ebook img

Topological Analysis PDF

495 Pages·2012·4.406 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topological Analysis

De Gruyter Series in Nonlinear Analysis and Applications 16 Editor in Chief Jürgen Appell, Würzburg, Germany Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Karl-Heinz Hoffmann, Munich, Germany Mikio Kato, Kitakyushu, Japan Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Boris N. Sadovsky, Voronezh, Russia Alfonso Vignoli, Rome, Italy Katrin Wendland, Freiburg, Germany Martin Väth Topological Analysis From the Basics to the Triple Degree for Nonlinear Fredholm Inclusions De Gruyter Mathematics Subject Classification 2010: Primary: 47H11, 47H05, 47H08; Secondary: 54C60, 54C55, 54C20, 47H10, 55M20, 54E35, 46T05, 47A53, 54F45, 54H25, 46T20, 54C15, 54C25, 54C10, 54E50, 55M15, 55M10, 55M25, 55P05. ISBN 978-3-11-027722-7 e-ISBN 978-3-11- 027733-3 ISSN 0941-813X Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the internet at http://dnb.dnb.de. © 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston Typesetting: Da-TeX Gerd Blumenstein, Leipzig, www.da-tex.de Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen  Printed on acid-free paper Printed in Germany www.degruyter.com Preface Topological methods are among the most important theoretical tools in analysis, usefulformanyquestionsarisinginanalysis,concerningfinite-dimensional prob- lems or also infinite-dimensional problems like differential or integral equations. One particularly important tool is degree theory which was originally developed byLerayandSchauderforequationsofaratherspecificformandwhichismean- while available for a much larger class of equations, even those which involve noncompact situations ormultivaluedmaps. Thismonographaimstogiveaself-contained introductionintothewholefield: Requiring essentially only basic knowledge of elementary calculus and linear al- gebra, it provides all required background from topology, analysis, linear and nonlinearfunctionalanalysis,andmultivaluedmaps,containing evenbasictopics likeseparation axioms, inverse andimplicit function theorems, theHahn-Banach theorem,Banachmanifolds, orthemostimportantconceptsofcontinuity ofmul- tivaluedmaps. Thus,itcanbeusedasadditionalmaterialinbasiccoursesonsuch topics. Themainintention, however, is toprovide also additional information on somefinepointswhichareusuallynotdiscussed insuchintroductory courses. The selection of the topics is mainly motivated by the requirements for de- gree theory which is presented in various variants, starting from the elementary Brouwer degree (in Euclidean spaces and on manifolds) with several of its fa- mous classical consequences, up to a general degree theory for function triples which applies for a large class of problems in a natural manner. Although it has been known to specialists that, in principle, such a general degree theory must exist, this is probably the first monograph in which the corresponding theory is developedindetail. Berlin,March2012 MartinVäth Contents Preface v 1 Introduction 1 I Topologyand MultivaluedMaps 2 MultivaluedMaps 9 2.1 NotationsforMultivalued MapsandAxioms ................ 9 2.1.1 Notations ...................................... 9 2.1.2 Axioms ....................................... 11 2.2 Topological NotationsandBasicResults ................... 17 2.3 Separation Axioms .................................... 24 2.4 UpperSemicontinuous MultivaluedMaps .................. 43 2.5 ClosedandProperMaps ................................ 52 2.6 Coincidence PointSetsandClosedGraphs .................. 55 3 MetricSpaces 59 3.1 NotationsandBasicResultsforMetricSpaces ............... 59 3.2 ThreeMeasuresofNoncompactness ....................... 67 3.3 Condensing Maps ..................................... 75 3.4 Convexity ............................................ 84 3.5 TwoEmbeddingTheoremsforMetricSpaces ............... 89 3.6 SomeOldandNewExtensionTheoremsforMetricSpaces ..... 96 4 SpacesDefinedbyExtensions,Retractions,orHomotopies 105 4.1 AEandANESpaces ................................... 105 4.2 ANRandARSpaces ................................... 107 4.3 ExtensionofCompactMapsandofHomotopies ............. 114 4.4 UV1 andR SpacesandHomotopicCharacterizations ....... 122 ı 5 AdvancedTopologicalTools 129 5.1 SomeCoveringSpaceTheory ............................ 129 viii Preface 5.2 AGlimpseonDimensionTheory ......................... 133 5.3 VietorisMaps......................................... 140 II Coincidence Degree forFredholm Maps 6 SomeFunctionalAnalysis 147 6.1 BoundedLinearOperatorsandProjections .................. 147 6.2 LinearFredholmOperators .............................. 160 7 OrientationofFamiliesofLinearFredholmOperators 169 7.1 OrientationofaLinearFredholmOperator .................. 169 7.2 OrientationofaContinuous Family ....................... 178 7.3 OrientationofaFamilyinBanachBundles ................. 182 8 SomeNonlinearAnalysis 197 8.1 ThePointwiseInverseandImplicitFunctionTheorems ........ 197 8.2 OrientedNonlinear FredholmMaps ....................... 203 8.3 OrientedFredholm MapsinBanachManifolds .............. 204 8.4 APartialImplicitFunctionTheoreminBanachManifolds ..... 214 8.5 TransversalSubmanifolds ............................... 220 8.6 Parameter-Dependent Transversality andPartialSubmanifolds .. 226 8.7 OrientationonSubmanifolds andonPartialSubmanifolds ...... 229 8.8 ExistenceofTransversal Submanifolds ..................... 231 8.9 PropernessofFredholmMaps ............................ 234 9 TheBrouwerDegree 237 9.1 Finite-Dimensional Manifolds ............................ 237 9.2 OrientationofContinuous MapsandofManifolds ............ 248 9.3 TheCr BrouwerDegree ................................ 255 9.4 Uniqueness oftheBrouwerDegree ........................ 261 9.5 ExistenceoftheBrouwerDegree ......................... 279 9.6 SomeClassicalApplications oftheBrouwerDegree .......... 293 10 TheBenevieri–FuriDegrees 309 10.1 FurtherPropertiesoftheBrouwerDegree ................... 310 10.2 TheBenevieri–Furi C1 Degree ........................... 318 Preface ix 10.3 TheBenevieri–Furi Coincidence Degree ................... 324 III Degree Theory forFunctionTriples 11 FunctionTriples 339 11.1 FunctionTriplesandTheirEquivalences ................... 341 11.2 TheSimplifierProperty ................................. 355 11.3 HomotopiesofTriples .................................. 361 11.4 LocallyNormalTriples ................................. 365 12 TheDegreeforFinite-DimensionalFredholmTriples 367 12.1 TheTripleVariantoftheBrouwerDegree .................. 367 12.2 TheTripleVariantoftheBenevieri–Furi Degree ............. 380 13 TheDegreeforCompactFredholmTriples 391 13.1 TheLeray–Schauder TripleDegree ........................ 391 13.2 TheLeray–Schauder Coincidence Degree .................. 404 13.3 ClassicalApplications oftheLeray–Schauder Degree ......... 407 14 TheDegreeforNoncompactFredholmTriples 413 14.1 TheDegreeforFredholmTripleswithFundamental Sets ....... 414 14.2 HomotopicTestsforFundamentalSets ..................... 429 14.3 TheDegreeforFredholmTripleswithConvex-fundamental Sets 437 14.4 Countably Condensing Triples ........................... 448 14.5 ClassicalApplications intheGeneralFramework ............ 456 14.6 ASampleApplication forBoundaryValueProblems .......... 462 Bibliography 465 IndexofSymbols 475 Index 477

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.