SERIES EDITORS CHENNUPATI JAGADISH Distinguished Professor Department ofElectronic Materials Engineering Research Schoolof Physicsand Engineering Australian National University Canberra,ACT2601, Australia ZETIAN MI Professor Department ofElectrical Engineering andComputer Science University ofMichigan 1310Beal Avenue AnnArbor, MI 48109 United Statesof America AcademicPressisanimprintofElsevier 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom 125LondonWall,London,EC2Y5AS,UnitedKingdom Firstedition2021 Copyright©2021ElsevierInc.Allrightsreserved Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,further informationaboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuch astheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythe Publisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedical treatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. ISBN:978-0-323-91509-0 ISSN:0080-8784 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:ZoeKruze AcquisitionsEditor:JasonMitchell DevelopmentalEditor:JhonMichaelPeñano ProductionProjectManager:AbdullaSait CoverDesigner:GregHarris TypesetbySTRAIVE,India Contributors YongP.Chen DepartmentofPhysicsandAstronomy;BirckNanotechnologyCenter;PurdueQuantum ScienceandEngineeringInstitute;SchoolofElectricalandComputerEngineering,Purdue University,WestLafayette,IND;QuantumScienceCenter,OakRidge,TN,UnitedStates; InstituteofPhysicsandAstronomyandVillumCentersforDiracMaterialsandforHybrid QuantumMaterials,AarhusUniversity,Aarhus-C,Denmark;WPI-AIMRInternational ResearchCenterforMaterialsSciences,TohokuUniversity,Sendai,Japan YulinChen StateKeyLaboratoryofLowDimensionalQuantumPhysicsandDepartmentofPhysics, TsinghuaUniversity,Beijing;SchoolofPhysicalScienceandTechnology,ShanghaiTech University,Shanghai,China;DepartmentofPhysics,UniversityofOxford,Oxford, UnitedKingdom TianLiang StateKeyLaboratoryofLowDimensionalQuantumPhysics,DepartmentofPhysics, TsinghuaUniversity,Beijing,People’sRepublicofChina;RIKENCenterforEmergent MatterScience(CEMS),Wako,Japan Chao-XingLiu DepartmentofPhysics,ThePennsylvaniaStateUniversity,UniversityPark,PA, UnitedStates JaySau DepartmentofPhysics,CondensedMatterTheoryCenterandTheJointQuantumInstitute, UniversityofMaryland,CollegePark,MD,UnitedStates SumantaTewari DepartmentofPhysicsandAstronomy,ClemsonUniversity,Clemson,SC,UnitedStates YangXu BeijingNationalLaboratoryforCondensedMatterPhysicsandInstituteofPhysics,Chinese AcademyofSciences,Beijing,China HaifengYang SchoolofPhysicalScienceandTechnology,ShanghaiTechUniversity,Shanghai,China LexianYang StateKeyLaboratoryofLowDimensionalQuantumPhysicsandDepartmentofPhysics, TsinghuaUniversity,Beijing,China JiabinYu CondensedMatterTheoryCenter,DepartmentofPhysics,UniversityofMaryland,College Park,MD,UnitedStates vii Preface Topological materials are novel quantum materials in which exotic physical propertiesprohibitedbytraditionaldoctrinesariseduetotheunconventional topological structures in their quantum wave functions. Although the initial discoverywasmadeintheearly1980s,mosttopologicalmaterialsarerevealed quiterecently.Predicted andexperimentally confirmedin2008,topological insulators establish topologically protected surface states with a series of remarkable novel physical phenomena, such as spin-momentum locking andlinear(Dirac)energy-momentum dispersion.Thesuccessleadstoarich familyoftopologicalmaterials,includingtopologicalsuperconductors,topo- logical Dirac/Weyl semimetals, topological crystalline insulators, and corre- lated topological insulators, among others. The rapid progress opens a pathway for intriguing applications in future electronics, sensing, and communications. Thisbookprovidesin-depthreviewsofintriguingtopicsintopological materials.Ontheexperimentalside,Chapter1reviewsthedetailedphoto- emissionresultsontheelectronicstructuresofthebulkandsurfacestatesof the big family of the topological insulators and topological semimetals. Chapter2 further reviews theuniqueelectrical and thermoelectric transport propertiesoftopologicalsemimetals.Moreontheapplicationside,Chapter3 reviews the discovery of quantum Hall effects in specially designed and fabricated topological insulator devices. On the theoretical side, Chapter 4 summarizesthestate-of-the-artprogressintheoreticalandexperimentalstud- iesoftopological superconductors, Majoranamodes, andtopological qubits. Chapter5discussesthelatestprogressonpseudo-gaugefieldasagenerictool to characterize various exotic phenomena in topological semimetals. ix CHAPTER ONE Electronic structures of topological quantum materials studied by ARPES Lexian Yanga, Haifeng Yangb, and Yulin Chena,b,c,* aStateKeyLaboratoryofLowDimensionalQuantumPhysicsandDepartmentofPhysics,TsinghuaUniversity, Beijing,China bSchoolofPhysicalScienceandTechnology,ShanghaiTechUniversity,Shanghai,China cDepartmentofPhysics,UniversityofOxford,Oxford,UnitedKingdom ∗Correspondingauthor:e-mailaddress:[email protected] Contents 1. IntroductiontoARPES 2 1.1 Basicconcept 2 1.2 Generalprinciple 5 1.3 Experimentalinstrument 10 1.4 ARPESspectrum 15 2. ARPESstudiesontopologicalquantummaterials 16 2.1 Topologicalinsulatingphases 17 2.2 Topologicalsemimetals 22 2.3 Topologicalsuperconductors 32 3. Summaryandperspective 34 References 35 Abbreviations 2D two-dimension(al) 3D three-dimension(al) ARPES angle-resolvedphotoemissionspectroscopy MBS Majoranaboundstates QH quantumHall QSH quantumspinHall SOC spin-orbitalcoupling STM scanningtunnelingmicroscope TCI topologicalcrystallineinsulator TCS topologicalchiralsemimetal TDS topologicalDiracsemimetal TI topologicalinsulator TMD transitionmetaldichalcogenide TNLS topologicalnodallinesemimetal SemiconductorsandSemimetals,Volume108 Copyright#2021ElsevierInc. 1 ISSN0080-8784 Allrightsreserved. https://doi.org/10.1016/bs.semsem.2021.07.004 2 LexianYangetal. TQM(s) topologicalquantummaterial(s) TRS time-reversalsymmetry TSC topologicalsuperconductor TSS topologicalsurfacestates TWS topologicalWeylsemimetal UHV ultrahighvacuum UV ultraviolet 1. Introduction to ARPES 1.1 Basic concept ARPES is based on the photoelectric effect Heinrich Hertz discovered in 1887 when studying the spark discharge effect to confirm Maxwell’s elec- tromagnetic theory (Hertz, 1887). He found that the maximum kinetic energy of photoelectrons is independent on the light intensity but propor- tionaltothefrequencyoftheincidentlight.Moreover,thelightfrequency must be higher than a material-dependent threshold value to liberate elec- tronsfromsolids.Lateron,AlbertEinsteinsuccessfullyresolvedthesemys- teriesbythesimpleconceptofphotonandwasawardedtheNobelPrizein 1905 (Einstein, 1905). In his theory, the maximum kinetic energy of pho- toelectrons reads: Emax ¼ hυ(cid:2)ϕ, (1) kin where hυ is the photon energy, ϕ is called the work function of the solid material (Hu€fner, 2003). Fromtheperspectiveofelectronicstructure,electronsinsolidsarebound atthebindingenergyE withrespecttotheFermienergyE (thephotoelec- B F tronsatmaximumkineticenergyareexcitedfromE ofthesolids).Thegen- F eral relationship between the kinetic energy of photoelectrons and the binding energy can thus be written as (Fig. 1A): E ¼ hυ(cid:2)ϕ(cid:2)jE j: (2) kin B Therefore, if we can accurately measure the kinetic energy of photoelec- trons, we can calculate the binding energy of electrons in solids. Likewise,themomentumofelectronsinsolidscanbededucedfromthe pffiffiffiffiffiffiffiffiffiffiffiffiffi momentumofphotoelectrons(jKj ¼ 2mE )withmtheelectronmass,if kin the photoemission process respects the momentum conservation law. Fig. 1 Basic working principle of ARPES. (A) The energetics of photoemission process. (B) Schematic of the emission and collection of photoelectrons. 4 LexianYangetal. However, this is not completely true since the translational symmetry per- pendicular to the sample surface is broken. Fortunately, the translational symmetryparalleltothesamplesurfaceisstillrespectedthustheparallelelec- tron momentum of photoelectrons is conserved during photoemission. Using an electron analyzer, we can directly record the kinetic energy and emission angles (θ, φ) of photoelectrons as schematically shown in Fig. 1B. Consequently, the parallel electron momentum kk in solids can be calculated according to (cid:3) (cid:3) (cid:3) (cid:3) pffiffiffiffiffiffiffiffiffiffiffiffiffi (cid:3)kk(cid:3) ¼ (cid:3)Kk(cid:3) ¼ ħ1 2mEkinsinθðcosφxb+sinφbyÞ: (3) For the electron momentum in the vertical direction,k , although it is not z conserved during the photoemission process, we can approximately deter- mine it under reasonable assumptions. The most commonly used is the free-electron final state assumption, based on which the k is deduced as: z (cid:4) (cid:5) ħk2 ħ2 k2k+k2z E ðkÞ ¼ (cid:2)jE j ¼ (cid:2)jE j, (4) f 2m 0 2m 0 whereE istheenergyofthevalencebandbottom.NotethatE andE are 0 f 0 with respect to E , while E is with respect to the vacuum energy level. F kin Thus E ¼E +ϕ (see Fig. 1A). Using Eqs. (3, 4), we obtain: f kin pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 jkzj ¼ ħ 2mðEkincos2θ+V0Þ, (5) whereV ¼jE j+ϕiscalledtheinnerpotential.Underthisassumption,itis 0 0 easy to note that k dispersion can be measured by photon-energy depen- z dent ARPES measurements, from which the inner potential can be deter- minedbymatchingtheperiodicityofthek dispersionwiththatofBrillouin z zone (Damascelli et al., 2003;Hu€fner, 2003; Luet al., 2012). The fact that k depends on θ suggests that the electrons photoemitted by a determinant z photonenergyarefromacurvedk sphere.Ithasbeendemonstratedthatthe z assumption of free-electron final state is not only suitable for simple metals but also applicable for complex compounds such as correlated materials. Photon-energy dependent measurement is particularly useful for the iden- tification of topological surface states (TSS) of TQMs (Chen, 2012; Chen et al., 2020; Lv et al., 2019a, 2021; Yang et al., 2018; Zhang et al., 2020),sincethesurfacestatesshownok dispersion,incontrasttothebulk z states that usually show obvious k dispersion. z ElectronicstructuresofTQMsstudiedbyARPES 5 1.2 General principle After phenomenologically describing the energy and momentum conver- sionprocessinARPESexperiment,wenowdiscussthemicroscopicquan- tum process of photoemission. The photoemission can be treated as an optical transition from an N-electron initial state to a final state consisting of N-1 electrons and a photoelectron. The initial N-electron state is describedbyamany-bodywavefunction thatsatisfies thesurface boundary condition. It is one of the eigenstates of the N-electron system. The final stateisdefinedbyoneoftheeigenstatesoftheionized(N-1)-electronsystem andthecomponentofthewavefunctionofthephotoelectron(thatisusually approximated by a plane-wave propagating in vacuum with an amplitude component in the solid). To calculate the intensity of the photoelectrons, weneedtoknowthetransitionprobabilityfromtheinitialstatetothefinal state after photo-excitation, which can be approximately given by Fermi’s golden rule: (cid:3)D E(cid:3) (cid:4) (cid:5) 2π(cid:3) (cid:3) ω ¼ (cid:3) ΨNjH jΨN (cid:3)δ EN (cid:2)EN (cid:2)hυ , (6) fi ħ f int i f i where ΨN and ΨN (EN and EN) are wave functions (energies) of the initial f i f i and final N-electron systems. H describes the optical perturbation of the int system: e H ¼ (cid:2) ðA(cid:3)p+p(cid:3)AÞ: (7) int 2mc Aandparethevectorpotentialoftheexcitationlightandthemomentumof theelectron,respectively.Withdipoleapproximation,thevectorpotential oftheultra-violetlightcanberegardedasconstantattheatomicscale,there- fore r(cid:3)A50 and Eq. (7) reads: e e e H ¼ (cid:2) ðA(cid:3)p+½p,A(cid:4)+p(cid:3)AÞ ¼ (cid:2) A(cid:3)p2iħr(cid:3)A5(cid:2) A(cid:3)p: int 2mc mc mc (8) To accurately describe and calculate the photoemission process, one needs to treat it as a one-step quantum process. The bulk, surface, and vacuum informationhavetobeincludedintheHamiltoniandescribingthesystem, which involvesnot onlythe bulk andsurface statesbutalso theevanescent statesandsurfaceresonancestates.Suchaone-stepmodelistoocomplicated tobequantitativelysolved.Instead,aphenomenologicalthree-stepmodelis