ebook img

Topological insulators for high performance terahertz to infrared applications PDF

0.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topological insulators for high performance terahertz to infrared applications

Topologicalinsulators forhighperformance terahertz to infrared applications Xiao Zhang,1 Jing Wang,2 and Shou-Cheng Zhang3 1Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA 2Department of Physics, Tsinghua University, Beijing 100084, China 3Department of Physics, McCullough Building, Stanford University, Stanford, CA94305-4045 (Dated:January20,2011) TopologicalinsulatorsintheBi Se familyhaveanenergygapinthebulkandagaplesssurfacestateconsist- 2 3 ingofasingleDiraccone. Lowfrequencyopticalabsorptionduetothesurfacestateisuniversallydetermined 1 bythefinestructureconstant. Whenthethicknessofthesethreedimensionaltopologicalinsulatorsisreduced, 1 theybecomequasi-twodimensionalinsulatorswithenhancedabsorbance. Thetwodimensionalinsulatorscan 0 betopologicallytrivialornon-trivialdependingonthethickness,andwepredictthattheopticalabsorptionis 2 largerfortopologicalnon-trivialcasecomparedwiththetrivialcase. Sincethethreedimensionaltopological n insulatorsurfacestateisintrinsicallygapless,weproposeitspotentialapplicationinwidebandwidth,highper- a formancephoto-detection coveringabroadspectrumrangingfromterahertztoinfrared. Theperformanceof J photodetectioncanbedramaticallyenhancedwhenthethicknessisreducedtoseveralquintuplelayers,witha 8 widelytunablebandgapdependingonthethickness. 1 PACSnumbers:78.68.+m78.20.Bh,78.20.Ci,78.56.-a ] i c Topological insulators (TIs) are a new state of quantum ductionsurfacebandsdependsolelyonthespin-statesincon- s - matterwithaninsulatingbulkgapandgaplessedgeorsurface trast to the conventional semiconductors. When the thick- l r states interesting for condensedmatter physics, materialsci- ness of such thin film is less than 6 QLs, a gap is opened mt enceandelectricalengineering1–8. Thetwo-dimensional(2D) up for the surface states around the Γ point9,14,15,20, and the TI, with quantumspin Hall (QSH) effect has been predicted resulting 2D insulator can either be topologically trivial, or . t and observed in HgTe/CdTe quantum well2,3. Recently, 3D non-trivial, depending the thickness of the film15. We show a m TIsuchasBi2Se3 andBi2Te3 weretheoreticallypredictedto here that the opticalabsorbance near the band edge is either have bulk energy gap as large as 0.3eV, and gapless surface smallerorlargerthanπα,dependingonitisconventionalin- - d statesconsistingofasingleDiraccone6,7. Theangle-resolved sulator or 2D QSH insulator. This suggests an optical mean n photoemission spectroscopy (ARPES) observed such linear to measureitstopologicalnatureotherthantransport3. With o Dirac spectrum dispersing from the Γ point in both of these suchstrongabsorbance,thethinfilmBi Se maybeapromis- 2 3 c materials7,8. Bi Se and Bi Te are stoichiometric rhombo- ing candidate for high performancephotodetectorin the ter- [ 2 3 2 3 hedral crystals with layered structure consisting of stacked ahertz (THz) to infrared frequency range. The gapless 3D 1 quintuple layers (QLs), with relatively weak Van der waals TI can cover this full spectrum just by a single device with v couplingbetweenQLs(eachQLisabout1nmthick). There- highsignal-to-noiseratio(SNR)comparabletomultiplestruc- 3 fore high quality thin films have been successfully grown tures using the conventional photodetecting material - bulk 8 on silicon and silicon carbidesubstrates via molecular beam Hg Cd Te21–23 with different fraction x. The SNR can be 5 1 x x epitaxy9–11, layer by layer, which enables further scientific furth−er enhanced to be about 15 times better with reduced 3 . study and applications integratable with today’s electronics. thicknessof Bi2Se3 less than 6 QLs. Graphene has been re- 1 ThesematerialshavealsobeengrownbyAu-catalyzedvapor- cently demonstrated as a THz photodetector18. With almost 0 liquid-solid12andcatalyst-freevapor-solidchemicalvaporde- the same high absorbance17, TI photodetectorproposedhere 1 1 positionmethods13 on silicon, silicondioxideandsiliconni- hasmanyadvantages.Theprominentoneisatunablesurface : tridesubstrates.Thesurfacestatesofsuchthinfilmhavebeen bandgapwhichiseasilyachievedbyreducingthethickness, v predicted6,14,15andobservedtoopenagapwhentheyarethin- whichisnecessaryinmanyoptoelectronicsapplications24. i X nerthan6QLs9. Upto now,fewstudyonopticalproperties r of the topological surface states has been reported. On the a otherhand,thesingleDiracconeontheBi Se surfacecanbe I. EFFECTIVEMODELFORTHINFILMTI 2 3 imaginedas1/4of graphene16, it is straightforwardto study theopticalpropertiesandrelevantapplicationsofTIinanal- 3DTIlikeBi Se ischaracterizedbyasurfacestateconsist- 2 3 ogytotheoptoelectronicsapplicationsofgraphene17–19. ingofasingleDiraccone,wherethespinpointsperpendicular tothemomentum6 Starting from an effective k p Hamiltonian and ignoring · intra-unitcelldipolecontributiontoabsorbance,weshowthat = A k σx k σy , (1) surf 2 y x thelowenergyopticalabsorbanceofthinfilmBi Se thicker H − 2 3 (cid:16) (cid:17) than 6 QLs is a universalquantityπα/2, which does notde- with A = ~v , v is the Fermi velocity and σx,y are Pauli 2 F F pend on the photon energy or chemical composition of the matricesdescribingthespin. Whenthethicknessofafilmis material, where α is the fine structure constant. This origi- reduced,overlappingbetweenthesurfacestatewavefunctions natesfromDirac natureofthe 2D topologicalsurfacestates. from the upperand lower surfaces of the film becomesnon- Furthermore,the opticaltransitionsfromthe valence to con- negligible,andhybridizationbetweenthemwillinduceagap 2 atDiracpointtoavoidcrossingofbands20. Furthermore,the (a) 2D energygap is predictedto oscillate between the ordinary insulatinggapandQSHgapasafunctionofthickness15. The e effective model of the quasi-2D system can be derived from thek pHamiltonianfor3DTI25, photon (cid:127) · (k) A k 0 A k h 1 z 2 MA k (k) A k 0− k H03D = A210k+z −AM20k+ −MA2(1kk−)z −−MA1(kkz)+ǫ0(k), (2) TI with k = k ik , ǫ (k) = C + D (k2 + k2) + D k2, ± x ± y 0 0 2 x y 1 z (k) = M + B (k2 +k2)+ B k2, and the four basis of the 3MD Hamilto0nian2arexdenyoted a1s zP1+, , P2 , , P1+, , (b) | z ↑i | −z ↑i | z ↓i |pPa2ri−zt,y↓ainwdith (th)efsourpseprsincriuppt (±doswtann)d.inWghfeonr ethveenTIanfidlmodids e 3,4 ↑ ↓ thin, k is no longer a good quantum number, by replacing z photon k i∂ andwiththein-planemomentumk goodquantum (cid:127) nzum→b−ers,zthen3Dmodelcanbeexpressedas k 3D(k , i∂ ) k 3D(k = 0, i∂ ) + δ 3D, where 3D(kH0= 0k, −i∂z) i≡s h 1,2 bHlo0ck dkiagonal−andz can bHe0solved exaHctl0y, thken 2D th−inzfilm modelcan be obtainedby projecting 3D on the eigenstates TI H0 of 3D(k =0, i∂ )(denotedas 1, , 2, , 1, , 2, ), H0 k − z | ↑i | ↑i | ↓i | ↓i Hybridization ˜(k ) 0 0 A˜ k 2 H02D =MA˜200k+k −MA˜˜20k(k+k) MA˜˜20(kk−k) −M˜00(k−k) +ǫ˜0(kk), (3) FpsuaIrGirfa.gc1ee:nsO.erpattiiocanldaubrsinogrpptihoontoonfasubsrofarpcteiosntaftoers.(Ta)he3Dpaartnidcle(ba)n2dDhoTleI it is nothing but the model of Bernevig, Hughes and Zhang (BHZ) for the 2D QSH insulator2,15,20 with ǫ˜ (k ) = C˜ + thethevalencetoconductionsurfacebands, 0 0 D˜ (k2+k2), ˜(k ) = M˜ +B˜ (k2+k2),andC˜ , Dk˜ , M˜ , B˜ an2d Ax˜2 arye pMaramketers w0hich2arexthicykness dep0end2ent.0The2 H =H0+H1 iesnedroguybdleisdpeegrseinoenraisteǫa±n(kd)g=ivǫe˜0s(ka)g±apqoAf˜222kMk2˜+Ma˜t(Γkkp)o2,inwt.hiAchs =  4 ǫk,ia†k,iak,i+ ~eA2A(t)· 4 a†k,iDij(k)ak,j, (4) hasbeenexperimentallydemonstratedin|Re0f.| 9, a finite sur- Xk Xi=1 iX,j=1  facegapisinducedwhentheTIfilmofBi Se islessthan6 2 3 wherea arethebandoperatorswithenergydispersionǫ = QLs. k,i 1,2 ǫ and ǫ = ǫ , respectively. A(t) is the vector potential. 3,4 + −(k)istheinterbandtransitionoperator, D II. OPTICALABSORBANCEANDSELECTIONRULES 0 0 eˆ 0 + 0 0 0 eˆ bbyyCktohuepmleiAnog.detAol sHexiantmetrihnlteaolnceaialsenecto(r3fo)mg,rawagpinhtehetnitceh,efitehrleedpmAlaacisessmldeesensstcDroiibfreakdc D(k)=eˆ0− eˆ0+ 00 00−  (5) − c spectrumleadstotheuniversalopticalabsorbance = where eˆ = eˆ ieˆ . Here we have neglected the small graphene x y πα17. SuchopticalpropertiesbeingdefinedbythefPundamen- wavevec±torofligh±t. Takingintoaccountthemomentumcon- talconstantsoriginatesfromthe two-dimensionalnatureand servationk forthe initial i and final f states, onlythe ex- |i | i gapless electronic spectrum of graphene. This suggests the citationprocessespicturedinFig.1(a)contributetothelight universal absorbance should also be true for the helical sur- absorption. The absorption power per unit area is given by face states ofTI.When the thicknessof Bi Se thinfilm ex- W = Γ~ω, where Γ is the absorption events per unit time 2 3 a ceeds6QLs,thelowenergyopticalabsorptionofitsgapless per unit area, calculated by using Fermi’s golden rule to be surfacescanalwaysoccurwithphotonenergyrangingfrom0 Γ = (2π/~) f i 2δ(E E ~ω), and ω is the i,f,k|h |H1|i| f − i − to0.3eV,wherethehighenergycut-offisthebulkbandgap. optical frequency. The incident energy flux W is given by P i Withinthedipolemomentapproximation,wecanwritedown W = (c/4π)A(t)2ω2. Thentheabsorbanceis definedas the i | | theinteractingHamiltonianduetotheopticaltransitionsfrom ratioofabsorbedlightenergyfluxdividedbytheincidentlight 3 energyflux (k 0),thetransitionoperatorisexactlythesameasinthe → gaplesscase,andtheabsorbanceis W π = a = α, (6) gapless P Wi 2 1 =πα . (7) where α is the fine structure constant. The universaloptical Pgapped 1+2M˜0B˜2/A˜22 absorption does not depend on the photon energy. For the interaction of light with relativistic helical surface states is Thus the absorbance for the gapped surface states is around described by a single coupling constant, i.e. the fine struc- πα,abouttwicehigherthanthegaplesscase. Inparticular,for ture constant. The Fermi velocity is only a prefactor for 2 and 3QL, the absorbanceis 1.8%and 2.05%, smaller than both 0 and 1, accordingly, one can expect that the coef- πα, andfor4and5QL,the absorbanceis3.85%and6.22%, H H ficient may not change the strength of the interaction, as in- largerthanπα. ThesignofM˜ B˜ determinesthenontrivialor 0 2 deed our calculationsshow. When a TI film is suspendedin trivialtopologyofthequasi-2Dbandstructure2,15. M˜ B˜ < 0 0 2 air, α = 1/137 and thus = 1.15%. It is among materi- and > πα, the system is in the inverted regime, i.e. alswithhighestabsorbancPe,about200timeslargerthanbulk the QPSgaHppeidnsulating states; while M˜ B˜ > 0 and < 0 2 gapped Hg1 xCdxTe of equivalent thickness, with absorption coeffi- πα, the system is just conventional insulator. ThisPsuggests cien−t about 100cm−1 for incident infrared light21. It is also an optical way to identify the topological nature other than just half of the value of a single layer graphene. This is be- transportmeasurement3. causefor3DTIfilm,theupanddownsurfacesgives2gapless Inreality,theabsorptionoccursnotjustaroundbandedge, Diracfermions,whileforsinglelayergraphene,thetwoDirac so from the pointof view for application, we should get the conestogetherandtworealspinsprovideadegeneratefactor fullsurfaceabsorptionspectrum.Thusthetransitionrateis of4. Astheenergygapisopenedaroundthe Diracpointin the thin film TI like Bi2Se3 less than6 QLs, interbandrealtran- Γ=(2π/~) |hf|H1|ii|2δ(Ef −Ei−~ω) (8) sitionsbetweentheconductionandvalencesurfacebandscan iX,f,k beexcitedbyopticalfieldwhenthephotonenergy~ωexceeds thesurfacebandgap2M˜ (Fig.1(b)). Aroundthebandedge Theabsorbanceis 0 | | (ω)= Γtotal(ω)~ω = Pgapped(M˜0) 1 A˜22−(A˜22+2M˜B˜2)+ q(A˜22+2M˜B˜2)2+B˜22(~2ω2−4M˜2), (9) Pgapped Wi r1+ B˜(22A(˜~222+ω22M˜−B4˜2M˜)22)  − B˜22 ~2ω2  (M˜ ) is the band edge absorbance and the parameters tion,respectively.WecanseeclearlyinFig.2(b)thatthespin gapped 0 P for Bi Se are in Ref. 9. For 4 QLs Bi Se , the absorbance opticaltransitioninthethinfilmTIisverydifferentfromthe 2 3 2 3 isshowninFig.2(a). Wecanseethattheabsorbanceishigh conventionaldirect-gapsemiconductorsuch as GaAs, where in the allowed frequencyrange, indicating a good frequency the spin wavefunctionremainsunchanged. This uniquespin coverage when TI is used for photodetection. When the 3D opticaltransitionselectionrulesmakethethinfilmTIattrac- TI is reduced to quasi-2D, the absorbance is enhanced only tiveforspintronicsapplicationslikefastswitching.26 near the band edge, and when the photon energy increases, theabsorbancedropstothe3Dvalueof =πα/2. gapless P The gapped surface bands in the thin film TI can be clas- III. TI-BASEDPHOTODETECTOR sifiedintotwoclasses, withoneclassbeingthetimereversal partneroftheother. Bands1and3areoneclass,theotheris Recently, graphenehas been experimentallydemonstrated 2and4(Fig.2(b)). AsshowninEq.(5),nearthebandedge, as a high performance THz Infrared photodetector due to right-handed (σ+) light couples only to 1 and 3, while left- its zero band gap and high a∼bsorbance18. Similarly, the TI handed(σ )lightcouplesonlyto2and4. Itwillcausetran- surfacemayalso beused forsuchapplication. Thefigureof sitionbetw−eenthespin-down(up)valencestateandthespin- meritof photodetectoris characterizedby its SNR. Fig. 3(a) up(down)conductionstate. Forconventionalsemiconductors showsatypicalphotodetectorusingtheTIthinfilm-thepho- likeGaAsquantumwellin[001]direction,theopticalselec- toconductive resistor22. The particle and hole pairs will be tion rulesfrom heavyhole bandsto conductionbandsare as generated through light absorption and the system becomes σ : S / 1 (X iY ) / . Here S , X , more electric conductive. Such change in conductivity can ± | i⊗|↑ ↓i→∓√2 | i± | i ⊗|↑ ↓i | i | i Y and / representstheorbital-andspin-partwavefunc- beeasilymeasuredinanelectroniccircuit. TheSNRinsuch | i |↑ ↓i 4 (a) betterthanHg Cd Te(Fig.3(b)).Besidesthis,thebandgap 0.040 4QLs BiSe of such quasi-12−Dx syxstem are tunable form 5meV to 0.25eV 2 3 0.036 Graphene by varying its thickness9 (Fig. 3(b)) where the high energy 0.032 3D Bi2Se3 cut-off is 0.6eV here due to the confinementof bulk bands9. 0.028 PhotodetectorsmadefromtheBi2Se3familyofTIsarepoten- ance 0.024 tiallyeasiertomanufactureandcanovercomethelimitations orb ofHg1 xCdxTe. bs 0.020 − A 0.016 I (a) ph 0.012 V 0.008 0.08 0.12 0.16 0.20 0.24 w( eV) Light (b) 3 4 CB -1/2 CB +1/2 l w TI (cid:305)+ (cid:305)- (cid:305)+ (cid:305)- (b) 3D TI 5QL 2GDra TpIhene 1 2 HH -3/2 HH +3/2 4QL TI surface GaAs 101 FfoopIrGtigc.ra2al:pshAeelbnesceot,iro3pnDtiroaunnledssp2ieDnctGTruIamAsusrafanandcdesTbelaIencsdtusiro.fna(cbre)uCbleaosnm.d(psa.a)rAiTshobensouorbpfasanpncidne SNR(TI)/SNR(HgCdTe) 3QL 2QL downarrowdenotesthespinupandspindown,respectively.CBand HHdenotestheconductionbandsandheavyholebandsinGaAs. 100 0 0.05 0.1 0.15 0.2 0.25 0.3 Photon Energy (eV) system is defined by SNR = Iph/σIn, where Iph is the pho- FIG. 3: Photodetector device. (a) Schematics of a typical photo- tocurrent and σIn is standard deviation of the noise current resistor.(b)TheSNRof3DTIinfullspectrum(blueline),graphene whose major source is the thermal noise (Johnson noise) at (dashedline)and2DTIatthebandedge(redpoint)comparingwith finite temperature T when the voltage bias V k T/q27,28. bulkHg Cd Te. B 1 x x I = 2qηPS/E , here a factorof 2 represents≪the electron- − ph ph holepair,qistheelectroncharge,ηisthequantumefficiency, P is the incidentlight power density, S is the detecting area and E is the incident photon energy. σ = 4k T∆f/R, whereaphs ∆f is the bandwidth of the detecIntor, ipnverBsely pro- IV. CONCLUSIONANDOUTLOOK portionaltoitsintegrationtimeandRistheresistance. Thus theperformanceofaphotodetectorrelyontheintrinsicprop- In summary, we discussed in this paper the fine struc- erties of the photodetecting material, for η is determined by ture constant defined high optical absorption of TI and its the absorbanceandR is determinedbythe resistivityρ. The unique selection rules. Broadband and high performance higherabsorbanceandthelargerresistivity(largerbandgap) photodetectors based on TI are proposed. They may find a thematerialhave,thebetteritistobeusedasaphotodetector. widerangeofphotonicapplicationsincludingthermaldetec- AdetailedcalculationoftheSNRofTIphotodetectorsispro- tion, high-speed optical communications, interconnects, ter- videdinthesupplementaryfile29. Duetothehighabsorbance, ahertz detection, imaging, remote sensing, surveillance and 3DTIcanalsobeusedasahighperformanceTHz Infrared spectroscopy18. Inadditiontophotodetection,TImayalsobe (0 0.3eV) photodetector, whose SNR is compa∼rable than used in future for other optoelectronicdevices, such as tera- the∼commerciallyused bulk Hg Cd Te (Fig. 3(b)). In par- hertz laser30, waveguide31, plasmon based radiation genera- 1 x x ticular, this full spectrum can be−covered by a single 3D TI tion and detection32 and transparentelectrode33 etc. in anal- detector,whileforHg Cd Te,multiplestructureseachcov- ogytographene. 1 x x eringasegmentoftheb−andwidthbytuningthefractionx(and thenbandgap)havetobeused,tomaintainhighperformance, which bringsmuch more complexitiesin fabrication. More- Acknowledgments over, the resistivity ρ can be greatly enhanced when surface opens a gap with the thickness of thin film less than several WewishtothankS.Raghu,J.Maciejko,S.B.Chung,R.D. QLs. Indeed,theSNRcanbeimprovedtobeabout15times LiandB.F.Zhuforinsightfuldiscussions. J.W.acknowledge 5 thesupportfromNSFofChina(GrantNo.10774086),andthe 2006CB921500). ProgramofBasicResearchDevelopmentofChina(GrantNo. 1 X.L.QiandS.C.Zhang,Phys.Today63,33(2010). 438,197(2005). 2 B.A.Bernevig,T.L.Hughes,andS.C.Zhang,Science314,1757 17 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. (2006). Booth,T.Stauber,N.M.R.Peres,andA.K.Geim,Science320, 3 M. Ko¨nig, S. Wiedmann, C. Bru¨ne, A. Roth, H. Buhmann, 1308(2008). L. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766 18 F.Xia,T.Mueller,Y.mingLin,A.Valdes-Garcia,andP.Avouris, (2007). Nat.Nanotech.4,839(2009). 4 L.FuandC.L.Kane,Phys.Rev.B76,045302(2007). 19 A.H.C.Neto,F.Guinea,N.M.R.Peres,K.S.Novoselov, and 5 D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and A.K.Geim,Rev.Mod.Phys.81,109(2009). M.Z.Hasan,Nature452,970(2008). 20 H.-Z.Lu,W.-Y.Shan,W.Yao,Q.Niu,andS.-Q.Shen,Phys.Rev. 6 H.Zhang,C.-X.Liu,X.-L.Qi,X.Dai,Z.Fang,andS.-C.Zhang, B81,115407(2010). Nat.Phys.5,438(2009). 21 R. Dornhaus and G. Nimtz, Narrow Gap Semiconductors 7 Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, (SpringerTractsinModernPhysics98,1983). D.Grauer,Y.S.Hor,R.J.Cava,etal.,Nat.Phys.5,398(2009). 22 H.P.K.K.,Characteristicsanduseofinfrareddetectors(Online, 8 Y.L.Chen,J.G.Analytis,J.H.Chu,Z.K.Liu,S.K.Mo,X.L. 2004). Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, et al., Science325 23 A.Rogalski,J.Appl.Phys.93,4355(2003). (2009). 24 V.Ryzhii,V.Mitin,M.Ryzhii,N.Ryabova,andT.Otsuji,Appl. 9 Y. Zhang, K. He, C.-Z. Chang, C.-L. Song, L. Wang, X. Chen, Phys.Exp.1,063002(2008). J.Jia,Z.Fang,X.Dai,W.-Y.Shan,etal.,Nat.Phys.6,584(2010). 25 C.-X. Liu, X.-L. Qi, H.-J. Zhang, X. Dai, Z. Fang, and S.-C. 10 Y.-Y.Li,G.Wang,X.-G.Zhu,M.-H.Liu,C.Ye,X.Chen,Y.-Y. Zhang,Phys.Rev.B82,045122(2010). Wang, K.He,L.-L.Wang, X.-C.Ma, etal.,Adv.Mat.22, 4002 26 Y. Nishikawa, A. Tackeuchi, S. Nakamura, S. Muto, and (2010). N.Yokoyama,Appl.Phys.Lett.66,839(1995). 11 H.Li,Z.Wang, X.Kan, X.Guo, andM.Xie, New J.Phys.12, 27 L.Callegaro,Am.J.Phys.74,438(2006). 103038(2010). 28 http://optical-technologies.info/p=62(2008). 12 D.Kong,J.C.Randel,H.-L.Peng,J.J.Cha,S.Meister,K.Lai, 29 SeeEPAPSDocumentNo.[numberwillbeinsertedbypublisher] Y. Chen, Z.-X. Shen, H. C. Manoharan, and Y. Cui, Nano Lett. for detailed calculation of SNR of TI photodetectors in com- 10(1),329(2010). parision with HgCdTe photodetectors. For more information on 13 D.Kong,W.Dang,J.J.Cha,H.Li,S.Meister,H.Peng,Z.Liu, EPAPS,seehttp://www.aip.org/pubservs/epaps.html. andY.Cui,NanoLett.10(6),2245(2010). 30 A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, and 14 J.Linder,T.Yokoyama,andA.Sudbø,Phys.Rev.B80,205401 V.Ryzhii,Appl.Phys.Express2,092301(2009). (2009). 31 S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99, 016803 15 C.-X. Liu, H.-J. Zhang, B.-H. Yan, X.-L. Qi, T. Frauenheim, (2007). X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev. B 81, 041307 32 V.Ryzhii,Jpn.J.Appl.Phys.45,L923(2006). (2010). 33 K.S.Kim,Nature457,706(2009). 16 K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,M.I.Kat- snelson,I.V.Grigorieva,S.V.Dubonos,andA.A.Firsov,Nature

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.