Afi f Ben Amar · Donal O'Regan Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications Afif Ben Amar • Donal O’Regan Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications 123 AfifBenAmar DonalO’Regan DepartmentofMathematics SchoolofMathematics UniversityofSfax,FacultyofSciences NationalUniversityofIreland,Galway Sfax,Tunisia Galway,Ireland ISBN978-3-319-31947-6 ISBN978-3-319-31948-3 (eBook) DOI10.1007/978-3-319-31948-3 LibraryofCongressControlNumber:2016936666 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland TomyparentsFathiandMounira TomywifeFatenandourchildrenHadil, Hiba,andYoussef and TomybrothersImed,Aref,andmysister Alyssa AfifBenAmar TomywifeAliceandourchildrenAoife, Lorna,Daniel,andNiamh DonalO’Regan Preface Fixedpointtheoryisapowerfulandfruitfultoolinmodernmathematicsandmay beconsideredasacoresubjectinnonlinearanalysis.Inthelast50years,fixedpoint theoryhasbeenaflourishingareaofresearch.Inthisbook,weintroducetopological fixedpointtheoryforseveralclassesofsingle-andmultivaluedmaps.Theselected topicsreflectourparticularinterests. The text is divided into seven chapters. In Chap.1, we present basic notions in locally convex topological vector spaces. Special attention is devoted to weak compactness,inparticulartothetheoremsofEberlein–Šmulian,Grothendieck,and Dunford–Pettis. Leray–Schauder alternatives and eigenvalue problems for decom- posablesingle-valuednonlinearweaklycompactoperatorsinDunford–Pettisspaces areconsideredinChap.2.InChap.3,wepresentsomevariantsofSchauder,Kras- noselskii, Sadovskii, and Leray–Schauder-type fixed point theorems for different classesofweaklysequentiallycontinuous(resp.sequentiallycontinuous)operators ongeneralBanachspaces(resp.locallyconvexspaces).Sadovskii,Furi–Pera,and KrasnoselskiifixedpointtheoremsandnonlinearLeray–Schauderalternativesinthe framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph are considered in Chap.4. The results are formulated in terms of axiomatic measures of weak noncompactness. In Chap.5, we present somefixedpointtheoremsinanonemptyclosedconvexofanyBanachalgebrasor Banachalgebrassatisfyingasequentialcondition.P/forthesumandtheproduct of nonlinear weakly sequentially continuous operators. We illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points and nonlinear Leray–Schauder alternatives for different classes of nonlinear .ws/-compact operators (weakly condensing, 1-set weakly contractive, strictlyquasi-bounded)definedonanunboundedclosedconvexsubsetofaBanach spaceisdiscussedinChap.6.Wealsodiscusstheexistenceofnonlineareigenvalues andeigenvectorsandsurjectivityofquasi-boundedoperators.InChap.7,wepresent some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. A method is developed indicating how to vii viii Preface use approximate fixed point theorems to prove the existence of approximate Nash equilibriafornoncooperativegames. Wehopethebookwillbeofusetograduatestudentsandtheoreticalandapplied mathematicians who work in fixed point theory, integral equations, ordinary and partialdifferentialequations,gametheory,andotherrelatedareas. Sfax,Tunisia AfifBenAmar Galway,Ireland DonalO’Regan Contents 1 BasicConcepts ............................................................... 1 1.1 TopologicalSpaces:SomeFundamentalNotions.................... 1 1.2 NormedSpacesandBanachSpaces .................................. 3 1.3 ConvexSets............................................................ 5 1.3.1 Cones......................................................... 5 1.3.2 OrderedVectorSpaces....................................... 6 1.3.3 VectorLattices ............................................... 7 1.3.4 OrderedNormedSpaces..................................... 7 1.3.5 NormedVectorLatticesandBanachLattices .............. 8 1.4 LocallyConvexVectorSpaces........................................ 9 1.5 WeakandWeak(cid:2) Topologies.......................................... 11 1.6 ConvergenceandCompactnessinWeakTopologies ................ 12 1.7 MetrizabilityofWeakTopologies .................................... 16 1.8 WeakCompactnessinL1.X;(cid:2)/:TheDunford–PettisTheorem..... 19 1.9 TheDunford–PettisProperty.......................................... 23 1.9.1 WeaklyCompactOperators ................................. 23 1.9.2 TheDunford–PettisProperty................................ 24 1.10 AngelicSpaces......................................................... 25 1.11 NormedAlgebras...................................................... 26 1.12 MeasuresofWeakNoncompactness.................................. 27 1.13 TheSuperpositionOperator........................................... 31 1.14 SomeAspectsofContinuityinL1-Spaces............................ 32 1.15 FixedPointTheory .................................................... 35 1.15.1 TheKrasnosel’skii’sFixedPointTheorem................. 35 1.15.2 Leray–SchauderTheory ..................................... 36 1.15.3 MultivaluedMaps............................................ 37 2 NonlinearEigenvalueProblemsinDunford–PettisSpaces.............. 39 2.1 Introduction............................................................ 39 2.2 NonlinearEigenvalueProblems....................................... 40 ix