . . . . . . . . . . . . . . . . . . . . 127 5.4.5 Screening of sCDW with Charge Provided from External Source. . . . . . . . . . . . . . . . . . . . . . . . 128 5.5 Charged Domain Wall Engineering. . . . . . . . . . . . . . . . . . . . 129 5.6 Charged Domain Wall Conductivity . . . . . . . . . . . . . . . . . . . 131 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6 Extended Defects in Nano-Ferroelectrics: Vertex and Vortex Domains, Faceting, and Cylinder Stress. . . . . . . . . . . . . . . . . . . . 139 James F. Scott 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 Definitions: Vertex, Vortex, and Kosterlitz-Thouless Melting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3 Basic Theory: Landau-Lifshitz-Kittel as Extended by (a) Lukyanchuk; (b) Catalan, Schilling, Scott et al.. . . . . . . 141 6.4 Statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.5 More statics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.5.1 Hoop Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.5.2 KAI Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 6.5.3 Faceting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.5.4 Toroidal Domains (Ginzburg, Kopaev, et al.; Fiebig). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.6 Dynamics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.6.1 Comparison with Magnetic Domains. . . . . . . . . . . . . 150 6.6.2 Domain Wall Creep. . . . . . . . . . . . . . . . . . . . . . . . . 150 6.6.3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.6.4 Pyroelectric Effects. . . . . . . . . . . . . . . . . . . . . . . . . 154 6.6.5 Domains Within Domains—Multiferroics. . . . . . . . . . 154 6.7 Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.8 Domain Wall Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7 Ferroelectric Domain Walls and their Intersections in Phase-Field Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 J. Hlinka, V. Stepkova, P. Marton and P. Ondrejkovic 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.2 Bloch Versus Ising Versus Néel-like Domain Wall. . . . . . . . . 163 7.3 Bloch-Ising Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . 165 7.4 Predictive Value of Phase-Field Simulations. . . . . . . . . . . . . . 167 7.5 180-Degree Domain Walls with Different Crystallographic Orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7.6 Electrically Neutral Ferroelastic Walls. . . . . . . . . . . . . . . . . . 171

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.